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Precursor of pair-density wave in doping Kitaev spin liquid on
the honeycomb lattice
Cheng Peng1, Yi-Fan Jiang1, Thomas P. Devereaux 1,2 and Hong-Chen Jiang 1✉

We study the effects of doping the Kitaev model on the honeycomb lattice where the spins interact via the bond-directional
interaction JK, which is known to have a quantum spin liquid as its exact ground state. The effect of hole doping is studied within
the t-JK model on a three-leg cylinder using density-matrix renormalization group. Upon light doping, we find that the ground state
of the system has a dominant quasi-long-range charge-density-wave correlations but short-range single-particle correlations. In the
pairing channel, the even-parity superconducting correlation is dominant with d-wave-like symmetry, which oscillates in sign as a
function of separation with a period equal to that of the spin-density wave and two times the charge-density wave. Although these
correlations fall rapidly (possibly exponentially) at long distances, this is never-the-less the example where a pair-density wave is the
leading instability in the pairing channel on the honeycomb lattice.
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INTRODUCTION
The pair-density wave (PDW) is a superconducting (SC) state in
which the order parameter varies periodically in space in such a
way that its spatial average vanishes1,2. The first example of PDW is
the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state3,4 when a Zee-
man magnetic field, H, is applied to a s-wave superconductor so
that the Fermi surface is spin-split. The SC order has a wavevector
Q ~ μBH/EF, which is typically very small. The LO version of this state
is accompanied by an induced magnetization density wave and a
charge-density wave (CDW) with ordering wavevectors K= 2Q.
Intense interest in a somewhat different sort of PDW state has
emerged due to recent discoveries in underdoped cuprate
superconductors, where a direct observation of PDW has been
made experimentally via local Cooper pair tunneling and scanning
tunneling microscopy in Bi2Sr2CaCu2O8+x

5–7, as well as the
dynamical inter-layer decoupling observed in 1/8 hole-doped
La2BaCuO4

8,9. While similar in having oscillatory SC order and
associated K= 2Q CDW order, this PDW is conjectured to be stable
in zero magnetic field (zero net magnetization), have an ordering
vector that is independent of H (at least for small or vanishing H),
and moreover can either have no associated magnetic order, or
possibly have spin-density wave order (SDW) with the same
ordering vector Q.
Although much is known about the properties of the PDW

state1,2,10 there are very few microscopic models, which are shown
to have PDW ground states. These include the one-dimensional
(1D) Kondo-Heisenberg model with 1D electron gas coupled to a
spin chain11, the extended two-leg Hubbard–Heisenberg model12,
and strong coupling limit of the Holstein–Hubbard Model13,14. The
evidence of PDW is also observed in the t-J model with four-spin
ring exchange on a four-leg triangular lattice15 and an extended
Hubbard model with a staggered spin-dependent magnetic flux
per plaquette on a three-leg triangular lattice16. However, there is
no evidence of PDW ordering found in more standard models
even with second neighbor interactions17–20.
Theoretically, it has been proposed that superconductivity can

also emerge in doping quantum spin liquids (QSLs), which are

exotic phases of matter that exhibit a variety of features
associated with their topological character21–23. The QSLs can be
viewed as insulating phases with preexisting electron pairs such
that upon light doping they might automatically yield high-
temperature superconductivity24–31. Indeed, recent numerical
studies using density-matrix renormalization group (DMRG) have
provided strong evidences that lightly doping the QSL and chiral
spin liquid on the triangular lattice will naturally give rise to
nematic d-wave32 and d ± id-wave superconductivity33, respec-
tively. Although dominant SC correlations have been observed in
both systems, there is still no evidence for PDW ordering.
In this paper, we define a t-J-like extension of the Kitaev model

on the honeycomb lattice (Fig. 1) so as to address the question of
whether SC emerges upon light doping. The Kitaev model, i.e.,
JK term in Eq. (4), is exactly solvable and has a gapless spin liquid
as its exact ground state34. Moreover, it has potential experimental
realizations in magnets with strong spin-orbit coupling such as
Na2IrO3 and α-RuCl3

35–40. This provides us a unique theoretical
opportunity to test the physics of doping QSLs and may also give
us some hints for understanding the mechanism of high-
temperature superconductivity in the cuprates. Theoretically,
doping Kitaev spin liquid (KSL) has been studied and distinct
metallic states were proposed41–45. These include the p-wave
superconductivity41,42, d-wave superconductivity43, topological
superconductivity44, and Fermi liquid state45. However, controlled
results of the sort that can be obtained using density-matrix
renormalization group (DMRG) are still lacking concerning the
phase(s) that arise upon doping the KSL.

