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Ubiquitous enhancement of nematic fluctuations across the
phase diagram of iron based superconductors probed by the
Nernst effect
Christoph Wuttke 1✉, Federico Caglieris 1,2, Steffen Sykora1,3, Frank Steckel1, Xiaochen Hong 1,4, Sheng Ran 5,6,
Seunghyun Khim 1,7, Rhea Kappenberger1, Sergey L. Bud’ko 5, Paul C. Canfield 5, Sabine Wurmehl1, Saicharan Aswartham 1,
Bernd Büchner1,8,9 and Christian Hess 1,4,8✉

The role of nematic fluctuations for unconventional superconductivity has been the subject of intense discussions for many years.
In iron-based superconductors, the most established probe for electronic-nematic fluctuations, i.e. the elastoresistivity seems to
imply that superconductivity is reinforced by electronic-nematic fluctuations, since the elastoresistivity amplitude peaks at or close
to optimal Tc. However, on the over-doped side of the superconducting dome, the diminishing elastoresistivity suggests a
negligible importance in the mechanism of superconductivity. Here we introduce the Nernst coefficient as a genuine probe for
electronic nematic fluctuations, and we show that the amplitude of the Nernst coefficient tracks the superconducting dome of two
prototype families of iron-based superconductors, namely Rh-doped BaFe2As2 and Co-doped LaFeAsO. Our data thus provide fresh
evidence that in these systems, nematic fluctuations foster the superconductivity throughout the phase diagram.
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INTRODUCTION
Unravelling the interaction of electronic orders in the phase
diagram of copper-based1,2 and iron-based materials3, such as
stripe order4 or nematicity5–7 on the one hand and super-
conductivity on the other hand, became one of the most
important tasks in understanding high-temperature superconduc-
tors. Most families of iron-based superconductors show a nematic
phase in close vicinity to the superconducting transition, with
nematic fluctuations being present in large areas of their
electronic phase diagram. Therefore, nematic fluctuations have
been widely proposed to be coupled to superconductivity and to
be an essential ingredient to the pairing of electrons in these
materials8–11. However, experimental evidence for nematic
fluctuations in the overdoped superconducting regime is scarce
and mostly limited to the underdoped regions. It remains thus
elusive whether such fluctuations are an indispensable ingredient
in the Cooper pairing or play the role of additionally enhancing
the superconductivity, potentially driven by antiferromagnetic
fluctuations.
The Nernst effect describes the occurrence of a transverse

electric field Ey perpendicular to a temperature gradient ∂xTj j and
perpendicular to an external magnetic field Bz with the Nernst
signal N given by N= Ey/∣∂xT∣ (see Fig. 1a). In the linear regime
with respect to Bz one introduces the Nernst coefficient ν as
ν= N/Bz. The Nernst effect is therefore a transverse transport
probe that combines thermal and charge excitations and is
strongly influenced by electronic states near the Fermi level.
Hence, it is expected that the Nernst effect is sensitive to
fluctuations of electronic order parameters and of the Fermi
surface12–16. Indeed, in pioneering experiments, the Nernst effect

has successfully been employed for probing stripe/nematic phases
and pertinent Fermi surface reconstructions in cuprate super-
conductors1,17,18. We will show below that the Nernst effect allows
probing nematic fluctuations in iron-based superconductors and
that it provides profound information on the interaction of
nematicity and superconductivity.

RESULTS
Theory
To obtain a conceptional insight on the influence of nematic
fluctuations on the Nernst coefficient ν in iron-based super-
conductors, we consider a model for nematic fluctuations, where
conduction electrons can occupy the dxz and dyz orbitals of the
iron atoms on a square lattice. Such a minimal model captures
basic features of the band structure of iron-based superconduc-
tors and allows for a ground state with nematic order10,19. The
model Hamiltonian reads10,

H ¼ �
X
ij;ab;σ

tabij c
y
iaσcjbσ þ h.c.

� �
� μ

X
i;a

ni;a � g
2

X
i

ni;xz � ni;yz
� �2 ¼ H0 þHg;

(1)

where a, b= xz, yz denote the orbital indices, σ= ↑, ↓ the spin
index, and ni;a ¼

P
σc

y
iaσciaσ is the occupation of orbital a on

lattice site i. The first term in Eq. (2) describes the kinetic energy of
the conduction electrons. In order to start from a situation which is
relevant to a variety of iron-based superconductors we take the
hopping parameters tabij from ref. 9, leading to the usual band
structure of the iron-pnictides consisting of one hole pocket
around the Γ point and electron pockets around X- and Y-points of
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the Brillouin zone. The chemical potential μ of the system is
included in the second term. A variation of μ changes the relative
size of the hole and electron pockets in momentum space, and,
therefore, the electron filling. A variation of μ can be achieved
experimentally by doping or applying pressure.
Most importantly, the third term in Eq. (2) accounts for the

nematic fluctuations. Due to its quadratic form and negative sign,
this term energetically favours (proportional to the coupling
strength g) a difference in the local occupation between the dxz
and dyz orbitals. Thus, if one orbital at lattice site i is preferentially
occupied, occupation of the orbital in perpendicular direction is
unfavoured. Together with the hopping term, such an effective
electron-electron interaction captures the basic property of
nematicity. We emphasise at this point that despite the local
character of the nematic interaction, our theoretical treatment of
the model goes beyond single-site fluctuations. Due to the
presence of the itinerant hopping term, which combines not only
different lattice sites but also different orbitals, our analysis
naturally takes into account non-local higher order processes.
Since the rotational symmetry is not broken by the Hamiltonian
(2), the introduced model can be thought of being relevant for an
iron-pnictide material that is close to a nematic instability.
Using this model we find (see Methods section for details) that

