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Degenerate plaquette physics as key ingredient of
high-temperature superconductivity in cuprates
Michael Danilov1, Erik G. C. P. van Loon 2,3,4, Sergey Brener1,5, Sergei Iskakov6, Mikhail I. Katsnelson 7 and
Alexander I. Lichtenstein 1,5✉

We study the physics of high-temperature cuprate superconductors starting from the highly degenerate four-site plaquette of the
t � t0 � U Hubbard model as a reference system. The degeneracy causes strong fluctuations when a lattice of plaquettes is
constructed. We show that there is a large binding energy between holes when a set of four plaquettes is considered. The next-
nearest-neighbour hopping t0 plays a crucial role in the formation of these strongly bound electronic bipolarons whose coherence
at lower temperature could be the explanation for superconductivity. A complementary approach is cluster dual fermion starting
from a single degenerate plaquette, which contains the relevant short-ranged fluctuations from the beginning. It gives d-wave
superconductivity as the leading instability under a reasonably broad range of parameters. The origin of the pseudogap is also
discussed in terms of the coupling of degenerate plaquettes. Thus, some of the essential elements of cuprate superconductivity
appear from the local plaquette physics.
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INTRODUCTION
After 35 years since the discovery of the high-temperature
superconductivity1, there is still no consensus on the nature of
the mechanism of d-wave pairing in cuprates2–7. Nevertheless,
new experimental findings clearly point to the existence of a
quantum critical point around a hole doping of δ ≈ 0.248–10. This
concentration separates the exotic bad-metal state for smaller
doping from Fermi-liquid behaviour for larger hole concentration
with “normal” Fermi-surface described, at least qualitatively, by
conventional density-functional theory11. Moreover, the carrier
density obtained from Hall effect measurements in the large-
doping regime is equal to its nominal value nH ≈ 1− δ while for
smaller doping the bad-metal behaviour appears with Fermi arcs,
an “enigmatic pseudogap phase” and nH ≈ δ at high tempera-
ture8,12. Recent investigations of highly overdoped cuprates show
that this “strange metal phase” is located around the δc ≈ 0.24
point9. For hole concentrations less than δc superconducting pairs
come entirely from the region of incoherent electrons at the
antinode region (X-point) of the Brillouin zone (Planckian
dissipators)9. Also at δc ≈ 0.24, electronic specific heat measure-
ments for many different cuprate superconductors have revealed
a huge peak in the electron Density of States (DOS) at the Fermi
energy in the normal phase, with strong evidence of a Quantum
Critical Point (QCP) at this hole doping8. Thus, this critical
concentration appears to be the first essential element for any
theory of these superconductors.
Furthermore, a reliable theory of the high-Tc cuprates needs to

account for a mechanism for superconducting coupling, i.e., what
provides the pair binding energy? The theory should also explain
other key experimental observations such as nodal-antinodal
dichotomy, pseudogap formation in the underdoped regime and
strange metal behaviour.

First-principle electronic structure calculations11 suggest that a
single-band tight-binding model with next nearest neighbour
(NNN) hopping and on-site Coulomb interaction, the so-called
t � t0 � U Hubbard model, has the ingredients to describe high-
Tc phenomena. Moreover, the case of t0=t ¼ �0:15 corresponds
to the LSCO-cuprate family while one expects t0=t ¼ �0:3 to
describe cuprate families with higher Tc such as e.g., YBCO and
Tl220113. The precise role of t0 is a second important question for
the theory.
Finding the exact solution of the t � t0 � U Hubbard model in

the thermodynamic limit at arbitrary interaction strength, doping
and temperature is tremendously difficult. Modern computational
approaches, ranging from DMRG to Quantum Monte Carlo
methods, are making great progress in this direction6,14, but a
full solution of the problem still seems to be far away. Facing such
a complex system that is hard to solve exactly, it is frequently
helpful to use simpler, solvable reference systems instead, to get
an understanding for the mechanisms responsible for the physics
in question. Of course, the crux of the matter is to use the freedom
to choose the reference system wisely, since it should contain the
essential physics of the full system to be of any use. For example,
for the Mott insulating phase, the minimal building block is a
single interacting atom coupled to a (dynamical) bath, and
extending this to a single bond explains how antiferromagnetic
exchange interactions between local moments emerge15.
In the case of the doped t � t0 � U Hubbard model, d-wave

superconducting fluctuations are known to be important, and a
four-site plaquette is the minimal reference system that contains
their spatial structure16. This has led to a series of plaquette-based
investigations over the years17–20. The plaquette is not just large
enough to contain d-wave fluctuations, it also has an important
degenerate point17,21 reminiscent of the experimental picture at
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δ ≈ 0.24. In analogy with the Kondo model22, where the
degeneracy of the two spin states of a magnetic impurity plays
a crucial role in the anomalous low-energy properties with a
correspondingly divergent perturbation series, the degeneracy of
the plaquette starting point gives rise to strong fluctuations in
plaquette-based methods, which can reveal the nature of the
anomalous behaviour of the interacting Hubbard model on a two-
dimensional lattice. In this manuscript, we discuss how several
important aspects of the cuprate phenomenology can be seen to
appear when spatial correlations are added to the plaquette. For
this purpose, we use two complementary approaches. First, exact
diagonalization of a 4 × 4 cluster, i.e., four coupled plaquettes,
provides a way to add further short-ranged correlations to the
plaquette starting point. It shows a large hole pair-binding energy
at suitable values of t0 and U. Secondly, the dual fermion23

approach provides a recipe to start from an arbitrary local
reference system24, in this case, the 2 × 2 degenerate plaquette,
and to incorporate nonlocal corrections in a systematic fashion.
Dual fermion perturbation theory25,26 and the dual Bethe-Salpeter
equation make it possible to study the momentum structure
emerging from longer-ranged fluctuations. Here, it is important to
state that the plaquette degenerate point leaves a clear low-
temperature signature in the two-particle correlation function,
which is the basic building block of the dual fermion perturbation
theory. Thus, large nonlocal corrections are expected to appear as
the temperature is lowered.
The first attempt to discuss the plaquette physics as the main

