Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Quantum Information
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj quantum information
  3. articles
  4. article
Quantum simulation via stochastic combination of unitaries
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 19 February 2026

Quantum simulation via stochastic combination of unitaries

  • Joseph Peetz1,
  • Scott E. Smart2 &
  • Prineha Narang2 

npj Quantum Information , Article number:  (2026) Cite this article

  • 275 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Physics
  • Quantum information
  • Quantum physics
  • Quantum simulation

Abstract

Quantum simulation algorithms often require numerous ancilla qubits and deep circuits, prohibitive for near-term hardware. We introduce a framework for simulating quantum channels using ensembles of low-depth circuits in place of many-qubit dilations. This naturally enables simulations of open systems, which we demonstrate by preparing damped many-qubit GHZ states on ibm_hanoi. The technique further inspires two Hamiltonian simulation algorithms with gate counts that are asymptotically independent of the spectral precision target, reducing resource requirements by several orders of magnitude for a benchmark system.

Similar content being viewed by others

Hamiltonian simulation algorithms for near-term quantum hardware

Article Open access 17 August 2021

Long-time error-mitigating simulation of open quantum systems on near term quantum computers

Article Open access 21 January 2025

A quantum hamiltonian simulation benchmark

Article Open access 09 November 2022

Data availability

Data for the GHZ state preparation results run on ibm_hanoi can be provided upon reasonable request.

Code availability

The code used to generate Figs. 2 and 4 can be provided upon reasonable request.

References

  1. Childs, A. M. & Wiebe, N. Hamiltonian simulation using linear combinations of unitary operations. Quantum Inf. Comput. 12, 901–924 (2012).

    Google Scholar 

  2. Childs, A. M., Kothari, R. & Somma, R. D. Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J. Comput. 46, 1920–1950 (2017).

    Google Scholar 

  3. Low, G. H. & Chuang, I. L. Hamiltonian simulation by qubitization. Quantum 3, 163 (2019).

    Google Scholar 

  4. Chakraborty, S., Gilyén, A. & Jeffery, S. The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation. In Proc. 46th International Colloquium on Automata, Languages, and Programming (ICALP), Vol. 132, 1–33 (2019)..

  5. Wan, L.-C. et al. Block-encoding-based quantum algorithm for linear systems with displacement structures. Phys. Rev. A 104, 062414 (2021).

    Google Scholar 

  6. Wang, S. et al. Fast black-box quantum state preparation based on linear combination of unitaries. Quantum Inf. Process. 20, 270 (2021).

    Google Scholar 

  7. Nguyen, Q. T., Kiani, B. T. & Lloyd, S. Block-encoding dense and full-rank kernels using hierarchical matrices: applications in quantum numerical linear algebra. Quantum 6, 876 (2022).

    Google Scholar 

  8. An, D., Liu, J.-P. & Lin, L. Linear combination of Hamiltonian simulation for nonunitary dynamics with optimal state preparation cost. Phys. Rev. Lett. 131, 150603 (2023).

    Google Scholar 

  9. Stinespring, W. F. Positive functions on c*-algebras (1955).

  10. Paulsen, V. Completely Bounded Maps and Operator Algebras Cambridge Studies in Advanced Mathematics (Cambridge Univ. Press, Cambridge, 2003).

  11. Hu, Z., Xia, R. & Kais, S. A quantum algorithm for evolving open quantum dynamics on quantum computing devices. Sci. Rep. 10, 3301 (2020).

    Google Scholar 

  12. Langer, H. B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert Space. VIII + 387 S. Budapest/Amsterdam/London 1970. Akadémiai Kiadó/North-Holland Publishing Company. Z. Angew. Math. Mech. 52, 501–501 (1972).

    Google Scholar 

  13. Faehrmann, P. K., Steudtner, M., Kueng, R., Kieferova, M. & Eisert, J. Randomizing multi-product formulas for Hamiltonian simulation. Quantum 6, 806 (2022).