the Nernst coefficient ν is sensitive to the occupation difference of
the orbitals and is strongly enhanced by a finite nematic coupling
g, which is shown in Fig. 1b. Taken into account the typical energy
scales of phonons (10 meV) and the nearest-neighbour hopping
matrix element (1 eV), g/t1 can be expected to be in the order of
0.01. This enhancement of ν can be qualitatively explained by the
process displayed in Fig. 1(c). Due to the nematic coupling
electrons that are moving along a temperature gradient and are

occupying two different orbitals at the same lattice site will
demand an additional energy cost proportional to g, which is
avoided by a further movement of one electron to a neighbouring
lattice site. The presence of a perpendicular magnetic field B

!jjz
leads to a coupling between xz and yz orbitals and therefore to an
enhanced hopping perpendicular to the temperature gradient as
well as the magnetic field.

Nernst effect in Ba(Fe1−xRhx)2As2
Inspired by the above considerations, we performed Nernst effect
measurements (experimental setup schematically shown in
Fig. 1a) in all important regions of the electron doped phase
diagram on Ba(Fe1−xRhx)2As2 single crystals. Rh-doped BaFe2As2
represents a canonical electron-doped iron-based superconductor
with a phase diagram and superconducting properties which
virtually are identical to those of Co-doped BaFe2As220,21. In
particular, the spin density wave (SDW) ground state of the parent
compound, which sets in at the magnetic/structural transitions at
TN ≈ TS ≈ 135 K is gradually suppressed upon Rh-doping, in favour
of a superconducting state at x≳ 2.5%.
To take into account the effect of entropy which leads to an

intrinsic linear temperature dependence, Fig. 2a displays the
temperature dependence of the Nernst coefficient divided by
temperature ν/T for different Rh-doping levels in Ba(Fe1−xRhx)2As2
on a semi-logarithmic scale. At most instances, ν/T is large and
positive, and steadily increases by 1–2 orders of magnitude upon
cooling. Further inspection reveals that this steady increase is
always present whenever a sample is in the tetragonal para-
magnetic, non-superconducting phase, i.e. at T > TS for x ≤ 4% and
T > Tc for x > 4% (see Fig. 2b). In contrast, in the magnetically

Fig. 1 Measurement setup and theoretical insights. a Schematic Nernst setup for measuring the Nernst coefficient ν. A resistive chip heater
is used to heat up the upper side of the sample (red). The bottom is coupled to a thermal bath of controlled temperature (blue), therefore a
temperature gradient arises in the ab-plane. The magnetic field is applied in c-direction and the Nernst signal is measured perpendicular to
the temperature gradient in the ab-plane. b Calculated Nernst coefficient ν as a function of the strength g of the nematic fluctuations. Starting
from very small values ν increases dramatically. c Schematic picture of the mechanism leading to the effect in panel (b). An external
temperature gradient ΔT generates a preferred hopping of conduction electrons (left panel). If the neighbouring lattice site is already
occupied, an intermediate state with double occupancy is created (middle panel). Due to the Lorentz force of the perpendicularly oriented

magnetic field B
!

the enhanced energy from nematic fluctuations is preferably reduced by removing the electron in the perpendicular orbital
(right panel) leading to enhanced transverse transport.
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ordered orthorhombic phase either large positive or negative
contributions occur in the Nernst effect. In the case of nematic
order, an interpretation of these low-temperature contributions is
elusive since a strong in-plane anisotropy, uncontrolled twinning,
and possible additional contributions from highly mobile Dirac-
like fermions need to be considered22–24. On the other hand, the
strong additional increase, which is well recognisable near Tc of
the superconducting samples, is well-known to result from vortex
motion and therefore is of no further interest in the present study.
While the Nernst effect is in principle sensitive to fluctuating
Cooper pairs above the critical temperature and is capable of
tracking the transition from vortex liquid to a phase-fluctuating
superconducting regime15,16, it is rather the strong enhancement
of the Nernst coefficient at high temperatures, far above any
superconducting fluctuation regime, which attracts our attention.
This enhancement is strongest in the parent compound of both
families, where the ground state shows long-range antiferromag-
netic order rather than superconductivity. In view of our theory
and the known presence of nematic fluctuations, we expect the
amplitude of these fluctuations to be directly encoded in the
Nernst signal.
Thus motivated by this, we have investigated the doping

evolution of several isotherms of ν/T as shown in Fig. 2c. The data
reveal a strong initial reduction of ν/T at low doping levels which
tends to saturate upon reaching superconducting doping levels
(x ≤ 4%). However, a significantly larger ν/T occurs at x= 6.1%
before being strongly suppressed at x > 8%. This non-monotonic
doping dependence is especially enhanced at high temperatures
(T≳ 200K). Remarkably, as seen in Fig. 2d (please note the colour
coding of the amplitude for better visibility), ν/T tracks the
superconducting dome and shows a maximum near the optimal
doping level x ≈ 6%. These experimental findings, therefore,
suggest a relationship between ν/T and the superconducting
transition Tc, whereas our theoretical finding points out the
sensitivity of ν/T to nematic fluctuations. In a nutshell, this
comparison suggests that electronic-nematic fluctuations play an
important role for enhancing superconductivity.