ingredient of the high-Tc theory was done with the cluster
dynamical mean-field theory (DMFT) scheme16, and later Altman
and Auerbach analytically explained the importance of plaquette
two-hole states with dx2�y2 symmetry27. Nevertheless, they did not
consider the possibility of a degenerate ground state of the
plaquette17, with N= 2, 3, 4 electrons per plaquette, at suitable
values of t0, μ. and U.
We should point out that there is a curve of degenerate

plaquettes in the t0, μ, U space. Here, we fix t0=t ¼ �0:15, the μ
and U that correspond to a six-fold degenerate ground state of the
plaquette are signified by the star in the Fig. 1. Since we use here
periodic boundary conditions the critical Coulomb interaction for
plaquette degenerate point becomes U/t= 5.56 in contrast with
the case of an isolated plaquette17. This is in a very good
agreement with the value of the Coulomb interaction U/t= 5.6
that was found in the diagrammatic Monte Carlo calculations28 in
a search of pseudogap formation, and the value of U/t ≈ 6 pointed
out in the recent review8 as the most reasonable value of the
effective Hubbard interaction for cuprates. Note also that periodic

boundary conditions effectively double t0 compared to t, which
explains the chosen value of the NNN hopping twice smaller than
in ref. 17. At a special value of the chemical potential17μ ≈ 0.48 the
ground state for the half-filled N= 4 antiferromagnetic singlet is
degenerate with the singlet for N= 2 electrons and with two
doublets from N= 3 sector. For these values of the parameters the
plaquette state corresponds to the hole doping of δc= 0.25.
In the dual perturbation theory, starting from a degenerate

plaquette point leads to divergences in the perturbation series.
For the Kondo problem, the dual perturbation starting from the
atomic limit29 has a divergent local four-point vertex at low
temperarure, while the Green’s function is finite. In the case of the
degenerate plaquette both the single-particle and two-particle
Green’s functions of the reference system are divergent.
We will also consider reference systems differing from the

degenerate point in the value of the chemical potential. For
smaller μ ≈ 0 (marked with the circle in Fig. 1) the lattice would
tend to a metallic behaviour, for larger μ ≈ 0.8 (marked with the
square) the perturbation for the lattice results in a super-
conducting dx2�y2 instability.

RESULTS
Short-ranged correlations: 4 × 4 cluster
To understand why superconductivity occurs, it is necessary to
find a pairing mechanism, i.e., an attractive interaction between
pairs of fermions. Although a phase transition can only occur in
the thermodynamic limit, finite-size simulations can already point
towards the energetic mechanism. We calculated the pairing
energy of two holes on the 4 × 4 periodic cluster–which consists of
four 2 × 2 plaquettes–through the exact diagonalization (ED) of
ground state energies in the different occupation sectors27,30,

Δ2h ¼ ~E2h � 2~E1h; (1)

where the energies are measured relative to the half-filled ground
state E0 with no holes, ~ENh ¼ ENh � E0. Note, that Δ2h < 0 signals
pairing. By construction, Δ2h= 0 for U= 0 and U≫ t, so it
measures genuine correlation effects. Calculated energies for t0 ¼
0 are in perfect agreement with the standard ED results30.
Figure 2 shows the pair binding energy Δ2h between two holes

for a 4 × 4 cluster t � t0 � U Hubbard model with periodic
boundary conditions as a function of interactions strength U for
different next-nearest neighbours hopping t0. A striking observa-
tion is that switching on non-zero negative t0=t leads to a distinct
minimum in the Δ2h dependence on U. It can be attributed to the
change of the ground state for the sector (7↑, 7↓) (see the
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Fig. 1 Plaquette ground state. Phase diagram of 2 × 2 plaquette for
different particle sectors (N= 2, 3, 4) and zero temperature with the
degenerate point marked by star. The circle and and square display
the shifted chemical potentials for a test comparison. The region of
dx2�y2 superconducting phase and normal metal for square lattice
are also marked.

Fig. 2 Hole pairing energy. Pairing energy Δ2h of two holes in a 4 × 4
cluster with periodic boundary condition as a function of U and t0.
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Supplementary Note 3, for a detailed consideration of the case
U= 6 where it occurs at t0=t � �0:12). The binding of the two
holes becomes extremely strong around U= 6 and t0=t ¼ �0:3,
which is consistent with the estimate for NNN hopping in the
cuprates13. The pairing energy of the 4 × 4 cluster is of the order of
Δ2h/t ≈−0.7 which corresponds to ≈ 3000 K for t ≈ 0.4 eV from a
generic cuprate model11,13, i.e., much larger than the super-
conducting temperature. This tells us that bound pairs exist for
temperatures far above the superconducting region. The super-
conducting transition should then be seen as the condensation of
these pairs. Thus, the cluster binding energy of two holes turns out
to be much higher than the superconducting critical temperature
which means that the pairs (“bipolarons”) should be well-defined
also in non-superconducting phase, a situation dramatically
different form the conventional BCS superconductivity. The
distinction is like the difference between purely itinerant weak
ferromagnets and ferromagnets with local magnetic moments
which exist until very high temperatures and only order, rather
than appear, at the Curie temperature31. An important observation
is that the pair binding energy on a single 2 × 2 plaquette is an
order of magnitude smaller (see Supplementary Note 3), which is
an indication that the bound pair of holes is spatially separated.
Thus, while individual holes live in a single plaquette, hole-binding
requires spatial correlation between neighbouring plaquettes.
Plaquette-CDMFT scheme would be unlikely to capture this spatial
correlation accurately, instead requiring a 4 × 4 cluster.
The negative sign of t0=t is considered to be destructive for

superconductivity in the t � t0 � J model32–34, but it undoubtedly
does not hinder hole binding in the t � t0 � U model considered
here. Figure 2 shows that the optimal U increases with t0, but also
that the hole pair binding on the 4 × 4 cluster disappears for U≫
W= 8t, i.e., in the strong coupling, t− J limit of the model. The
positive sign of t0=t does not produce such a strong hole pair
binding on the 4 × 4 cluster (see Supplementalary Note 3)
opposite to the recent finding in the t− J model33,34. Altogether,
these results explicitly show the combined importance of t0, which
greatly increases the pairing energy gain, and U, since in a non-
interacting systems Δ2h= 0 by definition. Similar results of hole-
binding in a 4 × 4 Hubbard cluster were found recently35 for a
different model of inhomogeneous hopping36.
The drastic change of the magnetic correlations with negative

t0=t is also observed. We analyzed the spin-spin correlation
function in the sector (7↑, 7↓) with different NNN hoppings t0
(Fig. 3) and clearly see a sharp change from antiferromagnertic
correlations for t0 ¼ 0 with a distinct “checkerboard” structure to
stripe-like correlations for t0=t ¼ �0:3. These stripes point along
the x or y directions, while magnetic correlations along other
directions are small. A similar reduction of antiferromagnetic and

appearance of ferromagnetic correlations with t0 was found in a
lattice QMC study37.

Dual perturbation theory-Bethe–Salpeter equation
The exact diagonalization results have shown the tendency
towards inter-plaquette pair-binding. Complementary to exact
diagonalization, it is possible to calculate the lattice two-particle
quantities (vertex, susceptibility) using the dual theory. Recent
studies have illustrated the value of the information encoded in
vertices and susceptibilities20,38–47 even in the case of a single-
orbital model, which motivates our exploitation of these
techniques in a cluster model.
As a starting point, we choose the plaquette parameters where

the ground state is six-fold degenerate17 with U= 5.56, t=−1,
t00 ¼ 0:15 μ0= 0.48 (the index “0” means the plaquette reference
system is allowed to be different from the lattice model) and
t0=t ¼ �0:15 or −0.3 with μ= 0.7 or 1.5 correspondingly, to keep
the optimal doping δ ≈ 0.15 in the square lattice. Additional details
of the calculations can be found in the Supplementary Note 2.
The dual Bethe–Salpeter equation shows the strength of inter-

plaquette fluctuations in a lattice of plaquettes. The two
ingredients are the single-particle Green’s function and the two-
particle correlation function of the plaquette. For a degenerate
plaquette, the latter is highly divergent in the limit T→ 0, scaling
as T−3 instead of T−1, so strong fluctuations are expected at low
and intermediate temperatures. From these plaquette correlation
functions, we move to the lattice instabilities of interest via a
Bethe-Salpeter equation. It has been shown that divergences of
the dual two-particle quantities correspond to divergences
of the lattice two-particle quantities48, so it is sufficient to
consider the kernel of the dual Bethe-Salpeter equation. In the
cluster dual fermion theory, a lattice instability (with wave-vector
and frequency q, ω) manifests itself by the maximal eigenvalue of
the following Bethe-Salpeter matrix Λαβ reaching unity: λmax= 1
in the case of the particle-particle singlet channel (see the
diagram in Fig. 4):

ΛP νν0
ij;kl ðq;ωÞ ¼

T
2Nk

X
k k0 l0

γP νν
0

ij;k0 l0 ðωÞ~Gl0;lðq� k;ω� ν0Þ~Gk0;kðk; ν0Þ: (2)

With short notations for plaquette sites and fermionic Matsubara
frequencies: α= (ij, ν), β ¼ ðkl; ν0Þ and taking the wave-vector
and bosonic frequency where the transition occurs (q= 0, ω=
0), one needs to diagonalize the matrix ΛP

αβ and find the
maximum eigenvalue. The definitions of ~G and γ are given in the
Methods section. Here, we have used that the Bethe-Salpeter
equation has an intertwined spin, site and frequency structure
which can be simplified by looking at the different channels.
Since our main interest is superconductivity, the formula given

Fig. 3 Spatial spin correlation. Static spin-spin correlation function 〈M0Mi〉 obtained by exact diagonalization for the ground state of the
sector (7↑, 7↓) of the 4 × 4 cluster for U= 5.56 and different t0. Whereas t0 ¼ 0 features clear antiferromagnetic correlations, at t0=t ¼ �0:3 these
are replaced by stripe-like ferromagnetic correlations. The top-left corner corresponds to i= (0,0).

M. Danilov et al.

3

Published in partnership with Nanjing University npj Quantum Materials (2022)    50 



above corresponds to the singlet particle-particle channel. For
comparison, we have also considered the particle-hole density
and magnetic channels. Regarding the frequencies, we restrict
ourselves to the lowest 10 Matsubara frequencies, since the
vertex function γP decays strongly with ðν; ν0Þ (see the
Supplementary Note 2).
In this case, the matrix γP is Hermitian (real for ω= 0), while the

matrix Λ is not Hermitian, but the leading eigenvalues are still
found to be real for all channels (we also calculate eigenvalues of
corresponding Bethe–Salpeter equations in the density and
magnetic particle-hole channels).
Results for the maximum eigenvalues of the Bethe–Salpeter

matrix Λ at the critical point are presented in Fig. 4. The density and
particle-particle eigenvalues cross unity at β ≈ 5 and 15 < β < 20.
The eigenvector corresponding to λmax for the particle-particle

singlet case has dx2�y2 symmetry in the plaquette space. Exactly
at the plaquette degenerate point the instability (signaled by λ
crossing 1) in the density channel is very large because the N=
2, 3, 4 states are degenerate. We found that this density
instability is not robust against changes of μ0 and as soon as
we shift it towards low hole doping μ0= 0.8 there is no density
instability. On the other hand, the singlet superconducting
instability is very robust and becomes the leading one for doping
lower than δ= 0.25. The magnetic instability does not play any
role for the doped case and becomes the leading one only in the
half-filled case.

Spectral information
Due to the degeneracy of states with different particle numbers,
the density of states of the plaquette is large close to the Fermi
level. The availability of low-energy states is the driving force
behind the instabilities that occur once a lattice of plaquettes is
considered. At the same time, coupling of the electrons to these
fluctuations moves spectral weight away from the Fermi level.
In Fig. 5 we compare the density of states (DOS) for plaquette

DF second-order perturbation (DF2) with the so-called cluster
perturbation theory (CPT) which corresponds to zero dual-self
energy in Eq. (7) for a relatively high temperature (β= 3). To
obtain the spectra, we used Padé analytical continuation from
Matsubara to the real energy axis15. One can see that the DOS for
the dual fermion theory is more sharply peaked near the Fermi
level compared to the CPT-result. For comparison, we also show
the ED result for the plaquette with a sharp peak exactly at Fermi
level due to six-fold degenerate ground state. In this case, there is

still no signature for a pseudogap and the lattice self-energy is
“well-behaved”.
In Fig. 6 we compare the DOS for the plaquette DF

perturbation theory for a lower temperature (β= 5) with the
ED results for the 4 × 4 cluster in the sector (7↑, 7↓), which
corresponds to a 2 × 2 lattice of plaquettes. These two methods
are complementary: the DF approach is perturbative in the inter-
plaquette coupling and can handle large lattices, whereas the ED
is exact but limited by the cluster size. From the comparison of
the two curves, we conclude that the dual fermion theory shows
a tendency towards pseudogap formation which is clearly seen
in the ED results. It is possible to assume that the pseudogap in
the 4 × 4 cluster is related to the coherent interactions of the
large peak on the DOS in the reference plaquette or Fano-like
effect of interactions with the “soft fermion mode” of the low-
lying excitations which are encoded in the local vertex functions
of the DF-approach. In this sense the pseudogap physics for the
optimal doping may be related more to the “hidden fermion”
physics49,50 or “destructive interference phenomena”51 than to
(short-ranged) antiferromagnetic fluctuations, since one would
expect those to already be present in the plaquette result.
Furthermore, the analysis of the dual Bethe-Salpeter equation
showed that the magnetic channel is not dominant at the
parameters considered here.

Fig. 4 Leading instabilities. The maximum eigenvalues of the
Bethe-Salpeter equation (BSE) for the particle-particle singlet (PPs),
density (Den) and magnetic (Mag) channel for doped plaquette with
U= 5.56 and t0 =−0.15t, μ= 1.55. Insert: diagrammatic representa-
tion for BSE-matrix in the particle-particle channel.
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Fig. 5 Spectral function. Density of states for dual fermion
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perturbation theory (CPT) and exact diagonalization (ED) of 2 × 2
plaquette for U= 5.56, t00 ¼ t0 ¼ 0:15μ0= 0.48 and μ= 1.55, β= 3.
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tion (ED) for 4 × 4 periodic cluster for U= 5.56, t00=t ¼ �0:15,
t0=t ¼ �0:3, μ0= 0.6 and μ= 1.3, and β= 5.
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DISCUSSION
There appears to be a close relation between the physics of
cuprate superconductors, with the clear existence of a quantum
critical point at δc ≈ 0.24, and the degeneracy of the plaquette in
the strong-coupling regime. In this sense, the plaquette and not
the single site can be considered the minimal building block for
cuprate physics, with pair binding arising in a lattice of plaquettes.
Exact diagonalization shows that the cluster pair binding

energy is dramatically enhanced when four plaquettes are
considered together, compared to the pair binding energy in a
single plaquette. Given their large binding energy, these pairs
should probably exist also at much higher temperatures than the
superconducting critical temperature, remaining noncoherent.
The exact diagonalization also shows the important role played
by the next-nearest hopping t0, with a large pair-binding energy
at t0=t � �0:3.
Dual fermion expansion starting from the plaquette reference

system provides a complementary way to investigate inter-
plaquette correlations. For the doping δ ≤ 0.25 the dual Bethe-
Salpeter equation clearly shows the presence of a low tempera-
ture dx2�y2 instability, which has an eigenvalue substantially larger
than the magnetic channel. Starting from the degenerate
plaquette, fluctuations in the density channel are also very strong,
but these seem to be less robust against changes in the filling.
The exact diagonalization of the 4 × 4 cluster as well as

renormalized dual fermion perturbation starting from the
plaquette reference system with δ= 0.25 also uncovers spectral
consequences of this degeneracy. The formation of the
pseudogap can be seen as the destructive interference or a
Fano-like effect originating from the sharply peaked DOS in the
isolated plaquette embedded into the band of surrounding
fermions, as was hypothesised in ref. 17. These observations
about the mechanisms of superconductivity can all be made by
starting the perturbation theory from an isolated plaquette. For
more quantitative predictions of the theoretical phase diagram,
the optimal dynamical embedding of the plaquette and the
implications for the resulting perturbation theory need to be
studied further.

METHODS
Cluster Dual Fermion approach
We used the standard exact diagonalization method30 for small systems
as well as the special version of the cluster dual fermion scheme23,26 for
t � t0 � U square lattice Hubbard model. The general strategy of the
dual fermion approach is related to formally exact separation of the
local-plaquette and non-local hybridization (Fig. 7). The details of

the path-integral formulation of this approach can be found in the
Supplementary Note 1.
We start from the following general lattice action and rewrite it as a sum

of non-connected plaquette reference systems and the remaining
coupling term:

SL½c�; c� ¼ �P
kνσ

c�kνσ iν þ μ� t̂k
� �

ckνσ þ
P
i

R β
0 dτ Un�iτ"niτ#

¼ P
i
SΔ½c�i ; ci � þ

P
kνσ

c�kνσ t̂k � Δ̂ν

� �
ckνσ;

(3)

where ν= (2k+ 1)π/β, with k 2 Z, are the fermionic Matsubara frequen-
cies, β is the inverse temperature, τ is the imaginary time in the interval
0; β½ Þ, μ is the chemical potential, t̂k is the hopping matrix downfolded
onto the site-orbital space of the plaquette (see Eq. (11) below), and the
Grassmann fields c, c* are vectors in the same space. The index i labels the
lattice sites, σ is the spin projection and the k-vectors are supercell
plaquette quasimomenta. In order to keep the notation simple, it is useful
to introduce the combined index 1j i � i; n; σ; τj i (n being the plaquette
site index suppressed above) while assuming summation over repeated
indices. The summation over Matsubara frequencies ν includes a normal-
ization factor 1/β and the k integration is normalized by the volume of the
reduced Brillouin zone.
The general reference system is defined by a plaquette matrix Δ̂ν , which

is also allowed to be instantaneous24 (ν-independent). It can contain
hopping inside the cluster as well as possible frequency-dependent
connections to an auxiliary fermionic bath. The reference plaquette has the
same local plaquette interaction matrix Û, as illustrated in Fig. 7, and the
corresponding action is:

SΔ½c�i ; ci � ¼ �
X
ν ;σ

c�iνσ iν þ μ� Δ̂ν

� �
ciνσ þ

X
ν

Ûn�iν"niν#: (4)

In this work, we restrict ourselves to instantaneous Δ̂. The main motivation
for using the simple static Δ̂ is that such a reference system can be solved
numerically using Exact Diagonalization (ED), without the introduction of
“bath sites” and fitting parameters, and without the numerical costs and
noise of continuous-time Quantum Monte Carlo (CT-QMC)23,52, which is
able to treat general, frequency-dependent hybridization Δ̂ν . In this work,
we use an isolated plaquette cluster with periodic boundary conditions as
the reference model, see Eq. (12).
Having solved the reference system exactly, including the calculation of

all relevant correlation functions, we can derive an efficient perturbation
series in the “coupling term” ~tkν � t̂k � Δ̂ν

� �
which is equivalent to solving

of the effective dual fermion (d*, d) action and describes non-local
correlation effects beyond the reference plaquette23,23:

~S½d�; d� ¼ �
X
k νσ

d�kνσ ~G
�1
0kν dkνσ þ

1
4

X
1234

γP1234d
�
1d

�
2d3d4; (5)

where the bare dual Green function has the form

~G
0
kν ¼ ~t�1

kν � ĝν
� ��1

; (6)

with ĝν being the local Green’s function matrix for the plaquette. The
vertex γP is given by the connected part of the local two-particle

Fig. 7 Plaquette lattice. Schematic representation of a plaquette reference system for the square lattice.
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correlation function of the reference system (see Eq. (8) and the
Supplementary Notes 1 and 4).
The action Eq. (5) allows us to calculate the dual self-energy, ~Σkν with a

level of approximation of our choice, e.g., using diagrammatic perturbation
theory. Once this is done, the results are transformed back using an exact
relation between the dual and the lattice Green’s functions (see
Supplementary Note 1):

Gkν ¼ gν þ ~Σkν
� ��1 �~tkν
h i�1

: (7)

Perturbation in dual space
The previous discussion left open the question of how to determine ~Σ. In
this work, we use cluster dual fermion perturbation theory (Fig. 7) for the
action (5). We start with the definition of interaction between dual
fermions, using the particle-hole notation for the local vertex and writing
explicit spin indices and Matsubara frequencies of the connected two
particle Green’s function for the original fermions (c*, c) as follows23,53:

�γσσ
0

1234 ðν; ν0;ωÞð ¼ c1σðνÞc�2σðν þ ωÞc3σ0 ðν0 þ ωÞc�4σ0 ðν0Þ
� 	

Δ

�βgσ12ðνÞgσ
0

34ðν0Þδω0 þ βgσ14ðνÞgσ32ðν þ ωÞδνν0δσσ0 :
(8)

In the Matsubara space, the vertex depends on two fermionic frequencies,
ν; ν0 , as well as one bosonic frequency ω. For the sake of completeness and
the reader’s convenience, we mention the connection between the
particle-particle and the particle-hole notation, γ1234ðν; ν0;ωÞ ¼
γP1342ðν; ν0; ν þ ν0 þ ωÞ. The bare vertex of the dual fermion perturbation
theory is the full connected correlation function of the reference system.
The present vertex differs from the usual dual fermion expression due to
the different rescaling factor of the Hubbard-Stratonovich field. Here, we
avoid amputation of the legs of the vertex, which requires division by
Green’s functions at all external points.
It is useful to symmetrize the vertex into charge density (d) and

magnetic (m) channels:

γ
d=m
1234ðν; ν0;ωÞ ¼ γ""1234ðν; ν0;ωÞ± γ"#1234ðν; ν0;ωÞ

Now we can write the first-order dual fermion self-energy which is local
in plaquette space (Fig. 8):

~Σ
ð1Þi
12 ðνÞ ¼ P

ν0 ;3;4
γd1234ðν; ν0; 0Þ~G

ii
43ðν0Þ (9)

The second order Feynman diagram for the dual fermion perturbation
(Fig. 8) in real space (Rij) has density- and magnetic-channel contributions,
with corresponding constants (cd ¼ � 1

4 and cm ¼ � 3
4):

~Σ
ð2Þij
12 ðνÞ ¼

X
ν0ω

X
3�8

X
α¼d;m

cαγ
α;i
1345ðν; ν0;ωÞ~G

ij
36ðν þ ωÞ~Gji

74ðν0 þ ωÞ~Gij
58ðν0Þγα;j8762ðν0; ν;ωÞ

(10)

In principle, one can go beyond the second order perturbation
expansion and include dual ladder diagrams53,54, dual parquet dia-
grams55 or a stochastic sum of all dual diagrams with the two-particle
vertex γ1234, using diagrammatic Monte Carlo in dual space56–58. In
addition, the diagrammatic series can be made self-consistent, using
dual skeleton diagrams and “bold” lines. Finally, one can also update
the reference system (and obtain a frequency-dependent Δ). These
approaches are all numerically more involved. As the main goal of
the present work is not to present quantitatively reliable results but

rather to highlight the connection between the degenerate reference
system and the superconducting fluctuations, we will mostly stick to the
second-order consideration.
The calculations shown here were performed using a Fortran

implementation of dual fermions that uses the equivalence of the four
sites in the plaquette to speed up the vertex calculation. The results were
checked against an open-source implementation of the second-order dual
fermion perturbation59,60, based on TRIQS52 and with pomerol61 as an
impurity solver as well as cross-checked with the momentum-space cluster
dual-fermion scheme62.
Since length scales are an important part of this manuscript, it is useful

to discuss how these enter the dual (perturbation) theory. In particular,
what are the spatial implications to cutting off the perturbation series at
second order? First of all, correlations contained entirely within the size of
the cluster reference model are handled by the impurity solver, so we
should mainly worry about longer-ranged correlations. Away from U ≈ 0,
electronic correlations lead to localization and the single-particle dual
Green’s function has a finite, short-range. For the second-order diagram,
~ΣðRÞ � ~G

3ðRÞ, so in the second-order approximation, a short-ranged dual
Green’s function leads to a short-ranged dual self-energy. However, higher-
order diagrams are able to cover the distance R by repeated short-ranged
propagation, and therefore dominate at longer lengths. Length scale
effects in dual fermion are discussed in more detail in refs. 63,64. Perhaps
the best example is the Heisenberg limit at half-filling and U≫ t, where the
spin susceptibility is very long-ranged even though the individual electrons
are almost perfectly localized.

Plaquette tight-binding scheme
We study the optimally doped square lattice Hubbard model, with nearest
neighbour hopping t and NNN hopping t0 . As illustrated in Fig. 7, the
original lattice can be reconsidered as a lattice of 2 × 2 plaquettes. Every
unit cell of the plaquette lattice contains 4 atoms of the original lattice, as
shown on the left-hand side of Fig. 7. The plaquette lattice has the
following 4 × 4 hopping matrix (see Fig. 7),

tk ¼

ε tK0þ t0L�þ tK�0

tK0� ε tK�0 t0L��

t0Lþ� tKþ0 ε tK0�

tKþ0 t0Lþþ tK0þ ε

0
BBB@

1
CCCA (11)

where the functions Kmn
k and Lmn

k , with m, n ∈ {−1, 0, +1}, are defined as

Kmn
k ¼ 1þ eiðmkxþnkyÞ

Lmn
k ¼ 1þ eiðmkxþnkyÞ þ eimkx þ einky

We will use a single plaquette as the reference system. Compared to
the single-site dual fermion formalism, this plaquette reference system
already encompasses the short-ranged correlations that are essential in
this system.
In the dual fermion approach, there is a general freedom of choosing the

most appropriate reference system. One way to construct a plaquette
reference system would be to simply remove all black links in Fig. 7 (and
attach the remaining sites to a bath). This is equivalent to the self-
consistent cluster-DMFT scheme16 and corresponds to averaging over the
supercell Brillouin zone. This scheme, however, eliminates exactly half of
the nearest-neighbour hoppings and three quarters of the next-nearest-
neighbour hoppings.
Here we choose another path and consider plaquettes with periodic

boundary conditions as a static reference system. In terms of the

a b

Fig. 8 Dual self-energy. Feynman diagram for the first order (a) and the second order (b) dual fermion perturbation for the self-energy eΣ12ðνÞ:
a line represents the non-local dual Green’s function eG43ðν0Þ and a box is the local plaquette vertex γ1234, ðσ; σ0Þ are spin-indices.
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supercell Brillouin zone, this corresponds to achieving self-consistency for
k= 0 only, instead of the momentum average. The intra-plaquette
hopping reads

Δ0 � tk¼0 ¼

ε0 2t 4t00 2t

2t ε0 2t 4t00
4t00 2t ε0 2t

2t 4t00 2t ε0

0
BBB@

1
CCCA: (12)

Note that we include the possibility of using a different chemical
potential μ0=−ε0 in the reference system, compared to that of the
lattice model μ=−ε to adjust the hole dopping to about δ= 0.15. We fix
the nearest neighbour hopping t but retain the freedom of adjusting the
next nearest neighbour hopping t0 in the dual fermion transformation.
For example this may be used to reduce the factor 4 for the t0 hoppings
for the periodic boundary conditions for 2 × 2 plaquette if we chose
t00 ¼ t0=2. With the plaquette as the reference system, one can use the
exact diagonalization approach to calculate the dual Green’s function
and the plaquette vertex function65.
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(https://github.com/Q-solvers/EDLib) and by part using the multi-orbital/cluster dual-
fermion code (https://github.com/egcpvanloon/dualfermion).

Received: 29 August 2021; Accepted: 21 March 2022;

REFERENCES
1. Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the BaLaCuO

system. Z. Phys. B Condens. Matter 64, 189–193 (1986).
2. Zhou, X. et al. High-temperature superconductivity. Nat. Rev. Phys. 3, 462–465

(2021).
3. Scalapino, D. J. A common thread: The pairing interaction for unconventional

superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).
4. Esterlis, I., Kivelson, S. A. & Scalapino, D. J. A bound on the superconducting

transition temperature. npj Quant. Mater. 3, 59 (2018).
5. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum

matter to high-temperature superconductivity in copper oxides. Nature 518,
179–186 (2015).

6. Jiang, H.-C. & Devereaux, T. P. Superconductivity in the doped Hubbard model
and its interplay with next-nearest hopping t’. Science 365, 1424–1428 (2019).

7. Qin, M. et al. Absence of superconductivity in the pure two-dimensional Hubbard
model. Phys. Rev. X 10, 031016 (2020).

8. Proust, C. & Taillefer, L. The remarkable underlying ground states of cuprate
superconductors. Annu. Rev. Condens. Matter Phys. 10, 409–429 (2019).

9. Ayres, J. et al. Incoherent transport across the strange metal regime of highly
overdoped cuprates. Nature 595, 661–666 (2021).

10. Culo, M. et al. Possible superconductivity from incoherent carriers in overdoped
cuprates. SciPost Phys. 11, 12 (2021).

11. Andersen, O. K., Jepsen, O., Liechtenstein, A. I. & Mazin, I. I. Plane dimpling and
saddle-point bifurcation in the band structures of optimally doped high-temperature
superconductors: A tight-binding model. Phys. Rev. B 49, 4145–4157 (1994).

12. Collignon, C. et al. Fermi-surface transformation across the pseudogap critical
point of the cuprate superconductor La1.6−xNd0.4SrxCuO4. Phys. Rev. B 95, 224517
(2017).

13. Pavarini, E., Dasgupta, I., Saha-Dasgupta, T., Jepsen, O. & Andersen, O. K. Band-
structure trend in hole-doped cuprates and correlation with Tcmax. Phys. Rev. Lett.
87, 047003 (2001).

14. LeBlanc, J. P. F. et al. Solutions of the two-dimensional Hubbard model: Bench-
marks and results from a wide range of numerical algorithms. Phys. Rev. X 5,
041041 (2015).

15. Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory
of strongly correlated fermion systems and the limit of infinite dimensions. Rev.
Mod. Phys. 68, 13–125 (1996).

16. Lichtenstein, A. I. & Katsnelson, M. I. Antiferromagnetism and d-wave super-
conductivity in cuprates: A cluster dynamical mean-field theory. Phys. Rev. B 62,
R9283–R9286 (2000).

17. Harland, M., Katsnelson, M. I. & Lichtenstein, A. I. Plaquette valence bond theory
of high-temperature superconductivity. Phys. Rev. B 94, 125133 (2016).

18. Reymbaut, A. et al. Pseudogap, van hove singularity, maximum in entropy, and
specific heat for hole-doped Mott insulators. Phys. Rev. Research 1, 023015 (2019).

19. Walsh, C., Sémon, P., Poulin, D., Sordi, G. & Tremblay, A.-M. S. Entanglement and
classical correlations at the doping-driven Mott transition in the two-dimensional
Hubbard model. PRX Quantum 1, 020310 (2020).

20. Harland, M., Brener, S., Katsnelson, M. I. & Lichtenstein, A. I. Exactly solvable model
of strongly correlated d-wave superconductivity. Phys. Rev. B 101, 045119 (2020).

21. Bagrov, A. A. et al. Detecting quantum critical points in the t � t0 Fermi-Hubbard
model via complex network theory. Sci. Rep. 10, 20470 (2020).

22. Hewson, A. C. The Kondo Problem to Heavy Fermions (Cambridge University
Press, Cambridge, 1993).

23. Rubtsov, A. N., Katsnelson, M. I. & Lichtenstein, A. I. Dual fermion approach to
nonlocal correlations in the Hubbard model. Phys. Rev. B 77, 033101 (2008).

24. Brener, S., Stepanov, E. A., Rubtsov, A. N., Katsnelson, M. I. & Lichtenstein, A. I. Dual
fermion method as a prototype of generic reference-system approach for cor-
related fermions. Ann. Phys. 422, 168310 (2020).

25. Rohringer, G. et al. Diagrammatic routes to nonlocal correlations beyond dyna-
mical mean field theory. Rev. Mod. Phys. 90, 025003 (2018).

26. Hafermann, H., Brener, S., Rubtsov, A. N., Katsnelson, M. I. & Lichtenstein, A. I.
Cluster dual fermion approach to nonlocal correlations. JETP Letters 86, 677–682
(2008).

27. Altman, E. & Auerbach, A. Plaquette boson-fermion model of cuprates. Phys. Rev.
B 65, 104508 (2002).

28. Wu, W., Ferrero, M., Georges, A. & Kozik, E. Controlling feynman diagrammatic
expansions: Physical nature of the pseudogap in the two-dimensional Hubbard
model. Phys. Rev. B 96, 041105 (2017).

29. Krivenko, I. S., Rubtsov, A. N., Katsnelson, M. I. & Lichtenstein, A. I. Analytical
approximation for single-impurity Anderson model. JETP Letters 91, 319–325
(2010).

30. Dagotto, E., Moreo, A., Ortolani, F., Poilblanc, D. & Riera, J. Static and dynamical
properties of doped Hubbard clusters. Phys. Rev. B 45, 10741–10760 (1992).

31. Moriya, T. Spin Fluctuations in Itinerant Electron Magnetism (Springer Verlag,
New York, 1985).

32. Martins, G. B., Xavier, J. C., Arrachea, L. & Dagotto, E. Qualitative understanding of
the sign of t0 asymmetry in the extended t-J model and relevance for pairing
properties. Phys. Rev. B 64, 180513 (2001).

33. Jiang, H.-C. & Kivelson, S. A. High temperature superconductivity in a lightly
doped quantum spin liquid. Phys. Rev. Lett. 127, 097002 (2021).

34. Gong, S., Zhu, W. & Sheng, D. N. Robust d-wave superconductivity in the square-
lattice t-J model. Phys. Rev. Lett. 127, 097003 (2021).

35. Wachtel, G., Baruch, S. & Orgad, D. Optimal inhomogeneity for pairing in Hubbard
systems with next-nearest-neighbor hopping. Phys. Rev. B 96, 064527 (2017).

36. Tsai, W.-F., Yao, H., Läuchli, A. & Kivelson, S. A. Optimal inhomogeneity for
superconductivity: Finite-size studies. Phys. Rev. B 77, 214502 (2008).

37. Yang, S. et al. Quantum Monte Carlo study of the hubbard model with next-
nearest-neighbor hopping t0 : pairing and magnetism. J. Phys. Condens. Matter 33,
115601 (2020).

38. Rohringer, G., Valli, A. & Toschi, A. Local electronic correlation at the two-particle
level. Phys. Rev. B 86, 125114 (2012).

39. Chen, X., LeBlanc, J. P. F. & Gull, E. Superconducting fluctuations in the normal
state of the two-dimensional Hubbard model. Phys. Rev. Lett. 115, 116402 (2015).

40. Schäfer, T. et al. Divergent precursors of the Mott-Hubbard transition at the two-
particle level. Phys. Rev. Lett. 110, 246405 (2013).

41. Kozik, E., Ferrero, M. & Georges, A. Nonexistence of the Luttinger–Ward functional
and misleading convergence of skeleton diagrammatic series for Hubbard-like
models. Phys. Rev. Lett. 114, 156402 (2015).

42. Krien, F., van Loon, E. G. C. P., Katsnelson, M. I., Lichtenstein, A. I. & Capone, M.
Two-particle Fermi liquid parameters at the Mott transition: Vertex divergences,
Landau parameters, and incoherent response in dynamical mean-field theory.
Phys. Rev. B 99, 245128 (2019).

43. Springer, D., Chalupa, P., Ciuchi, S., Sangiovanni, G. & Toschi, A. Interplay between
local response and vertex divergences in many-fermion systems with on-site
attraction. Phys. Rev. B 101, 155148 (2020).

44. Melnick, C. & Kotliar, G. Fermi-liquid theory and divergences of the two-particle
irreducible vertex in the periodic Anderson lattice. Phys. Rev. B 101, 165105
(2020).