    Google Scholar 

  14. Chakraborty, S. Implementing any linear combination of unitaries on intermediate-term quantum computers. Quantum 8, 1496 (2024).

    Google Scholar 

  15. Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, Oxford, 2007).

  16. Head-Marsden, K., Flick, J., Ciccarino, C. J. & Narang, P. Quantum information and algorithms for correlated quantum matter. Chem. Rev. 121, 3061–3120 (2021).

    Google Scholar 

  17. Schlimgen, A. W., Head-Marsden, K., Sager, L. M., Narang, P. & Mazziotti, D. A. Quantum simulation of open quantum systems using a unitary decomposition of operators. Phys. Rev. Lett. 127, 270503 (2021).

    Google Scholar 

  18. Kamakari, H., Sun, S.-N., Motta, M. & Minnich, A. J. Digital quantum simulation of open quantum systems using quantum imaginary–time evolution. PRX Quantum 3, 010320 (2022).

    Google Scholar 

  19. Egorova, D., Kühl, A. & Domcke, W. Modeling of ultrafast electron-transfer dynamics: multi-level Redfield theory and validity of approximations. Chem. Phys 268, 105–120 (2001).

    Google Scholar 

  20. Okolowicz, J., Ploszajczak, M., & Rotter, I. Dynamics of quantum systems embedded in a continuum. Phys. Rep. 374, 271–383 (2003).

    Google Scholar 

  21. Rotter, I. & Bird, J. P. A review of progress in the physics of open quantum systems: theory and experiment. Rep. Prog. Phys. 78, 114001 (2015).

    Google Scholar 

  22. Delle Site, L. & Praprotnik, M. Molecular systems with open boundaries: theory and simulation. Phys. Rep. 693, 1–56 (2017).

    Google Scholar 

  23. Moueddene, A. A., Khammassi, N., Bertels, K. & Almudever, C. G. Realistic simulation of quantum computation using unitary and measurement channels. Phys. Rev. A 102, 052608 (2020).

    Google Scholar 

  24. Wiebe, N., Berry, D. W., Hoyer, P. & Sanders, B. C. Simulating quantum dynamics on a quantum computer. J. Phys. A Math. Theor. 44, 445308 (2011).

    Google Scholar 

  25. Miessen, A., Ollitrault, P. J., Tacchino, F. & Tavernelli, I. Quantum algorithms for quantum dynamics. Nat. Comput. Sci. 3, 25–37 (2023).

    Google Scholar 

  26. Ollitrault, P. J., Miessen, A. & Tavernelli, I. Molecular quantum dynamics: a quantum computing perspective. Acc. Chem. Res. 54, 4229–4238 (2021).

    Google Scholar 

  27. Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).

    Google Scholar 

  28. Dong, Y., Lin, L. & Tong, Y. Ground-state preparation and energy estimation on early fault-tolerant quantum computers via quantum eigenvalue transformation of unitary matrices. PRX Quantum 3, 040305 (2022).

    Google Scholar 

  29. Wang, G., França, D. S., Zhang, R., Zhu, S. & Johnson, P. D. Quantum algorithm for ground state energy estimation using circuit depth with exponentially improved dependence on precision. Quantum 7, 1167 (2023).

    Google Scholar 

  30. Nam, Y. et al. Ground-state energy estimation of the water molecule on a trapped-ion quantum computer. npj Quantum Inf. 6, 1–6 (2020).

    Google Scholar 

  31. Bauer, B., Bravyi, S., Motta, M. & Chan, G. K.-L. Quantum algorithms for quantum chemistry and quantum materials science. Chem. Rev. 120, 12685–12717 (2020).

    Google Scholar 

  32. Lordi, V. & Nichol, J. M. Advances and opportunities in materials science for scalable quantum computing. MRS Bull. 46, 589–595 (2021).

    Google Scholar 

  33. De Leon, N. P. et al. Materials challenges and opportunities for quantum computing hardware. Science 372, eabb2823 (2021).