Nernst effect in LaFe1−xCoxAsO
To verify the universal character of our result across different
families of iron-based superconductors, we performed Nernst
measurements on high-quality single crystals of Co-doped
LaFeAsO25. LaFeAsO is one of the most famous representatives
of iron based systems, since superconductivity of this material
class was first discovered in F-doped LaFeAsO26. Another way of
inducing a superconducting ground state in LaFeAsO is replacing
Fe with Co27. In contrast to BaFe2As2, LaFeAsO is showing
separated magnetic and structural transitions. Both are gradually
suppressed as a function of Co content x and vanish in a region
x ≈ 4.5–5%, a superconducting dome develops above x ≈ 5% with
an optimal doping level of x= 6%25,28–30.
In analogy to the 122 system, two temperature regimes are

excluded from the analysis: (i) due to the formation of twinned
domains and a strong in-plane anisotropy the data in the low
temperature nematic phase is elusive and (ii) ν/T in the
superconducting phase as well as close to Tc is governed by
well-known contributions due to vortex motion and super-
conducting fluctuations15. Hence, we focus on the steady increase
of ν/T by more than one order of magnitude upon lowering the
temperature in the tetragonal phase. Figure 3a shows data of ν/T
vs. T for all LaFe1−xCoxAsO compositions on a semi-logarithmic
scale. Similar to Ba(Fe1−xRhx)2As2, ν/T displays a large positive
value for all doping levels at room temperature, which increases
monotonically upon cooling as long as a sample is in the
tetragonal paramagnetic, non-superconducting phase. The tem-
perature dependencies of ν/T in Ba(Fe1−xRhx)2As2 and LaFe1−xCox-
AsO are showing strong similarities as well. Apart from a slight
difference in magnitude, the features obtained by the
temperature-dependent measurements seem to be an universal
property of the Nernst effect in iron-based superconductors. In
fact, similar levels of electron doping (Rh doping in BaFe2As2 and
Co doping LaFeAsO) produce remarkably similar ν/T vs. T curves
(for example, in both systems the doping level x= 2.5% is the only
composition where a negative Nernst signal is obtained). The
extremely similar behaviour in Ba(Fe1−xRhx)2As2 and LaFe1−xCox-
AsO, i.e. the evolution of ν/T as a function of temperature and
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Fig. 2 Nernst effect measurements in Ba(Fe1−xRhx)2As2. Nernst coefficient divided by temperature ν/T of Ba(Fe1−xRhx)2As2 as a function of T
and x. All data measured along the ab-plane with a magnetic field of B= 14T applied parallel to the c-axis. a ν/T as a function of temperature
(note the semi-logarithmic scale). b Zoom-in on the data shown in panel (a). Black arrows indicate structural phase transitions. c ν/T vs. Rh
doping level x at selected temperatures. d Colour coded phase diagram of the Nernst coefficient divided by temperature ν/T as a function of
Rh doping level x and temperature T. Coloured arrows on the top mark show the nominal doping of the measured samples. TS, TN, and Tc data
taken from ref. 20. Tnem data is obtained from elastoresistivity measurements on the same samples (compare “Methods” section).
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doping, seems to be of universal character and is therefore
strongly suggesting that the same mechanism is driving the large
Nernst coefficient due to the presence of nematic fluctuations.
Furthermore, the doping-dependent data of LaFe1−xCoxAsO

(Fig. 3c, d) reveal a non-monotonic doping dependence as well,
albeit some differences. On one hand, the variation as a function
of doping is smaller compared to Ba(Fe1−xRhx)2As2, though an
enhancement of ν/T above the superconducting dome is also
visible in LaFe1−xCoxAsO, which suggests that a correlation
between the maximum of ν/T and Tc is present as well. On the
other hand, the data for LaFe1−xCoxAsO even seem to indicate a
slight double peak behaviour as a function of doping, which
resembles recent reports of elastoresistivity, i.e., an alternative
well-established probe for nematic fluctuations28,31–33, in LaFe1−x-

CoxAsO (measured on a superset of the crystals that were used in
this work)28.
The existence of the same double peak structure in two distinct

probes suggests that this is a robust feature of the nematic
fluctuations in this system. Motivated by the analogy between
Nernst and elastoresistivity in LaFe1−xCoxAsO, we checked the
consistency of the two techniques in Ba(Fe1−xRhx)2As2. Interest-
ingly we observed a mismatch, namely, the Nernst coefficient
peaks at the optimal doping, as mentioned above, while
elastoresistivity peaks in the underdoped region and does not
track the superconducting dome (see Fig. 9 in the “Methods”
section), in agreement with previous reports on Co-doped
BaFe2As231,32.

Discussion
Clearly, this observation implies that elastoresistivity and Nernst
effect probe similar, yet distinct aspects of the nematic fluctua-
tions, where apparent differences are likely related to subtleties of
the considered systems. This conclusion is corroborated by recent
elasto-Seebeck and elasto-Nernst data which possess a somewhat
different coupling to the nematic susceptibility than the
elastoresistivity24. In this context, it is important to consider that
all the elasto-transport properties, including elastoresistivity,

crucially depend on the electron-lattice coupling, since, by
definition, they represent the response of an electronic system
to an external uniaxial strain. This is not the case for the pure
Nernst effect, which is measured without stressing the lattice. In
this sense, the Nernst coefficient can be sensitive to nematic
fluctuations even far away from the actual structural transition,
where the electron-lattice coupling is weaker.
We further emphasise that, on a more general perspective, both

scattering time and Fermi surface distortions and fluctuations
thereof have to be taken into account to explain the transport
nematic phenomenology. Since thermoelectric properties, espe-
cially the Nernst effect, are known to be extremely sensitive to the
latter12,13 it is natural to consider an orbital contribution, which
eventually is connected to Fermi surface distortions, as a first
candidate to theoretically approach the influence of nematicity on
the Nernst coefficient in our basic model. We point out, as is
discussed in ref. 24, that an anisotropic scattering time can be
expected to play a further important role in these systems.
We mention further, that, besides a finite nematic coupling,

another important ingredient in determining the electronic
properties of iron-based superconductors is their multi-band
nature. From the orbital point of view, our minimal model,
including a finite nematic coupling, arises within a two-band
system, therefore it is intrinsically a multi-band effect. However,
one could also argue that the evolution of Nernst coefficient as a
function of doping could arise either from a doping-dependent
charge-carrier compensation or a doping-dependent scattering
rate. It is well-established that the ambipolar flow of electron-like
and hole-like quasiparticles enhances the Nernst coefficient, unlike
the Seebeck and the Hall effect, where the contributions of
carriers with different signs tend to cancel out. This peculiar
property of the Nernst coefficient makes its doping dependence
predictable, namely a progressive departure from the multi-band
compensation due to doping should lead to a monotonic
decrease of the effect. In our case, this scenario seems to be
insufficient, since we observed a pronounced non-monotonic
doping-dependence of the Nernst coefficient. We could now
suppose that the doping dependence of the Nernst coefficient
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Fig. 3 Nernst effect measurements in LaFe1−xCoxAsO. Nernst coefficient divided by temperature ν/T of LaFe1−xCoxAsO as a function of T and
x. All data measured along the ab-plane with a magnetic field of B= 14 T applied parallel to the c-axis. a ν/T as a function of temperature (note
the semi-logarithmic scale). b Zoom-in on the data shown in panel (a). Black arrows indicate structural phase transitions. c ν/T vs. Co doping
level x at selected temperatures. d Colour-coded phase diagram of the Nernst coefficient divided by temperature ν/T as a function of Co
doping level x and temperature T. Coloured arrows on the top mark show the nominal doping of the measured samples. TS, TN, Tc, and Tnem
data taken from ref. 28.
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could be caused by a change of the scattering rate with the Rh- or
the Co-content. However, within our model, we should introduce
a non-monotonic change of the scattering time up to one order of
magnitude to produce an effect comparable to the influence of a
finite nematic coupling (see Fig. 7 in the “Methods” section). Even
admitting different scattering rates for the electron- and hole-like
bands, such a huge change of the scattering time would be
unusual and incompatible with the monotonic doping depen-
dence of the resistivity of electron-doped iron-based super-
conductors34. Hence, although one cannot exclude a priori that a
doping-dependence of the charge carrier compensation and of
the scattering time can play a role, a finite nematic coupling
seems to be essential to reproduce our data.
Finally, we mention that antiferromagnetic fluctuations in

principle can give rise to a Nernst signal, too12,35,36. However, it
is well established by nuclear magnetic resonance (NMR) that in
electron-doped BaFe2As2 and LaFeAsO the low-energy spin-
fluctuations are monotonically suppressed towards optimal
doping30,37. In contrast to this, our Nernst effect data clearly
exhibit a non-monotonic doping dependence near optimal
doping. Furthermore, the measured Nernst coefficient in the
tetragonal phase always is linear in magnetic field, in contrast
to reports where a non-linear in field Nernst response is
interpreted as evidence of an enhancement due to spin
fluctuations35. Thus, while we cannot exclude spin fluctuations
to contribute to the enhanced Nernst effect at low doping
levels, such can be ruled as the origin for the enhanced Nernst
effect near optimal doping.
In conclusion, we established the Nernst effect as a sensitive

probe for nematic fluctuations, and we show that the amplitude
of the Nernst coefficient in the normal state tracks the
superconducting dome in the electron-doped phase diagram
of two representatives of major families of the iron-based
superconductors. Our results, therefore, imply that nematic
fluctuations are an indispensable ingredient for enhancing Tc in
the iron-based superconductors. Furthermore, our analysis
suggests the Nernst effect as a principal technique to probe
nematicity, and thus it should be considered for future
experiments in order to unravel the mysteries of electronic
order in iron-based superconductors.

METHODS
Theory
Minimal model. We consider a two-band tight binding model, where
conduction electrons can occupy the dxz and dyz orbitals of the iron atoms
on a square lattice. Such a minimal model captures basic features of the
band structure of iron-based superconductors and allows for a ground
state with nematic order10,19. The model Hamiltonian reads10,

H ¼ � P
ij;ab;σ

tabij c
y
iaσcjbσ þ h.c.

� �
�μ
P
i;a

ni;a � g
2

P
i

ni;xz � ni;yz
� �2 ¼ H0 þHg;

(2)

where a, b= xz, yz denote the orbital indices, σ= ↑, ↓ the spin index,
and ni;a ¼

P
σc

y
iaσciaσ is the occupation of orbital a on lattice site i. The

first term in Eq. (2) describes the kinetic energy of the conduction
electrons. In order to start from a situation which is relevant to a variety
of iron-based superconductors we take the hopping parameters tabij
from ref. 9 leading to the usual band structure of the iron-pnictides
consisting of one hole pocket around the Γ point and electron pockets
around X- and Y-points of the Brillouin zone. The chemical potential μ of
the system is included in the second term. A variation of μ changes the
relative size of the hole and electron pockets in momentum space and,
therefore, also the electron filling. A variation of μ can be achieved
experimentally for example, by doping or applying pressure.
Most importantly, the third term in Eq. (2) accounts for the nematic

fluctuations. Due to its quadratic form and negative sign this term
energetically favours (proportional to the coupling strength g) a

difference in the local occupation between the dxz and dyz orbitals.
Thus, if one orbital is particularly preferred at lattice site i the orbital
referring to the perpendicular direction is at the same time avoided.
Together with the hopping term such an effective electron-electron
interaction captures the basic property of nematicity. Since the
rotational symmetry is not broken by the Hamiltonian (2) the
introduced model can be thought of being relevant for an iron-
pnictide material that is close to a nematic instability.
The model (2) has been studied theoretically by random phase

approximation (RPA)9 and determinant quantum Monte Carlo
(DQMC)10. As is well known, the RPA works well in a weak-coupling
regime. It predicts a variety of orders for Eq. (2), depending on the value
of μ. In the range between μ/t1= 0.2 and μ/t1= 2.5, where t1 is the
nearest neighbour intra-orbital hopping matrix element, the RPA
predicts the onset of uniform nematic order for gc/t1 ≈ 1.7. For μ/
t1 > 2.5, susceptibility peaks at wave vectors (0, π) and (π, 0) indicating
stripe order have been found, while for μ/t1 < 0.2 the susceptibility
peaks appear at wave vector (π, π) and therefore predict antiferro-
orbital (AFO) (antiferroquadrupole) order.

Evaluation of the Nernst effect. The Nernst coefficient ν= Ey/(−∇xT) which
is measured in this work can be generally expressed in terms of the
thermoelectric tensor αab and charge conductivity tensor σab as

ν ¼ αxyσxx � αxxσxy
σ2xx þ σ2xy

: (3)

In the following, we consider a weak coupling regime and show that
already a small value of g (in comparison to the parameters of the kinetic
energy) is sufficient to strongly enhance the Nernst coefficient ν. As
discussed above, for such a small coupling regime, the properties of the
model Hamiltonian (2) are well-captured by the RPA, which is a form of a
mean field theory. Motivated by this result, we proceed to study the
influence of nematic fluctuations on the Nernst coefficient (3) as follows:
At first, we apply the mean-field approximation to decouple the
interaction term in (2) and to solve the model. Based on this decoupling,
we calculate the transport coefficients in Eq. (3) separately. Thereby we
consider a relatively small magnetic field B that produces the Nernst
effect such that perturbation theory up to lowest order in B is sufficient
to describe the experimental conditions. Using these approximations, we
show that the significant properties of the measured Nernst effect are
reproduced by the theoretical description, which then justifies the
simplifications made to solve the model.
The first step is to decouple the interaction term Hg of the model

Hamiltonian (2) using mean-field theory. After a Fourier transformation
to the momentum space, we obtain at first the following expression for
the kinetic energy part of the Hamiltonian,

H0 ¼
X
k;σ

ðεk;x � μÞcykxσckxσ þ ðεk;y � μÞcykyσckyσ þ Vt
kðcykxσckyσ þ cykyσckxσÞ

h i
; (4)

where

εk;x ¼ 2t1 cos kx � 2t2 cos ky þ 2t3 cosðkx þ kyÞ þ cosðkx � kyÞ
� �

(5)

εk;y ¼ 2t1 cos ky � 2t2 cos kx þ 2t3 cosðkx þ kyÞ þ cosðkx � kyÞ
� �

(6)

Vt
k ¼ 2t4 � cosðkx þ kyÞ þ cosðkx � kyÞ

� �
: (7)

The hopping matrix elements t1…4 are fixed according to ref. 9 to the
following ratios with respect to t1, t2/t1= 1.5, t3/t1= 1.2, and t4/t1= 0.95.
The dispersions εk,x and εk,y are shown in Fig. 4a for a specific momentum
cut.
From now on any energetic quantity will be given in units of t1. The

mean-field decoupled interaction term of Hamiltonian (2) has the same
operator structure as H0 and reads in mean-field approximation,

Hg;MF � g
P
k;σ

nx � 1
2

� �
cykxσckxσ þ ny � 1

2

� �
cykyσckyσ

h

�dxyðcykxσckyσ þ cykyσckxσÞ
i
� gNðn2x þ n2y � 2n2hÞ;

(8)

where N is the total number of k points in the Brillouin zone and
nx ¼ hcyixσcixσi, ny ¼ hcyiyσciyσi, and nh ¼ hcyixσciyσi are expectation values of
the local orbital occupation numbers and the local hybridisation,
respectively. These expectation values are formed with the approximated
Hamiltonian HMF ¼ H0 þHg;MF and they have constant values for
different lattice sites i and spin σ due to the translation and time reversal
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symmetry of the original Hamiltonian (2). Spontaneous symmetry breaking
of the mean-field Hamiltonian HMF is not considered here since RPA
predicts orbital order only for larger values of g.
Considering the transport tensor coefficients in Eq. (2) within a

semiclassical Boltzmann dynamics in the relaxation time approximation,
we obtain the following expressions38,

σxx ¼ e2τ
NkBT

X
k;a;σ

v2xankað1� nkaÞ; (9)

αxx ¼ eτ

NðkBTÞ2
X
k;a;σ

v2xaðεk;a � μÞnkað1� nkaÞ; (10)

σxy ¼ e3τ2B
_NkBT

X
k;a;σ

v2xa
∂2εk;a

∂k2y
� vxavya

∂2εk;a
∂kx∂ky

 !
nkað1� nkaÞ; (11)

αxy ¼ e3τ2B

_NðkBTÞ2
X
k;a;σ

v2xa
∂2εk;a

∂k2y
� vxavya

∂2εk;a
∂kx∂ky

 !
ðεk;a � μÞnkað1� nkaÞ;

(12)

where τ is the scattering time, e the elementary charge, and
nka ¼ hcykaσckaσi the momentum-dependent occupation numbers of
orbital ’a’. The numbers vxa= ∂εk,a/∂kx and vya= ∂εk,a/∂ky denote the
components of the Fermi velocity with respect to orbital ’a’. Eqs. (9)–(12)
have to be evaluated explicitly in order to calculate the Nernst coefficient ν.
Thereby, analytical expressions for the momentum derivatives of the
dispersions εk,a can be derived directly from Eqs. (5)–(6). Here, only the
hopping parameters t1…4 enter. Thus, the only property which is
determined by nematic fluctuations (represented by the parameter g) is
the momentum-dependence of the occupation numbers nka.
Expressions for the occupation numbers nka can be found easily by

diagonalizing the mean-field Hamiltonian HMF . In the following, we
quickly discuss the corresponding approach. Due to the bilinear
operator structure of the parts H0 and Hg;MF the model Hamiltonian
can be at first written in the form

HMF ¼
X
k;a;σ

Ekac
y
kaσckaσ þ

X
k;σ

Vk cykxσckyσ þ cykyσckxσ
� �

þ E0; (13)

where by use of Eqs. (4) and (8) we have introduced

Eka ¼ εka þ g na � 1
2

� 	
� μ; (14)

Vk ¼ Vt
k � gnh; (15)

E0 ¼ �gN n2x þ n2y � 2n2h
� �

: (16)

A diagonalization of HMF can be achieved by using the new fermionic
operators

αykσ ¼ ukc
y
kyσ þ vkc

y
kxσ (17)

βykσ ¼ �vkc
y
kyσ þ ukc

y
kxσ ; (18)

where the momentum-dependent coefficients uk and vk have to fulfil the
following properties,

u2k ¼ 1
2

1� Ekx � Ekyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEkx � EkyÞ2 þ 4V2

k

q
0
B@

1
CA (19)

v2k ¼ 1� u2k (20)

Under these conditions, we find for the mean-field Hamiltonian a diagonal
operator structure,

HMF ¼
X
k;σ

EðeÞk αykσαkσ þ EðhÞk βykσβkσ
� �

þ E0; (21)

and the Hamiltonian is now written in the ’band’ basis where ’e’ denotes
the electron pocket and ’h’ the hole pocket in the conventional notation of
the iron-based superconductors. The quasiparticle dispersions read,

Eðe;hÞk ¼ Ekx þ Eky
2

±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEkx � EkyÞ2 þ 4V2

k

q
; (22)

where the dispersion functions Eðe;hÞk now describe the actual band structure
(for example, measurable by ARPES) consisting of two bands with the typical
Fermi surface topology in iron-based superconductors. Explicit expressions
for the momentum-dependence of Eðe;hÞk can be derived from Eq. (22) by use
of the Eqs. (14), (15) and Eqs. (5)–(7). In Fig. 4a, the band structure is plotted
for the g= 0 case.
We now turn to the actual calculation of the expectation values hcykackai

and hcykxckyi which enter all transport coefficients in Eqs. (9)–(12) and also

the local expectation values na ¼ ð1=NÞPkhcykackai and nh ¼ ð1=NÞPk

hcykxckyi. Since the Hamiltonian HMF is diagonal in the formulation (21), the
above expectation values can be easily calculated when the c-operators are
replaced by the quasiparticle operators α and β using Eqs. (17) and (18). The
remaining expectation values are bilinear in the quasiparticle operators and
reduce to simple Fermi functions with respect to the dispersions in Eq. (22).
We obtain

hcykxckxi ¼ u2k f ðEðhÞk Þ þ v2k f ðEðeÞk Þ; (23)

hcykyckyi ¼ v2k f ðEðhÞk Þ þ u2k f ðEðeÞk Þ; (24)

hcykxckyi ¼ ukvk f ðEðeÞk Þ � f ðEðhÞk Þ
h i

; (25)

where f(E)= 1/(1+ eβE) is the Fermi function and uk, vk are given by the
Eqs. (19) and (20).

Numerical results. We now show by numerical evaluation of the
expectation values (23)–(25) that the Nernst effect becomes dramatically
larger in the presence of nematic fluctuations. For this, we have calculated
the transport coefficients (9)–(12) and the Nernst coefficient ν for given
sets of the parameters μ, g, and T.
We start with a discussion how ν generally behaves when the strength g

of the nematic fluctuations is slowly switching from g= 0 to finite but still
relatively small values. Figure 5a shows the calculated ν as a function of g
for a fixed value of the chemical potential, μ= 1, and a fixed small

Fig. 4 Modelled dispersion and occupation. Dispersion and occupation numbers of electrons in the dxz (blue solid lines) and in the dyz (green
solid lines) orbital states plotted in momentum space along the kx direction. The chemical potential is fixed to μ= 1.2. a Difference between
the orbital dispersions and the chemical potential, εk,a− μ, calculated from Eqs. (5), (6). Since Vt

k vanishes along the kx-axis the dispersions εk,a
correspond in the absence of nematic fluctuations, i.e. g= 0, to two bands leading to the well-known hole- and electron-like Fermi surface
sheets around (0, 0) and (π, 0). b Orbital occupation numbers (per spin direction) as a function of momentum along the kx-axis in the g= 0
case and a finite small temperature kBT= 0.02. Due to the absence of interactions, these expectation values correspond to Fermi functions.
c Same quantities for g= 0.2. To highlight their momentum variations due to the nematic fluctuations, the occupation numbers are plotted
between 0.9 and 1.03 for the dxz orbital and between 0 and 0.1 for the dyz orbital.
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temperature value of kBT= 0.01. One can clearly see that ν increases
strongly already in a relatively narrow g range, 0 < g < 0.2, before it reaches
a saturation. We particularly note that already at g= 1/8 the absolute value
of ν becomes three orders of magnitude larger than its initial value in the
interaction-free case. In Fig. 5b, c, the transport coefficients which
determine ν via Eq. (3) are plotted separately. It can be seen that both
the Hall conductivity σxy and also the anisotropic Peltier component αxy
(blue lines) grow rapidly with g. Their increase is even stronger than that of
the conventional longitudinal transport components σxx and αxx (red lines).
In the zero-g limit the Hall conductivity is much smaller than σxx but due to
the stronger increase it exceeds σxx for g-values larger than g ≈ 0.2. This
specific behaviour of the transport coefficients influences the Nernst
coefficient ν significantly since it is determined by the ratio (3) where a
summation of different tensor components enter in different ways in the
nominator and denominator. It leads for ν to a change from strong
increasing to rather saturating behaviour appearing around g ≈ 0.2 where
σxx and σxy coincide.
The strong impact of nematic fluctuations to the anisotropic transport

coefficients can be understood as follows. A closer inspection of the Eqs.
(11), (12) shows that the lowest-order effect of nematic fluctuations is
determined by the momentum-dependent occupation numbers nka. All
other quantities, including dispersions εk,a and their derivatives are
independent of g. In Fig. 4b, c, we show the momentum-dependence of
the nka for g= 0 (panel (b)) and g= 0.2 (panel (c)) where the Nernst
coefficient has already significantly increased according to Fig. 5a. In the
interaction-free case the occupation numbers are just the Fermi
distribution functions separating fully occupied states (at T= 0), defined
by the property εk,a < μ, from the unoccupied states. The factor nka(1− nka)
in the momentum summation in Eqs. (11), (12) is non-zero only in a narrow
k-range around the corresponding Fermi momentum kðaÞF (compare panel
(a)) where εk,a− μ is of the order of the thermal broadening kBT. This
limitation of the contributing terms in the momentum summation is well-
known and typical for the conventional thermal and electrical transport of
conduction electrons in usual metals. It is, for example, the reason why the
Nernst effect is usually very small.
Switching on the nematic fluctuations g changes the situation

dramatically, as is seen in panel (c). Due to the coupling between the
two different types of orbitals, there is now an increase of the dyz
occupation (green solid line) around the Fermi momentum kðxzÞF of the
other orbital, i. e. the dxz orbital. Note that the dyz dispersion εk,yz is far
above the Fermi level in this momentum region and thus would not be
occupied in the decoupled case at low temperature. This non-zero
occupation of dyz, which is solely due to the nematic coupling proportional
to g, is relatively small but it is not bounded to some region around the
Fermi level. Instead it affects the whole momentum range where the
dispersion of the other orbital dxz is below the Fermi level. This leads to a
macroscopic number of k-points where nka(1− nka) is non-zero, and thus
the number of contributing terms in the momentum summations (11), (12)
increases dramatically. Furthermore, as a consequence of the occupation
nkyz, the number of dxz electrons, nkxz, (blue solid line) in the same k-state

Fig. 5 Transport coefficients. Calculated Nernst coefficient and
transport components as a function of the strength g of the nematic
fluctuations for μ= 1 and kBT= 0.01. a Calculated Nernst coefficient
ν. Starting from very small values ν increases dramatically already for
relatively small values of g. b Electrical conductivity σxx (red line) and
Hall conductivity σxy (blue line) as a function of g. The Hall coefficient
grows more rapidly than σxx and eventually exceeds its absolute
value at g/t1 ≈ 0.2. This causes for ν a change from a strong increase
followed by a saturation. c Peltier coefficients αxx (red line) and αxy
(blue line) as a function of g. Also here, the anisotropic component is
dominant in the presence of nematic fluctuations.

Fig. 6 Calculated Nernst coefficient under variation of further parameters. a Nernst coefficient as a function of the chemical potential μ for
two different values of g and fixed temperature kBT= 0.01. The broad maximum at intermediate μ values (for g ≠ 0) is comparable with the
observed behaviour of the Nernst effect as a function of doping as it has been found by our measurements. For comparison, we also show the
result without taking into account nematic coupling (g= 0), which shows a very reduced amplitude. b Nernst coefficient as a function of
temperature for different values of μ and fixed g= 0.1. As observed in the experiments, we find a μ-dependent low temperature maximum
followed by a rapid decrease and saturation at high T. The maximum appears when the thermal energy kBT is of the same order as the
experimentally found value kBTc for the superconducting Tc.
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is reduced by nkyz. Finally, the occupation of both orbitals changes within
the thermal broadening to 1 when kðyzÞF is reached. Note that the same
discussion holds for the perpendicular direction in the k-space but with
the opposite orbital characteristics.
In conclusion, the nematic coupling leads in the momentum range

where for zero-coupling one orbital is occupied, and the other one is
empty to a fluctuation-driven ’flow’ from the occupied to the unoccupied
orbital, which is oriented towards the transverse direction. Since this
correlation affects also higher energy states, it has a dramatic effect on the
anisotropic transport coefficients, which particularly describe the response
to a flow in the perpendicular direction. Figure 1c shows the schematic
picture of the responsible processes leading to this effect. An external field
(for example, temperature gradient) applied in x-direction generates at first
a hopping of conduction electrons in x direction. This can lead to an
intermediate state with double occupancy, including both orbital types.
Due to the nematic interaction in Eq. (2), this state has an order of g higher
energy than the initial state. The enhanced energy can be reduced again
by either further hopping in x-direction or (most importantly) removing the
electron in the dyz orbital from the doubly occupied site. Due to its orbital
character this electron preferably hops in y-direction where the hopping
direction is pretended by the Lorentz force of the perpendicularly oriented
magnetic field. The resulting preferred transport in y direction explains the
high sensitivity of the Nernst effect towards nematic fluctuations.
In Fig. 6, we show the calculated Nernst coefficient ν as a function of the

two further free parameters, the chemical potential μ and temperature T.
One can clearly see from Fig. 6(a) that ν is mostly enhanced in a rather
broad range around μ ≈ 1.8. Since μ is closely related to the electron filling,
its variation can be considered as a simulation of doping the material with
electrons or holes. Having this relationship in mind, we argue that the
calculated maximum of ν is consistent with the measured behaviour of the
Nernst effect for samples with different doping. The calculated influence of
temperature is shown in Fig. 6b for three different μ-values. This result is
also in qualitative agreement with our experiments. We find a μ-dependent
maximum at rather low temperatures kBT ≈ 0.01 which corresponds to the
temperature scale of the superconducting critical temperatures measured
for this material. At higher temperatures, ν decreases again, followed by a
saturation or even negative values in the high-temperature limit.
Finally, to study the effect of the scattering rate to our observed effect,

we have artificially varied the scattering time τ in Eqs. (9)–(12) such that the

calculated Nernst coefficient in Eq. (3) remains constant. The result is
shown in Fig. 7. This corresponds to the change of ν, which would be
necessary to overcompensate the effect of the enhancement of the Nernst
coefficient by nematic fluctuations. It is seen that the change of τ must be
extremely large, i.e. about one order of magnitude.

Crystal growth
Single crystals of LaFe1−xCoxAsO were grown via Na-As liquid-assisted
growth using diffusion-controlled abnormal grain growth from polycrystal-
line LaFeAsO by the solid state crystal growth method (SSCG) as described
in ref. 25. Single crystals of undoped BaFe2As2 were grown by a high
temperature solution growth using an excess of FeAs as solution (self-flux),
(see, e.g., ref. 39 and references therein). Single crystals of Ba(Fe1−xRhx)2As2
were grown out of excess (Fe1−xRhx)As using the procedures outlined in
refs. 40,41, and 20.
Crystals were analysed using several complementary techniques as

scanning electron microscopy (SEM) with energy dispersive X-ray analysis
(EDX), Laue backscattering, powder and/or single crystal X-ray diffraction,
and SQUID magnetometry measurements.

Nernst effect measurements
The measurements were conducted in a home-built device in a helium
bath cryostat under magnetic fields in the range ± 15 T. The single crystals
were prepared in an inert atmosphere to prevent degradation. The thermal
gradient in the crystals has been applied parallel to the ab-plane, using a
resistive chip heater. The magnetic field along the c-axis and the Nernst
voltage was measured orthogonal to the two former directions but again
in the ab-plane, using a Keithley nanovoltmeter. The measured voltage has
then been antisymmetrized with respect to magnetic field. All measured
samples show a linear behaviour of the Nernst signal as a function of field
(compare Fig. 8, which exemplary shows N(B) for two different doping
levels of LaFe1−xCoxAsO) in the tetragonal state, which is of particular
interest for our analysis.

Elastoresistivity measurements
We measured the elastoresitivity of all the samples of the Ba(Fe1−xRhx)2As2
(with x= 0, 0.012, 0.025, 0.04, 0.061, 0.087, and 0.0107) series, in order to
obtain the nematic phase diagram (Fig. 9b) discussed in the main text. For the
measurement, we adopted the standard procedure described in refs. 32

and 28. The samples have been glued to a commercial piezoelectric actuator,
oriented in order to have the crystalline [110] direction aligned along the main
straining-axis of the piezo stack. The applied strain has been measured with a
strain gauge attached to the same piezo actuator. Figure 9a shows the
temperature-dependence of the strain derivative of the resistivity dη/dϵ
measured on a sample with x=0.025, as an example. Every point has been
obtained at fixed temperature, by scanning the voltage applied to the piezo
actuator from −30 to 100 V and detecting the corresponding variation in η
and ϵ. Due to the tiny applied strain (ranging from 0.01 to 0.1%), we have
operated in a linear regime of η vs ϵ. The nematic temperature TNem has been
obtained as a fitting parameter by interpolating the temperature-dependence
of dη/dϵ in the fluctuating regime with a Curie–Weiss function dη/
dϵ= C0+ C/(T− TNem) (red curve in Fig. 9a) 28,32.

Fig. 7 Scattering time. Scattering time as a function of the chemical
potential μ extracted from Eq. (3) being changed in such a way that
ν remains constant. The coupling strength is fixed to g/t1= 0.2.
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Fig. 8 Example of measured Nernst signal. Nernst signal as a function of magnetic field B for LaFe1−xCoxAsO with (a) x= 0 and (b) x= 3.5%
at different constant temperatures.
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