45. van Loon, E. G. C. P., Krien, F. & Katanin, A. A. Bethe–Salpeter equation at the
critical end point of the Mott transition. Phys. Rev. Lett. 125, 136402 (2020).

46. Reitner, M. et al. Attractive effect of a strong electronic repulsion: The physics of
vertex divergences. Phys. Rev. Lett. 125, 196403 (2020).

M. Danilov et al.

7

Published in partnership with Nanjing University npj Quantum Materials (2022)    50 

https://github.com/Q-solvers/EDLib
https://github.com/egcpvanloon/dualfermion


47. Chalupa, P. et al. Fingerprints of the local moment formation and its Kondo
screening in the generalized susceptibilities of many-electron problems. Phys.
Rev. Lett. 126, 056403 (2021).

48. Brener, S., Hafermann, H., Rubtsov, A. N., Katsnelson, M. I. & Lichtenstein, A. I. Dual
fermion approach to susceptibility of correlated lattice fermions. Phys. Rev. B 77,
195105 (2008).

49. Sakai, S., Civelli, M. & Imada, M. Hidden fermionic excitation boosting high-
temperature superconductivity in cuprates. Phys. Rev. Lett. 116, 057003 (2016).

50. Sakai, S., Civelli, M. & Imada, M. Hidden-fermion representation of self-energy in
pseudogap and superconducting states of the two-dimensional Hubbard model.
Phys. Rev. B 94, 115130 (2016).

51. Merino, J. & Gunnarsson, O. Pseudogap and singlet formation in organic and
cuprate superconductors. Phys. Rev. B 89, 245130 (2014).

52. Parcollet, O. et al. Triqs: A toolbox for research on interacting quantum systems.
Comput. Phys. Commun. 196, 398–415 (2015).

53. Hafermann, H. Numerical Approaches to Spatial Correlations in Strongly Inter-
acting Fermion Systems (Cuvillier Verlag, Göttingen, 2010). https://books.google.
de/books?id=39r-DwAAQBAJ.

54. Hafermann, H. et al. Efficient perturbation theory for quantum lattice models.
Phys. Rev. Lett. 102, 206401 (2009).

55. Krien, F. et al. Boson-exchange parquet solver for dual fermions. Phys. Rev. B 102,
195131 (2020).

56. Iskakov, S., Antipov, A. E. & Gull, E. Diagrammatic Monte Carlo for dual fermions.
Phys. Rev. B 94, 035102 (2016).

57. Gukelberger, J., Kozik, E. & Hafermann, H. Diagrammatic Monte Carlo approach
for diagrammatic extensions of dynamical mean-field theory: convergence ana-
lysis of the dual fermion technique. Phys. Rev. B 96, 035152 (2017).

58. Vandelli, M. et al. Dual boson diagrammatic Monte Carlo approach applied to the
extended Hubbard model. Phys. Rev. B 102, 195109 (2020).

59. van Loon, E. G. C. P. Second-order dual fermion for multi-orbital systems. J. Phys
Condens. Matter 33, 135601 (2021).

60. van Loon, E. dualfermion. https://github.com/egcpvanloon/dualfermion/ (2020).
61. Antipov, A. E., Krivenko, I. & Iskakov, S. aeantipov/pomerol: 1.2 (2017). https://doi.

org/10.5281/zenodo.825870.
62. Iskakov, S., Terletska, H. & Gull, E. Momentum-space cluster dual-fermion method.

Phys. Rev. B 97, 125114 (2018).
63. Yang, S.-X. et al. Dual fermion dynamical cluster approach for strongly correlated

systems. Phys. Rev. B 84, 155106 (2011).
64. van Loon, E. G. C. P., Hafermann, H. & Katsnelson, M. I. Precursors of the insulating

state in the square-lattice Hubbard model. Phys. Rev. B 97, 085125 (2018).
65. Hafermann, H. et al. Superperturbation solver for quantum impurity models.

EPL (Europhys. Lett.) 85, 27007 (2009).

ACKNOWLEDGEMENTS
The authors thank Alexei Rubtsov, Evgeny Stepanov, Igor Krivenko, Fedor Šimkovic IV,
Georg Rohringer, Andy Millis and Antoine Georges for valuable comments on the
work. E.G.C.P.v.L. is supported by the Zentrale Forschungsförderung of the Universität
Bremen. This work was supported by a grant from the Simons Foundation (825141,
A.I.L). S.I. is sponsored by the Simons Foundation via the Simons collaboration on

many-electron problem. This work was partially supported by the Cluster of
Excellence “Advanced Imaging of Matter” of the Deutsche Forschungsgemeinschaft
(DFG) - EXC 2056 - Project No. ID390715994, by European Research Council via
Synergy Grant 854843 - FASTCORR and by North-German Supercomputing Alliance
(HLRN) under the Project No. hhp00042.

AUTHOR CONTRIBUTIONS
All authors discussed the results and contributed to the preparation of the
manuscript.

FUNDING
Open Access funding enabled and organized by Projekt DEAL.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41535-022-00454-6.

Correspondence and requests for materials should be addressed to Alexander I.
Lichtenstein.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

M. Danilov et al.

8

npj Quantum Materials (2022)    50 Published in partnership with Nanjing University

https://books.google.de/books?id=39r-DwAAQBAJ
https://books.google.de/books?id=39r-DwAAQBAJ
https://github.com/egcpvanloon/dualfermion/
https://doi.org/10.5281/zenodo.825870
https://doi.org/10.5281/zenodo.825870
https://doi.org/10.1038/s41535-022-00454-6
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Degenerate plaquette physics as key ingredient of high-�temperature superconductivity in cuprates
	Introduction
	Results
	Short-ranged correlations: 4nobreak&#x02009;nobreak&#x000D7;&#x02009;4 cluster
	Dual perturbation theory-Bethe&#x02013;nobreakSalpeter equation
	Spectral information

	Discussion
	Methods
	Cluster Dual Fermion approach
	Perturbation in dual space
	Plaquette tight-binding scheme

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	ADDITIONAL INFORMATION