    Google Scholar 

  34. Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. Preprint at https://arXiv.org/abs/1411.4028 (2014).

  35. Albash, T. & Lidar, D. A. Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018).

    Google Scholar 

  36. Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    Google Scholar 

  37. Suzuki, M. General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys. 32, 400–407 (1991).

    Google Scholar 

  38. Childs, A. M., Su, Y., Tran, M. C., Wiebe, N. & Zhu, S. Theory of Trotter error with commutator scaling. Phys. Rev. X 11, 011020 (2021).

    Google Scholar 

  39. Childs, A. M. & Su, Y. Nearly optimal lattice simulation by product formulas. Phys. Rev. Lett. 123, 050503 (2019).

    Google Scholar 

  40. Low, G. H. & Chuang, I. L. Optimal Hamiltonian simulation by quantum signal processing. Phys. Rev. Lett. 118, 010501 (2017).

    Google Scholar 

  41. Campbell, E. Random compiler for fast Hamiltonian simulation. Phys. Rev. Lett. 123, 070503 (2019).

    Google Scholar 

  42. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge Univ. Press, 2010).

  43. Audretsch, J. Entangled Systems: New Directions in Quantum Physics 1st edn (Wiley, 2007).

  44. Peetz, J., Smart, S. E., Tserkis, S. & Narang, P. Simulation of open quantum systems via low-depth convex unitary evolutions. Phys. Rev. Res. 6, 023263 (2024).

    Google Scholar 

  45. Arrasmith, A., Cincio, L., Somma, R. D. & Coles, P. J. Operator sampling for shot-frugal optimization in variational algorithms. Preprint at https://arXiv.org/abs/2004.06252 (2020).

  46. Cleve, R. & Wang, C. Efficient quantum algorithms for simulating Lindblad evolution. Proc. 44th ICALP 80, 1–17 (2017).

    Google Scholar 

  47. Brassard, G., Høyer, P., Mosca, M. & Tapp, A. Quantum amplitude amplification and estimation. Contemp. Math. 305, 53–74 (2002).

    Google Scholar 

  48. Berry, D. W., Childs, A. M., Cleve, R., Kothari, R. & Somma, R. D. Exponential improvement in precision for simulating sparse Hamiltonians. In Proc. 46th ACM Symposium on Theory of Computing (STOC), 283–292 (ACM, 2014).

  49. Berry, D. W., Childs, A. M., Cleve, R., Kothari, R. & Somma, R. D. Simulating Hamiltonian dynamics with a truncated Taylor series. Phys. Rev. Lett. 114, 090502 (2015).

    Google Scholar 

  50. Avis, G., Rozpȩdek, F. & Wehner, S. Analysis of multipartite entanglement distribution using a central quantum-network node. Phys. Rev. A 107, 012609 (2023).

    Google Scholar 

  51. Meignant, C., Markham, D. & Grosshans, F. Distributing graph states over arbitrary quantum networks. Phys. Rev. A 100, 052333 (2019).

    Google Scholar 

  52. Patil, A., Pant, M., Englund, D., Towsley, D. & Guha, S. Entanglement generation in a quantum network at distance-independent rate. npj Quantum Inf. 8, 1–9 (2022).

    Google Scholar 

  53. Covey, J. P., Weinfurter, H. & Bernien, H. Quantum networks with neutral atom processing nodes. npj Quantum Inf. 9, 1–12 (2023).

    Google Scholar 

  54. Gärttner, M., Hauke, P. & Rey, A. M. Relating out-of-time-order correlations to entanglement via multiple-quantum coherences. Phys. Rev. Lett. 120, 040402 (2018).

    Google Scholar 

  55. Rost, B. et al. Simulation of thermal relaxation in spin chemistry systems on a quantum computer using inherent qubit decoherence. Preprint at https://arXiv.org/abs/2001.00794 (2020).