RESULTS
Principal results
In the present paper, we study the lightly doped Kitaev model in
Eq. (4) on the honeycomb lattice using DMRG46. Based on DMRG
calculations on three-leg cylinders, we find that upon light-doping
the KSL state, the system exhibits power-law CDW correlations at
long distances corresponding to a local pattern of partially filled
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charge stripes. For three-leg cylinders, the wavelength of CDW,
i.e., the spacings between two adjacent charge strips in the e1
direction, is λc= a0/3δ, where a0 is the length of unit cell. This
corresponds to an ordering wavevector K= 3πδ/a0 with two thirds
of a doped hole per CDW unit cell.
We find that the even-parity SC correlations are the most

pronounced SC correlations, far dominant compared with the
odd-parity SC or topological superconductivity41,42,44. Moreover,
the dominant pairing channel oscillates in sign as a function
of distance, which is consistent with the striped PDW2. Its
wavelength λsc= 2a0/3δ is the same as that of the SDW
correlations λs= 2a0/3δ and two times of that of the CDW λc=
a0/3δ. Correspondingly, the SC ordering wavevector Q= 3πδ/2a0
is half of the ordering wavevector K= 3πδ/a0 of the CDW.
However, our numerical results are inconsistent with the
theoretical predictions39–43 as we find that both the single-
particle Green functions and SC correlations are short-ranged,
which decay exponentially at long distances. Although quasi-long-
range SC correlations are not seen in the range of parameters we
have studied, short-range correlations are fairly strong with the
corresponding correlation length ξsc≥ 3a0. This is comparable with
the cylindrical width and is notably larger than that of doping the

Kagome QSL47. Similar with doping the QSL on the triangular
lattice32, we find that the pairing symmetry of SC correlations is
also consistent with d-wave.

Superconducting correlations
To test the possibility of superconductivity, we have calculated the
equal-time SC pair–pair correlations. A diagnostic of the SC order
is the SC pair–pair correlation function, defined as

ΦαβðrÞ ¼ hΔy
αðx0; yÞΔβðx0 þ r; yÞi; (1)

where Δy
αðx; yÞ ¼ 1ffiffi

2
p ½ĉyðx;yÞ;"ĉyðx;yÞþα;# � ĉyðx;yÞ;#ĉ

y
ðx;yÞþα;"� is the even-

parity SC pair-field creation operator, where the bond orientations
are labeled as α= x, y, z (Fig. 1). (x0, y) is the reference bond with
x0 � ~Lx=4 to minimize the boundary effect and r is the distance
between two bonds in the e1 direction. We have also calculated
the odd-parity SC correlations to test the possibility of p-wave or
topological superconductivity. However, we find that they are
much weaker than the even-parity SC correlations (see Supple-
mentary Discussion for details), suggesting that p-wave or
topological superconductivity is unlikely. Therefore, we will focus
on the even-parity SC correlation in this paper.

Figure 2 shows the SC pair–pair function Φyy(r) for doping δ=
1/12 and 1/9. The SC correlation shows clear spatial oscillation for
both doping levels, which can be well fitted by Φyy(r) ~ f(r) * ϕyy(r)
for a large region of r as we will discuss below. Here, f(r) is the
envelope function and ϕyy(r) is a spatial oscillatory function. At
long distances, the envelope function f(r) is consistent with an
exponential decay, i.e., f ðrÞ � e�r=ξsc , as shown in Fig. 2a, b. The
extracted correlation length is ξsc ≥ 3a0, which is comparable with
the cylindrical width Ly= 3a0. Alternatively, the SC correlation at
long distances can also be fitted by a power law (see
Supplementary Discussion for details), i.e., f ðrÞ � r�Ksc , with an
exponent Ksc > 4 for both doping levels δ= 1/12 and 1/9. We have
also measured other types of SC correlations Φαβ(r), which are
provided in the Supplementary Discussion. While they are slightly
weaker than Φyy(r) due to the broken symmetry induced by the
cylindrical geometry, they have very similar decaying behavior

Fig. 1 The schematic three-leg cylinder on the honeycomb lattice.
The open (filled) circle denotes A (B) sub-lattice, and x, y, and z label
the three different bonds. Periodic (open) boundary condition is
imposed along the direction specified by the lattice basis vector
e2 (e1). Lx (Ly) is the number of unit cells in the e1 (e2) direction.

Fig. 2 Superconducting correlations and their spacial oscillation. Superconducting correlations ∣Φyy(r)∣ on three-leg cylinder at doping level
a δ= 1/9 and b δ= 1/12, where dashed lines denote fittings to an exponential function f ðrÞ � e�r=ξsc . Insets are the ratio Φxy(r)/Φyy(r) < 0,
where the out of phase indicates d-wave type pairing. c The normalized function ϕyy(r)=Φyy(r)/f(r) at δ= 1/9 and δ= 1/12, which directly
reflects the spatial oscillation of Φyy(r). d Fourier transformation ϕyy(q) of ϕyy(r) at δ= 1/12 and δ= 1/9, where peaks lie at Q= 3πδ/2a0 giving
the total momentum of the pairing. Note that filled (open) symbols denote positive (negative) value.
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with Φyy(r). Although the SC correlations can be fitted by either
functions, it is clear that the SC susceptibility will not diverge in
the thermodynamic limit.
The spatial oscillation of the SC correlation Φyy(r) is character-

ized by the normalized correlation ϕyy(r)=Φyy(r)/f(r), as shown in
Fig. 2c. It is clear that ϕyy(r) varies periodically in real space and
can be well fitted by ϕyyðrÞ � sin(Qr+ θ) for both cases. This is
consistent with the PDW state with vanishing spatial average of
ϕyy(r). The ordering wavevector of the PDW is Q= 3πδ/2a0 as
indicated by the peak position of the Fourier transformation ϕyy(q)
of ϕyy(r) (Fig. 2d) and θ is a fitting phase factor. The corresponding
wavelength is λsc= 2a0/3δ, which is λsc= 8a0 for δ= 1/12 and
λsc= 6a0 for δ= 1/9. As we will see below that the relation λsc= λs
= 2λc can be clearly seen in our results as expected from that of
striped PDW. Here, λc and λs are the wavelengths of the CDW
and SDW, respectively. According to Ginzburg-Landau theory,
the development of K= 2Q charge oscillation corresponds to the
cubic term ρKΔ

�
QΔ�Q in the free energy, where ρK and ΔQ are

the charge density and PDW order parameters with corresponding
momenta K and Q, respectively. This is distinct from the CDW
modulated superconductivity with term ρQΔ

�
0Δ�Q with coexisting

dominant uniform Δ0 and secondary stripe pairing ΔQ.
To identify the pairing symmetry, we have calculated the SC

correlations using both real-valued and complex-valued DMRG
simulations. We first rule out the d ± id-wave symmetry as we find
that both the wavefunction and SC correlations are real while their
imaginary parts are zero. We have further analyzed the relative
phase of different SC correlations, e.g., Φxy(r)/Φyy(r) in the insets of
Fig. 2a, b, where a clear out of phase can be observed as Φxy(r)/
Φyy(r) < 0. Therefore, we conclude that the pairing symmetry of the
PDW is consistent with d-wave.

Charge-density wave
In addition to SC correlations, we have also measured the charge-
density profiles to describe the charge-density properties of the
system. The rung charge density nðxÞ ¼ PLy

y¼1 nðx; yÞ=Ly is shown

in Fig. 3, where x is the rung index of the cylinder and n(x, y) is the
local charge-density on site i= (x, y). It is clear that the charge
density varies periodically in real space along the e1 direction with
the wavelength λc= a0/3δ, i.e., λc= 4a0 and λc= 3a0 for δ= 1/12
and δ= 1/9, respectively. Therefore, there are two thirds of a
doped hole in each CDW unit cell. Moreover, it is clear that the
relation λsc= 2λc holds for both δ= 1/12 and δ= 1/9, which is
consistent the striped PDW state. Different with SC correlations,
we find power-law decay of the charge-density correlation at long
distances. The Luttinger exponent Kc of the power-law decay can
be extracted by fitting the charge-density oscillation (Friedel
oscillation) induced by the open boundaries of the cylinder48,49

nðxÞ ¼ n0 þ δn � cosðKx þ θÞx�Kc=2: (2)

Here, x is the distance in the e1 direction from the open boundary,
n0 the average density and K is the ordering wavevector. δn and θ
are the model-dependent constants. Examples of the fitting using
Eq. (2) on the a sub-lattice are given in Fig. 3a for both doping δ=
1/12 and δ= 1/9, where four data points near the boundary are
removed to minimize boundary effect for a more reliable fit. The
extracted exponent Kc is given in Table 1. It is clear that Kc < 1,

Fig. 3 CDW and Luttinger exponent. a Charge-density profiles n(x) for three-leg cylinder of length Lx= 48 at doping levels δ= 1/9 and δ= 1/
12 on A and B sub-lattices, respectively. The solid lines denote the fitting using Eq. (2). b The extracted exponent Kc at δ= 1/9 as a function of
truncation error ϵ. The dashed line denotes Kc extracted from Acdw(Lx) in (d). c Convergence and length dependence of the CDW amplitude
Acdw for three-leg cylinder at δ= 1/9 as a function of truncation error ϵ. The solid lines denote fitting using second-order polynomial function.
d Finite-size scaling of Acdw(Lx) as a function of Lx in a double-logarithmic plot at δ= 1/9, where the dashed line denotes the fitting to a power
law AcdwðLxÞ � L�Kc=2

x .

Table 1. Summarized parameters.

δ λsc λs λc Kc ξsc ξs ξG c

1/9 6 6 3 0.61(3) 3.1(1) 1.0(1) 1.9(1) ~ 1

1/12 8 8 4 0.62(3) 3.4(3) 1.2(1) 1.8(1) ~ 1

The table lists the wavelength (in unit of a0) of SC λsc, SDW λs and CDW λc,
Luttinger exponent Kc, correlation length (in unit of a0) ξsc, ξs, and ξG, as
well as central charge c of the t-JK model at different doping levels δ in the
limit Lx=∞. Note that Kc is obtained by fitting Acdw as a function of Lx
shown in Fig. 3d.
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which demonstrates the dominance of the charge-density
correlations.
Alternatively, we can estimate Kc from the amplitude Acdw(Lx) of

the charge-density modulation19. For a given cylinder of length Lx,
the CDW amplitude Acdw(Lx) can be obtained by fitting the central-
half region of the charge-density profile n(x)18–20. For quasi-long-
range charge order, the amplitude should follow AcdwðLxÞ / L�Kc=2

x
with similar Kc with that obtained from Friedel oscillation in Eq. (2).
This is indeed the case as shown in Fig. 3c, d, where the exponent
Kc is given in Fig. 3b and Table 1.

Spin–spin and single-particle correlations
To describe the magnetic properties of the system, we have
further calculated the spin–spin correlation function
FγðrÞ ¼ hSγi0S

γ
i0þri. Here, r is the distance between two sites in the

e1 direction and γ= x, y, z. i0= (x0, y) is the reference site with
x0 � ~Lx=4. For the pure Kitaev model without doping, it is known
that Fγ(r) is nonzero only for NN sites34,50. Upon doping, the Z2 flux
on each hexagonal plaquette is no longer a conserved quantity,
and the spin–spin correlation functions become nonzero even at
long distance. For both doping levels δ= 1/12 and δ= 1/9 on
three-leg cylinders, we find that both Fx(r) and Fz(r) decay
exponentially as FðrÞ � e�r=ξs , where the spin–spin correlation
length is given in Table. 1. On the contrary, Fy(r) appears to be
long-range ordered as shown in Fig. 4b. This is unexpected but
allowed theoretically since there is no continuous spin symmetry
in the system. Moreover, we find that the spin–spin correlation
Fy(r) shows clear spatial oscillation as shown in the inset of Fig. 4a
with a wavelength λs that is the same as that of the SC correlation
(see Table 1), i.e., λs= λsc, which is consistent with the striped
PDW. However, our results suggest that the long-range correlation
Fy(r) is special to three-leg cylinder. On the contrary, Fy(r) decays

exponentially on the wider four-leg cylinders (Fig. 4b), which is
similar with both Fx(r) and Fz(r). However, the evidences of the
striped PDW are robust for both three and four-leg cylinders with
similar sign-changing SC correlations (see Supplementary Discus-
sion for details).
In addition to superconductivity, we have also measured the

single-particle Green function GσðrÞ ¼ hcyi ciþri to test the possibi-
lity of Fermi liquid state45. It is clear that the single-particle Green
function decays exponentially at long distances as GσðrÞ � e�r=ξG

(see Supplementary Discussion for details). Here, ξG is the
correlation length, which is summarized in Table 1. As a result,
our study suggests that the Fermi liquid state is unlikely in the
lightly hole-doped KSL.

Central charge
Our results suggest that the ground state of the lightly hole-doped
KSL has quasi-long-range CDW correlation with gapless charge
mode. To show this, we have calculated the von Neumann
entanglement entropy SðxÞ ¼ �Tr ρx lnρx½ �, where ρx is the
reduced density matrix of subsystem with length x. For finite 1D
critical system of length Lx with open boundaries, the central
charge c or the number of gapless mode can be obtained
using51,52,

SðxÞ ¼ c
6 ln½4ðLxþ1Þ

π sin πð2xþ1Þ
2ðLxþ1Þ j sin kFj�

þ aπ sin½kFð2xþ1Þ�
4ðLxþ1Þ sinπð2xþ1Þ

2ðLxþ1Þj sin kF j
þ ~c:

(3)

Here, kF denotes the Fermi momentum, a and ~c are model-
dependent parameters. Figure 5a shows an example of S(x) for
three-leg cylinder at doping level δ= 1/9. Here we have calculated
S(x) by dividing the system into two parts with smooth boundary53

through both x and y bonds as shown in the inset of Fig. 5b.

Fig. 4 Spin–spin correlations. a Fz(r) for three-leg cylinder at different doping levels δ and b Fy(r) for both three and four-leg cylinders at
doping level δ= 1/12. Inset shows the SDW spatial oscillation, i.e., Fy(r), with the black square and blue triangle symbols are for δ= 1/9 and
δ= 1/12, respectively.

Fig. 5 Central charge. The extracted central charge c as a function of Lx using Eq. (3) for three-leg cylinder at doping level a δ= 1/9 and bδ=
1/12. Error bars denote numerical uncertainty. Inset in a is the entanglement entropy S(x) on three-leg cylinder of length Lx= 48, a few data
points in red are removed to minimize the boundary effect. Inset in b shows the smooth boundaries parallel to the e2 direction through x and
y-bond labeled by the dashed lines.
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The extracted central charge c is given in Fig. 5 as a function of Lx
at doping levels δ= 1/9 and 1/12. It is clear that the central charge
quickly converges to c= 1 with the increase of Lx, although it
deviates notably from c= 1 on short cylinders due to finite-size
effect. Therefore, our results show that there is one gapless charge
mode that is consistent with the quasi-long-range CDW correla-
tions. We have obtained similar results on four-leg cylinders, which
are provided in the Supplementary Discussion.

DISCUSSION
Admittedly, the DMRG calculations are carried out on finite length
cylinders. However, based on the results we have obtained we
conjecture that the exact ground state for an infinite long three-
leg cylinder has the following properties: (1) There is a single
gapless charge mode and a gap (which produces exponentially
falling correlations) for all spin carrying excitations. (2) Long-range
SDW order with the ordered moment oriented in the y direction -
that is along the circumference of the cylinder—and an ordering
vector Q= 3πδ/2; the connected spin correlations fall exponen-
tially with a correlation length ξs ~ a0. (3) There are power-law
CDW correlations with an exponent Kc ~ 2/3 and an ordering
vector K= 2Q. (4) There are strong even-parity d-wave-like PDW
correlations with an ordering vector Q, which fall either
exponentially with a correlation length ξsc ~ 3a0 or possibly with
a high power-law Ksc≥ 4. 5) All other forms of SC correlations—
those corresponding to odd-parity pairing or spatially uniform
even-parity pairing—are much weaker in comparison with the
PDW correlations.
There are many aspects of these observations that are

surprising, and will need to be understood theoretically. The
PDW correlations are sufficiently short-ranged that one would
infer (based on any reasonable conjecture concerning their time
dependence) that the corresponding PDW susceptibility would be
finite. Thus, at present, we can only conclude that the present
results are suggestive of a possible PDW ordered state for the 2D
(infinite leg) version of this model. However, it is notable that
the favored forms of order are remarkably reminiscent of
those conjectured to be present in the cuprate high-
temperature superconductor, LBCO, where direct evidence exists
of stripe SDW order with wavevector Q ≈ 2πδ and CDW order with
ordering vector K= 2Q, and indirect evidence has been adduced
for PDW order with ordering vector Q.
In this paper, we primarily focus on the lightly doped Kitaev

model, it will be interesting to study the higher doping case as
well as the extend Kitaev model with further neighbor hopping,
which is shown to be essential to enhance the superconductivity
on the square lattice19,20. As other terms such as the Heisenberg
interaction and spin-orbit couplings are also present in real
materials such as Na2IrO3 and α-RuCl3

35–40, it will be interesting to
study these systems as well.

METHODS
Model Hamiltonian
We employ DMRG46 to investigate the ground state properties of the hole-
doped Kitaev model on the honeycomb lattice defined by the Hamiltonian

H ¼ �t
X

hiji;σ
ðcyiσcjσ þ h:c:Þ þ JK

X

hiji
Sγi S

γ
j : (4)

Here, cyiσ(ciσ) is the electron creation (annihilation) operator with spin-σ on
site i= (xi, yi), S

γ
i is the γ-component of the S= 1/2 spin operator on site i,

where γ= x, y, z labels the three different links of the hexagonal lattice as
illustrated in Fig. 1. 〈ij〉 denotes nearest-neighbor (NN) sites and the Hilbert
space is constrained by the no-double occupancy condition, ni ≤ 1, where
ni ¼

P
σc

y
iσciσ is the electron number operator. At half-filling, i.e., ni= 1,

Eq. (4) reduces to the Kitaev model, which is known to have a gapless spin
liquid ground state that can be gapped out into a non-Abelian topological
phase by certain time-reversal symmetry perturbations34,54.

Numerical details
The lattice geometry used in our simulations is depicted in Fig. 1, where
e1 ¼ ð ffiffiffi

3
p

; 0Þ and e2 ¼ ð ffiffiffi
3

p
=2; 3=2Þ denote the two basis vectors. We

consider honeycomb cylinders with periodic and open boundary
conditions in the e2 and e1 directions, respectively. We focus on cylinders
of width Ly and length Lx, where Ly and Lx are the number of unit cells (Ly
and ~Lx ¼ 2Lx are the number of sites) along the e2 and e1 directions,
respectively. The total number of sites is N= 2 × Ly × Lx. The hole doping
concentration is defined as δ= Nh/N, where Nh is the number of doped
holes. We set JK= 1 as an energy unit and consider t= 3. In this paper, we
focus primarily on three-leg cylinders, i.e., Ly= 3a0, of length Lx= 12a0 ~
48a0 (i.e., ~Lx ¼ 24 � 96), at doping levels δ= 1/12 and 1/9. We keep up to
m= 8000 number of states in each DMRG block with a typical truncation
error ϵ ~ 10−6. We find similar results on four-leg cylinders. Further details
of the numerical simulation are provided in the Supplementary Discussion.
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