  56. Wan, K., Berta, M. & Campbell, E. T. Randomized quantum algorithm for statistical phase estimation. Phys. Rev. Lett. 129, 030503 (2022).

    Google Scholar 

  57. Childs, A. M., Maslov, D., Nam, Y., Ross, N. J. & Su, Y. Toward the first quantum simulation with quantum speedup. Proc. Natl. Acad. Sci. USA 115, 9456–9461 (2018).

    Google Scholar 

  58. Hagan, M. & Wiebe, N. Composite quantum simulations. Quantum 7, 1181 (2023).

    Google Scholar 

  59. Yen, T.-C., Verteletskyi, V. & Izmaylov, A. F. Measuring all compatible operators in one series of single-qubit measurements using unitary transformations. J. Chem. Theory Comput. 16, 2400–2409 (2020).

    Google Scholar 

  60. Loaiza, I., Khah, A. M., Wiebe, N. & Izmaylov, A. F. Reducing molecular electronic Hamiltonian simulation cost for linear combination of unitaries approaches. Quantum Sci. Technol. 8, 035019 (2023).

    Google Scholar 

  61. Wu, B., Yan, Y., Wei, F. & Liu, Z. Optimization for expectation value estimation with shallow quantum circuits. Preprint at https://arXiv.org/abs/2407.19499 (2024).

  62. Wei, K. X. et al. Verifying multipartite entangled Greenberger-Horne-Zeilinger states via multiple quantum coherences. Phys. Rev. A 101, 032343 (2020).

    Google Scholar 

  63. Mooney, G. J., White, G. A. L., Hill, C. D. & Hollenberg, L. C. L. Generation and verification of 27-qubit Greenberger-Horne-Zeilinger states in a superconducting quantum computer. J. Phys. Commun. 5, 095004 (2021).

    Google Scholar 

  64. Chen, C.-F., Huang, H.-Y., Kueng, R. & Tropp, J. A. Concentration for random product formulas. PRX Quantum 2, 040305 (2021).

    Google Scholar 

  65. Kiss, O., Grossi, M. & Roggero, A. Importance sampling for stochastic quantum simulations. Quantum 7, 977 (2023).

    Google Scholar 

Download references

Acknowledgements

This work is supported by an NSF CAREER Award under Grant No. NSF-ECCS-1944085 and the NSF CNS program under Grant No. 2247007. The authors acknowledge the use of IBM Quantum services for this work. The views expressed are those of the authors and do not reflect the official policy or position of IBM or the IBM Quantum team.

Author information

Authors and Affiliations

  1. Department of Physics and Astronomy, University of California, Los Angeles, CA, USA

    Joseph Peetz

  2. College of Letters and Science, University of California, Los Angeles, CA, USA

    Scott E. Smart & Prineha Narang

Authors
  1. Joseph Peetz
    View author publications

    Search author on:PubMed Google Scholar

  2. Scott E. Smart
    View author publications

    Search author on:PubMed Google Scholar

  3. Prineha Narang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.P. and S.E.S. developed the framework with guidance from P.N. J.P. designed the Hamiltonian simulation approaches with feedback from S.E.S. and P.N. J.P. implemented the GHZ experiment and computed the TFIM resource estimates with support from S.E.S. All authors contributed to the manuscript.

Corresponding authors

Correspondence to Joseph Peetz or Prineha Narang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peetz, J., Smart, S.E. & Narang, P. Quantum simulation via stochastic combination of unitaries. npj Quantum Inf (2026). https://doi.org/10.1038/s41534-025-01168-w

Download citation

  • Received: 30 January 2025

  • Accepted: 12 December 2025

  • Published: 19 February 2026

  • DOI: https://doi.org/10.1038/s41534-025-01168-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Facebook
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Content types
  • About the Editors
  • Contact
  • Open Access
  • Calls for Papers
  • Editorial policies
  • Article Processing Charges
  • Journal Metrics
  • About the Partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Quantum Information (npj Quantum Inf)

ISSN 2056-6387 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing