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Quantum anomalous semimetals
Bo Fu 1, Jin-Yu Zou1, Zi-Ang Hu1, Huan-Wen Wang 1 and Shun-Qing Shen 1✉

The topological states of matter and topological materials have been attracting extensive interests as one of the frontier topics in
condensed matter physics and materials science since the discovery of quantum Hall effect in 1980s. So far all the topological
phases such as integer quantum Hall effect and topological insulators are characterized by integer topological invariants. None is a
half integer or fractional. Here we propose a type of semimetals which hosts a single cone of Wilson fermions. The Wilson fermions
possess linear dispersion near the Dirac point, but break the chiral or parity symmetry such that an unpaired Dirac cone can be
realized on a lattice. In order to avoid the fermion doubling problem, the chiral symmetry or parity symmetry must be broken
explicitly if the hermiticity, locality and translational invariance all hold. We find that the system can be classified by the relative
homotopy group, and a half-integer topological invariant. We term the nontrivial quantum phase as quantum anomalous
semimetal. The work opens the door towards exploring novel states of matter with fractional topological charge.
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INTRODUCTION
Discovery of quantum Hall effect in 1980s opened an avenue to
explore the topological states of matter and topological materials
in condensed matter physics and materials science1. The
topological insulators and superconductors are classified as a
state of matter according to the topology of band structure and
are characterized by the Z and Z2 topological invariants2–7, which
determine the existence of the boundary states around the
systems according to the bulk-boundary correspondence3,4. Some
topological metals and semimetals were also discovered to
possess the Fermi arcs on the surface of the systems8–14. However,
so far all the discovered topological phases of matter and the
topological materials are characterized by a nonzero integer. None
of the topological invariant is a half-integer or fractional15,16. The
Nielsen-Ninomiya or fermion doubling theorem states that a
single gapless Dirac fermion cannot be constructed on a regular
lattice in even space-time dimensions while preserving all of the
symmetries: translation invariance, chiral symmetry, locality, and
hermiticity17,18. By sacrificing one of the presuppositions, unpaired
massless Dirac fermion can be formulated to get rid of the
doublers. The chiral anomaly, one of the fundamental physics in
quantum field theory, is closely related to the theorem. In odd
space-time dimensions, the fermion doubling phenomenon in
two spatial dimensions is intimately tied to another quantum
anomaly, the so-called parity anomaly, which can be viewed as the
analog to chiral anomaly in even space-time dimensions. Here we
propose a topological state of matter, termed “quantum
anomalous semimetal” to emphasize its close relation to quantum
anomalies. This phase hosts the Wilson fermions instead of the
Dirac fermions. The gapless Wilson fermions break the chiral or
parity symmetry at generic momenta, and can be realized on
lattices. It is found that the topological phase is classified by the
relative homotopy group and characterized by a half-integer
topological invariant. The half-integer topological invariant leads
to a fractional electric and electromagnetic polarization in one and
three dimensions19, and half-quantized Hall conductance in two
and four dimensions with no well-defined boundary states20,
forming a distinct bulk-boundary correspondence from the
gapped topological phase. An explicit consequence in the

one-dimensional (1D) phase is the prediction of the transfer of
one half of elementary charge e/2 in a topological charge
pumping, which demonstrates the distinction of the phase to all
other existing topological phases and materials.

RESULTS
Model and Wilson fermions
The massless Wilson fermions can be realized as a consequence
of fermion regularization on a lattice, which can be described
by the modified Dirac equation on a d-dimensional hyper-cubic
lattice6,18,21,22,
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with the lattice space a and effective velocity v where αi and β are
the Dirac matrices (See Methods). Its conduction band and
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and f iðkÞ ¼ _v
a sin kia (i= 1,…, d) touches at k= 0 to form a single

Dirac cone of massless fermions (See Fig. 1a and b). A continuous
model is valid by taking sin kia ’ kia and also used in the
following. In the case of d= 1, 3, it is known that the chiral
symmetry is broken explicitly, in which the chirality operator C ¼
e�iπ4ðd�1ÞQd

i¼1 αi does not commute with β. The Hamiltonian also
exhibits a global sublattice symmetry, ΓHΓ−1=− H with
Γ ¼ e�iπ4ðdþ1Þβ

Qd
i¼1 αi . In the case of d= 2, the parity operator is

defined as P ¼ α1M̂ and under M̂: x→ x and y→−y23. The b term
changes its sign under P and breaks the parity symmetry
explicitly. Thus the Wilson fermions break the chiral or parity
symmetry explicitly and avoid fermion doubling problem18. The
symmetry breaking term becomes irrelavant and the symmetry is
restored when ki→ 0 near the degenerate point. This symmetry
broken term plays a crucial role in the continuum limit and
ensures the quantum anomaly is correctly reproduced18,24. In the
lattice gauge theory18,24, any lattice discretization of the action
with the following properties: (i) has the correct continuum limit,
(ii) is gauge invariant, (iii) the Dirac operator is local, and (iv)
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absence of species doubling, reproduces the quantum anomaly in
the continuum limit. Therefore, the fermion doubling phenom-
enon is intimately tied to quantum anomaly, i.e. the chiral
anomaly for d= 1, 325,26 and the parity anomaly for d= 2, 427,28.

Classification of relative homotopy group
In the d-dimensional space, the Brillouin zone is topologically
equivalent to a torus: k ∈ Td. Assume that the band crossing
occurs at a single point in the momentum space {w} which serves
as the "monopole” of the gauge field. To present a homotopy
classification, we need to remove the degenerate point to avoid
the singularity, which will change the topology of the Brillouin
zone. We assume there are n occupied and m unoccupied Bloch
bands for each momentum. On the complement Td\{w}, one can
define the Q-matrix Q(k)= 2P(k)− I in terms of the projection
operator PðkÞ ¼Pn

a¼1 uaðkÞj i uaðkÞh j, where uaðkÞj i are the
occupied Bloch wave-functions. I is a (m+ n) × (m+ n) identity
matrix. For a given system, Q(k) defines a continuous map from
the Brillouin zone Td\{w} to a specific topological manifold M,
such that the Brillouin zone boundary surrounding the degen-
erate point (≅ Sd−1) is mapped to a submanifold X⊂M (see an
example in two dimensions as illustrated in Fig. 1e). Mathema-
tically, the classification of topological semimetal phases is
equivalent to distinguish distinct classes for all such mappings
which are given by the relative homotopy group πd(M, X)29,30. In
the following, we will identify the topological invariants with
elements of the relative homotogy group for quantum anom-
alous semimetals in even (odd) spatial dimensions that parity
(chiral) symmetry is broken for generic momenta but restored
surrounding the degenerate point.
In even spatial dimensions, we consider the Hamiltonian that

has no constraint other than being Hermitian and the translational
symmetry. The Q-matrix thus defines a map from Td\{w} into the
the complex Grassmannian Gm;mþnðCÞ ¼ UðmþnÞ

UðmÞ ´UðnÞ. The topologi-
cal invariants characterizing distinct topological phases in this
symmetry class are the first Chern number ν2D and second Chern
number ν4D for two and four dimensions, respectively15,22. On the
infinitesimal boundary surrounding the degenerate point, the
parity symmetry is restored that the space of Q is restricted to
U(n). By using the exact sequence29, the relative homotopy group
can be derived as: πd½Gm;mþnðCÞ;UðnÞ� ’ Z�Z. There are two
integers (N1, N2) characterizing the relative homotopy group
which maps the Brillouin zone to the target space with its
boundary to a specific submanifold. The Stokes theorem enables

us to relate the topological invariants ν2D/4D with these two
integers, ν2D/4D= N1+ N2/2. As shown in Methods, by using
Stokes theorem, ν2D/4D can be separated into two parts: i) the
winding number of a unitary matrix g which is an integer
corresponding to N1, ii) one dimensional Berry connection integral
P1 or the Chern-Simons 3-form integral P3 over the boundary
surrounding the degenerate point. In general, P1,3 can take any
values within (−0.5, 0.5] without symmetry constraint. If the parity
symmetry is further imposed on this boundary, the eigenstates of
the Hamiltonian at k and M̂k must be related by a unitary gauge
transformation U. Consequently, the integral P1,3 over this
boundary is only one half of the winding number of U which
corresponds to the second integer N2.
In odd spatial dimensions, we restrict our discussions in systems

with sublattice symmetry (which requires m= n) which indicates
that we can find a unitary matrix Γ anticommuting with the
Hamiltonian, ΓHΓ−1=− H. As a consequence, the Q-matrix can be
brought into an off-diagonalized form with the off-diagonal
component as q(k) which defines a map from the Brillouin zone
onto U(n). In this case, a winding number w1D/3D can be defined to
characterize distinct topological classes. The restored chiral
symmetry around the degenerate point further restricts qðkÞ 2
Ga;nðCÞ with a ≤ n on the boundary of the Brillouin zone. The
chiral anomalous semimetal is then classified by the relative
homotopy group πd½UðnÞ;Ga;nðCÞ� ’ Z�Z with two integers
(N1, N2). In 1D, N1 counts the integer number of times that
the argument of det½qðkÞ� varies along the path and N2 indicates
the monopole charge of the degenerate point. w1D measures the
argument variation of det½qðkÞ� along an open path divided by 2π.
Due to the constraint of chiral symmetry, the arguments of the
beginning and end points can only take two values 0 or π (modulo
2π). The difference of the arguments between these two points
divided by π tracks the monopole charge. Hence, N2 only gives
half-integer contribution to the winding number. In 3D, w3D can
be converted to the integration over the boundary surrounding
the degenerate point by utilizing the Stokes theorem as shown in
Methods. With additional chiral symmetry on the boundary, this
integral is reduced to the Berry curvature flux integral divided by
4π which is half of the monopole charge N2. Consequently, the
winding number for the chiral anomalous semimetals in one and
three dimensions can be obtained as w1D=3D ¼ N1 þ 1

2N2.
The existing classification theory of semimetals is based on the

properties of the band structure near the crossing points16. For
quantum anomalous semimetal, there are two topological
integers to classify the matter, as given by the relative homotopy

Fig. 1 Quantum anomalous semimetal. a The phase diagram and topological invariant of trivial insulator, quantum anomalous semimetal
and topological insulator. b The dispersion of the Wilson fermions along the wave vector kx and keeping all other ki= 0. c The spin texture of
1D Wilson fermions. d The spin texture of 2D Wilson fermions. e The relative homotopy group mapping of band structure and spin texture of
the parity anomalous semimetal. The whole torus on the first Brillouin zone maps to the semi-Bloch sphere (green line) and the small loop
around crossing point to the equator of the Bloch sphere (red line).
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group. One characterizes the topology of the bands on the
sphere Sd−1 surrounding the crossing point and the other one
characterizes the bands on the high energy scale. The quantum
anomalous semimetals here host the massless Wilson fermions
instead of the conventional Dirac fermions. The two types of
fermions are similar near the crossing point but distinctly different
at higher energy scales. The gapless Wilson fermions provide the
simplest example of the quantum anomalous semimetals in
various dimensions since the b term vanishes in the vicinity of the
degenerate point. The topological invariant for gapless Wilson
fermions is simply one half, � 1

2 sgnðbÞ, which only depends on the
sign of the symmetry broken coefficient b.
In the language of the tenfold-way of Altland-Zirnbauer

symmetry classes15,16,31, in even spatial dimensions (parity
anomalous semimetals), the system on manifold M belongs to
the symmetry class A and on X belongs to the symmetry class AIII.
In odd spatial dimensions (chiral anomalous semimetals), the
system on manifold M belongs to the symmetry class AIII and on X
belongs to class A. The homotopy groups in A and AIII form a
2-Bott period, i.e. A is nontrivial (trivial) in even (odd) dimensions,
AIII is nontrivial (trivial) in odd (even) dimensions. This property
leads to the result of the relative homotopy group Z�Z. The
Stokes theorem can apply between A and AIII and map the two
integers to a half integer. Here we restrict our discussion on A and
AIII because of the symmetries of quantum anomalous semimetal.
The topological semimetal phase characterized by a half integer
topological invariant in the other eightfold symmetry classes
which form a 8-Bott period may need further study.

Spin texture interpretation of the half quantized topological
invariants
We can take the Wilson fermions as examples to present the
physical interpretation of the half-quantized topological invar-
iants. We first discuss the half quantization of the winding number
for 1D Wilson fermions. The Hamiltonian for 1D Wilson fermions
can be expressed as H1D= f(k) ⋅ σ with a vector f= (f1(k), f2(k), 0).
As the name suggests, the winding number w1D counts the
number of times that the vector f rotates around the origin as k
varies across the full Brillouin zone. The direction of the
pseudospin vector on the Bloch sphere is f̂ ¼ f

jfj as shown in Fig.
1c. Due to the presence of a sublattice symmetry of the bulk
Hamiltonian, the pseudo-spin is forced to evolve on the equator of
the Bloch sphere. For gapless Wilson fermions, the band gap
vanishes at a specific momentum f(k0)= 0 where the pseudospin
vector is ill-defined. The winding path of f will go through the
origin at the gap closing point. The winding number is defined by
w1D ¼ R dk

2π ðf̂ 2∂k f̂ 1 � f̂ 1∂k f̂ 2Þ. By removing the degenerate point,
the reciprocal lattice vector space is no longer a closed path but
an open segment with two end points. The additional chiral
symmetry at the end points requires the directions of the pseudo-
spin can only have the azimuthal angles as 0 or π. Once the
locations of the two end points of the mapping fixed, the whole
mapping f̂ from the Brillouin zone are uniquely determined.
With the sublattice symmetry and chiral symmetry at the
degenerate point preserved, two mappings with different winding
numbers can not be continuously deformed to other. The
corresponding images of f̂ wind around the circumference of
the equator with half integer times. Consequently, we find that if
chiral symmetry can be restored in the vicinity of the degenerate
point, the winding number can still be well defined and quantized
as a half integer.
This half-integer topological invariant for 2D Wilson fermions

can also be understood by checking the winding number of
mapping from the Brillouin zone to the Bloch sphere (Fig. 1e),

ν2D ¼ R d2k
4π f̂ � ∂f̂

∂kx
´ ∂f̂

∂ky

� �
where f̂ ¼ f=jfj with f= (f1(k), f2(k), f3(k)).

Physically, the unit vector f̂ represents the orientation of the

pseudo-spin associated with the eigenvector of the valence band.
The additional parity symmetry around the boundary of the
degenerate point will constrain f̂ to the equator. The pseudo-spin
texture has the configuration shown as Fig. 1d which sweeps the
upper or lower hemisphere depending on the sign of b. Hence,
the topological invariant for 2D Wilson fermion can only take the
half-integer values.

1D solvable model and topological half-charge pumping
For a periodically driven quantum two-level system, if the energy
gap remains open, the final state evolves back to the initial one
during a cyclic adiabatic process, the accumulated geometric
phase is gauge invariant and experimentally measurable32.
Geometric phases are key to understanding numerous physical
effects, such as the electric polarization33,34 and anyonic fractional
statistics35. The topological invariants can be expressed in terms of
these geometric phases which characterize the parallel transport
of the ground state upon cyclic changes of system parameters
(time t or wave vector k in the crystal band)36. The time evolution
of the two level system also reveals the topological property of the
massless Wilson fermions. Here, we consider a solvable two-level
system,

H1DðtÞ ¼ _ω0

2
sinωtσx þ _ω0sin

2 ωt
2
σy ; (2)

which is periodic with a time T(= 2π/ω), H1D(t+ T)= H1D(t). Eq. (2)
is equivalent to the Hamiltonian (1) in 1D if ωt is replcaed by ka.
The time evolution of this system is governed by the Schrodinger
equation i�h ∂ΨðtÞ

∂t ¼ HðtÞΨðtÞ. The instantaneous energy eigenva-
lues are Eχ ¼ χ_ω0 sin ωt

2 with χ= ±1. The two bands cross at time
t= 0 or T. The model possesses the glide reflection symmetry

GðωtÞ ¼ 0 e�iωt

1 0

� �
such that GðωtÞH1DðtÞG�1ðωtÞ ¼ H1DðtÞ. The

symmetry generator has the relation G2ðωtÞ ¼ e�iωt , and its
eigenvalues are χe−iωt/2. Using the eigenstates of GðωtÞ as the
basis, and solving the time-dependent Schrodinger equation, it is
found that, in the adiabatic condition of α= 8ω0/ω→+∞ that
the system varies with time very slowly comparing with the band
width ℏω0, the state is always stuck to the eigenstate of GðωtÞ, i.e.,
the adiabatic theorem is still valid for this gapless system
protected by the glide reflection symmetry (See Section “One-
dimensional time-dependent model” in Supplementary Materials
for more details). Consequently, the system evolves back to the
initial state and the Berry phase π is gained after two periods of
time, Ψ(t= 2T)= eiπΨ(t= 0) as shown in Fig. 2a. At t= T,
Ψðt ¼ TÞ ¼ �iσze�iα2σxΨðt ¼ 0Þ. The phase α is attributed to the
dynamic phase of of the system. If the initial state is one
eigenstate of Gð0Þ, then at t= T it will evolve into another
eigenstate of Gð0Þ. For a large but finite α the transition probability
to the initial state at t= T is found to be 4

απ, which approaches zero
in the adiabatic condition. This reflects the non-Abelian topolo-
gical property of the 1D system37,38.
Furthermore, a striking feature of 1D Wilson fermions is a

realization of the transfer of one half of elementary charge e/2 in a
very slow and periodical modulation in time. The Thouless charge
pumping39,40 was first proposed for a gapped system, in which the
transferred charge is always an integer of elementary charge in an
adiabatic cyclic evolution, and was observed experimentally in
recent years41,42. A half-quantized pumping rate in a quantum
spin driven by two-harmonic incommensurate drives was
proposed recently43. Here the quantum anomaly of massless
Wilson fermions makes it possible to realize a half-charge transfer
in one periodic modulation in time. Let us consider a 1D tight-
binding Hamiltonian in a time dependent modulation as shown in
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Fig. 2b (upper panel),

HðtÞ ¼
X
n

ðvðtÞ þ ðv0 þ vðtÞÞ �1ð ÞnÞcyncnþ1 þ h:c:þ wðtÞ �1ð Þncyncn
� �

(3)

where v0 is real constant. The modulating hoping strength vðtÞ ¼
v0sin2 ωt

2 and potential wðtÞ ¼ w0 sinðωtÞ form a cyclic evolution in
the parameter space shown in Fig. 2b (lower panel) such that the
Hamiltonian is also periodic in time: H(t)= H(t+ T). By transform-
ing into momentum space, Eq. (3) becomes Hðk; tÞ ¼
w0 sinðωtÞσz þ v0 sinðkaÞσy þ 2v0ðsin2 ka

2 þ sin2 ωt
2 Þσx . In two

dimensional parameter space (k, t), it is equivalent to Eq. (1) in
2D up to a basis transformation. The energy evolution of the
system in the adiabatic condition is plotted in Fig. 2c and d for the
massless and massive cases. Only the two states around the zero
energy evolve in the period of 2T, and swap their energy signs at
t= T, and all other states evolve in the period of T as expected in
the adiabatic evolution for an isolated system.
The charge that flows through the system during one period is

given by ΔQ ¼ R T=2�T=2 dt
dPxðtÞ
dt where Px is the charge polarization

defined as the shift of the electron center-of-mass position away
from the lattice sites and is only well-defined modulo 1. The time
dependence of Px is evaluated by the many-body polarization
formula using all instantaneous occupied states at time t34. It can
be formulated in terms of the expectation value of PxðtÞ ¼
1
2π Im ln ΦðtÞh je2πix̂=N ΦðtÞj i with x̂ ¼Pnnc

y
ncn is the position

operator. Here we consider the Hamiltonian in Eq. (3) on a ring
with N sites. The time evolution of the energy spectrum in Eq. (3)
with a periodical boundary condition for two period 2T is plotted
in Fig. 2c. The band gap is closed at t*= 0. For t ≠ t*, the system is
fully gapped and the calculated polarization Px is presented in
Fig. 2e. The time evolution of the two-subbands system closest to

zero energy is governed by Eq. 2. Thus, ΦðtÞj i is the ground state
during the period 0 < t < T and the first excited state for the period
T < t < 2T, denoted by the blue lines in Fig. 2c. The total pumped
charge in a single period T is given by ΔQ ¼ � 1

2 sgnðw0Þ, which
equals the winding number around the band crossing point in the
(1+1)-dimensional parameter space. As the fermion doubling
problem has been circumvented, there is only a single gap closing
time t* in one period T, which guarantees the quantization of the
total pumped charge ΔQ as a half-integer instead of an integer in
a gapped system. This 2T periodicity of polarization evolution for
quantum anomalous semimetal is completely different from the
gapped cases that the energy gap remains open during a cyclic
change of t as shown in Fig. 2d. As illustrated in Fig. 2f, the
gapping of the quantum anomalous semimetal leads to two
distinct spectrums of polarization which are indicated by red
(trivial) and blue (nontrivial) circles and both exhibit a T
periodicity.

Generalized bulk-boundary correspondence
The bulk-boundary correspondence lies at the heart of the
topological phases. For example, in the quantum Hall effect the
Chern number in quantum Hall conductivity means the number of
the chiral edge states around the boundary44. The half-quantized
Hall conductivity in a parity anomalous semimetal here does not
mean the existence of one half of the edge state, but reveals the
existence of chiral edge current although the energy band gap is
closed. To this end, we evaluate the local density of states (LDOS)
at the position near the two edges and the middle position of a
strip of two-dimensional (2D) sample with a sufficient width to
avoid the finite size effect. Along the x-direction, we take the
periodic condition, and the wave vector kx is a good quantum
number. The corresponding tight-binding model for this strip
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Fig. 2 Topological half-charge pumping. a The two-period time evolution in the two-level system. b The sketch of a half-charge pumping
chain with vðtÞ ¼ v0sin2 ωt

2 and wðtÞ ¼ w0 sin 2πt
T and the cyclic evolution in v-w space. The black and red circles mean for the topologically

nontrivial case vðtÞ ¼ � v0
2 þ v0sin2 ωt

2 and trivial case vðtÞ ¼ mþ v0sin2 ωt
2 with m > 0. c The energy dispersion for the gapless one-dimensional

chain in Eq. (3) in two time period T. d The energy dispersion for the gapped one-dimensional chain in Eq. (3) with a nonzero mass in
vðtÞ ¼ mþ v0sin2 ωt

2 in two time period T. e Electric polarization as a function of t in two time period T for the gapless one dimensional chain.
f Electric polarization as a function of t in one time period T for the gapped cases of vðtÞ ¼ mþ v0sin2 ωt

2 and vðtÞ ¼ � v0
2 þ v0sin2 ωt

2 .
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structure can be found from the Eq. (1) as

H ¼P
nkx

cykx ;n
_v
a sin kxaσx � 2b

a2 ð2� cos kxaÞσz
	 


ckx ;n

þ P
nkx

cykx ;n�1
_v
2ai σy � b

a2 σz
	 


ckx ;n þ h:c:

 !
:

(4)

Then, the LDOS can be evaluated as a function of kx and the
position y, ρ(kx, y)45 as plotted in Fig. 3a, b and c, which positions
are labelled schematically in Fig. 3d. At the middle of the sample,
the LDOS ρ(kx, y= Ly/2) is even about kx, which indicates that
there is no pure current in the bulk without an external field. At
the two points close to the edges y= 1 and Ly (Ly is the width of
the stripe), the relative LDOS ρr(kx, 1) and ρr(kx, Ly) are plotted in
Fig. 3b and c, in which the contribution of the bulk part has been
deducted. We find that the nonzero relative LDOS emerges and
maximizes at E= ± ℏvkx at the two edge positions y= 1 and Ly.
This biased distribution in LDOS indicates that a chiral current lays
at the edge of the sample. This current can be illuminated directly
by calculating the many-body local current density vxðyÞh i of all
occupied states along the sample, where vxðyÞ ¼ 1

�h
∂Hðkx ;yÞ

∂kx
. Current

density distribution at two different chemical potentials are
presented in Fig. 3e. Consequently a chiral current may circulate
without well-defined edge states along the boundary in the
absence of external field. This forms the bulk-edge correspon-
dence in a quantum anomalous semimetal.
Formation of the bound state around the domain wall also

provides an alternative way to demonstrate the bulk-boundary
correspondence. We first consider a 1D static domain wall that
the parameter b has a kink along the x direction., i.e.

bðxÞ ¼ b0sgnðxÞ. In addition to the extended bulk states, the
exact solution demonstrate that there always exists a bound

state of zero energy localized around the domain wall ψðxÞ ¼
χy

ffiffiffiffiffiffiffiffiffiffi
j _v
2b0

j
q

exp �j_vx=b0jð Þ with χy the eigen spinor of σy,

σyχy ¼ sgnðb0Þχy . The result is analogous to the early theoretical
prediction of domain wall fermions given by Jackiw and Rebbi in
the context of relativistic field theory46. However in the present
situation, the bound state trapped around the domain wall
between topologically distinct regions will coexist with the
extended states in the bulk. The solution of the bound state can
be generalized to two and three dimensions. In the 2D domain
wall in Fig. 3f, the momentum ℏky is still conserved. One can
obtain a solution of the chiral bound states along the domain
wall with a linear dispersion E ¼ sgnðb0Þ_vky , which may carry
one quantized conductance of e2/h. These states are located
near the domain wall, and decay exponentially away from the
domain wall in space. Furthermore, in the three-dimensional
(3D) case there exists a gapless Dirac cone of fermions with
linear dispersion located at the interface (See Section “Solutions
of the domain-wall bound state” in Supplementary Materials for
more details). All these bound states coexist with the bulk states
as the systems have no energy gap. The existence of the bound
state is closely related to the fact that the difference of the
topological invariants between the two sides of the domain wall
is always equal to +1 or −1, although the topological invariants
are one half. It can be viewed as an extension of the index
theorem for gapped systems16 to the gapless systems with
fractional indices.
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Fig. 3 The local density of states and edge current distribution in the absence of external field. a The local density of states at the middle
of the sample. b The relative local density of states at the top edge (pink dot) ρr(kx, y= Ly). c The relative local density of states at the bottom
edge (blue dot) ρr(kx, y= 1). The relative local density of states means that the contribution from bulk is already deducted,
ρr(kx, 1)= ρ(kx, 1)− ρ(kx, Ly/2) and ρr(kx, Ly)= ρ(kx, Ly)− ρ(kx, Ly/2). d A schematic of a stripe sample with the labelled positions for (a, b, and
c). e The current density distribution for two different Fermi levels slight deviating from the half filling. f The Hall and longitudinal currents
along the domain wall in two dimensions. Here Ly= 200, v= 1 and b0= 0.5.
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Quantum anomaly in a domain wall
Quantum anomaly provides a deep insight into the peculiar
transport properties of the topological phase. To illustrate the
quantum anomaly of Wilson fermions we continue to investigate
the 2D domain wall in Fig. 3f that the parameter b has a kink along
the x direction and is constant along y direction. The system is
coupled to a weak electromagnetic potential Aμ via the minimal
substitution rule (dictated by the gauge invariance). The Chern-
Simons field theory provides a natural theoretical framework to
describe the properties of the topological phases47–49. The Chern-
Simons term arises in the effective action of the gauge field Aμ
from the fermionic fluctuations in Wilson fermion as a result of the
violation of parity symmetry. The effective action far from the
location of the wall (lies along the y direction) is SCSeff ¼
1
4π

R
d3xncðbðx1ÞÞϵμνλAμ∂νAλ with space-time coordinate xμ= (t, x, y)

and ϵμνλ Levi-Civita symbol that the Greek indices (μ, ν, etc.) run
over all the space-time indices (0, 1, 2). For (2+1)D translational
invariant system, the coupling constant nc in Chern-Simons action
is equal to the topological invariant ν2D. By taking the functional
derivatives of SCSeff with respect to Aμ, the current can be obtained as
hJμCSi ¼ 1

2π ncðbðx1ÞÞϵμνλ∂νAλ � 1
4π δðx1Þϵ1μλAλ. However, this action

is not invariant under the gauge transformation Aμ→ Aμ+ ∂μΦ(x)
at the domain wall, because the domain-wall bound states are
chiral which also has consistent chiral anomaly50,51. The boundary
action associated with the boundary excitations has to be included
such that the total effective action is gauge invariant. Now we
consider the electric field parallel to the domain wall as E1= 0, and
E2= E. Then the Hall current of the anomalous Hall state J1 ¼
� e2

h ncðbðx1ÞÞE flows towards the domain wall and the longitudinal

current along the domain wall is J2 ¼ e2
h E. Here we do not take into

account the longitudinal minimal conductivity from the 2D
massless fermions. The conductance along the domain wall is
quantized. Here the bulk Hall coefficient nc ¼ � 1

2 sgnðbðx1ÞÞ is
half-quantized and the Hall currents from both sides flow toward
or outward the domain wall. The quantized charge current along
the wall can be understood as a consequence of the convergence
of two anomalous Hall currents because of the conservation of the
total charge current. The boundary states suffer from the chiral
anomaly as ∂μhJμi ¼ � 1

2π ϵ
ρλ∂ρAλ where the Greek indices only run

over the space-time indices (0, 2), i.e. the charge conservation is
broken at the domain wall since the current can leak into the bulk
through the bulk quantum Hall effect. Thus the half-quantization of
the bulk Hall conductance at the two sides of the domain wall is
manifested as the quantization of the chiral anomaly coefficient
along the domain wall, which is consistent with the solution of the
chiral states in the previous section. This effect also reveals the
bulk-edge correspondence in this topological phase.

DISCUSSION
The quantum anomalous semimetals can be realized in two
alternative ways, one is the accidental band crossing and another
is the band crossing protected by additional crystalline symmetries.
At the critical transition point between the conventional and
topological insulators, the accidental band crossing may give rise
to the Wilson fermions by fine tuning the band gap, for example, the
HgTe quantum well grown at a critical thickness where the band gap
vanishes52 and the strain-controlled narrow gapped ZrTe553. The
topological phases may be stable against sufficient weak but short
range electronic interactions and random mass at least for d= 2 and
3 based on the scaling and renormalization group analysis.
Here we take a quasi-1D system as an example to discuss

the stability of the band crossing and the evasion of fermion
doubling problem by additional crystalline symmetry. Generally, the

symmetry-enforced band crossings can be movable at some high
symmetry line or pinned at a particular high-symmetry point13,54.
In 1D, the movable band crossing can be protected by the
nonsymmorphic crystal symmetry which is a combination of a
point-group symmetry with a translation of a fractional Bravais
lattice. For a biparticle system with glide mirror symmetry My ,
the square of My is a lattice translation of one unit cell. The
bipartite lattice further possesses the sublattice symmetry when
only the nearest neighbor hopping are included. Consequently,
the energy eigenstates are actually the instantaneous eigenstates
of My . Upon shifting the momentum by one reciprocal lattice
vector, the eigenvalues of My remains unchanged, but the two
energy branches must cross odd times in the Brillouin zone. One
needs to go through the Brillouin zone twice to get back to the
same eigenvalue. Therefore a global topological invariant w1D can
be introduced to characterizes the symmetry-enforced band
crossing which measures the winding of the eigenvalue of My as
going through the Brillouin zone. Section "Symmetry enforced
band crossing” in Supplementary Materials shows additional
details for the above discussion. By sacrificing the hermiticity,
the single Dirac fermion can also be realized on lattice which is
robust against the disorder55. The quantum anomalous semimetal
in 2D can be realized in semi-magnetic topological slab56.
Consider a time reversal invariant topological insulator slab, if
the surface states are gapped by magnetic doping or proximity
effect at one surface while the surface states at the opposite
surface remain gapless, an unpaired gapless Dirac cone can be
realized in this quasi-2D system. Finding a potential candidate in
3D remains a major challenge and we leave it for future research.
A promising alternative way to realize the topological phase is in
designed artificial systems, such as cold atoms, photonic/acoustic
metamaterials, and circuit networks, which provide good plat-
forms to simulate various topological phases in solid state physics.

METHODS
Dirac matrices in one, two, and three spatial dimensions
In one dimension, the matrices α1 and β can be any two of the
Pauli matrices, say α1= σ1 and β= σ3. In two dimensions, α1= σ1,
α2= σ2 and β= σ3. In three dimensions, the four Dirac matrices
are αi= τ1σi (i= 1, 2, 3) and β= τ3σ0. In four dimensions, the fourth
alpha matrix is α4= τ2σ0. Correspondingly, the five Dirac gamma
matrices γ0= β= τ3σ0, γi= βαi= iτ2σi and γ5= iγ0γ1γ2γ3= τ1σ0.
Here τi and σi (i= 1, 2, 3) are the Pauli matrices. τ0 and σ0 are the
2 × 2 identity matrices.

The classification of the relative homotopy group
For the manifold pair (M, A), where A is the sub-manifold of M,
there is an exact sequence

¼ ! πkðAÞ!i� πkðMÞ!j� πkðM; AÞ!∂� πk�1ðAÞ!i� πk�1ðMÞ!j� πk�1ðM; AÞ ! ¼

(5)

The holomorphic mappings i*, j* and ∂* in the sequence satisfy
that the image of each mapping equals the kernel of the next
mapping. In the maintext, the manifold pair is ðGn;2nðCÞ;UðnÞÞ for
even spatial dimension and ðUðnÞ;Ga;nðCÞÞ for odd dimension.
Notice that, for n ≥ (d+ 1)/2 (d is the spatial dimension),

πj ½UðnÞ� ¼
0; j 2 even;

Z; j 2 odd;

�
(6)

πj ½Gn;2nðCÞ� ¼ 0; j 2 odd;

Z; j 2 even:

�
(7)

We have the short exact sequence

0 ! Z ! π2½Gn;2nðCÞ;UðnÞ� ! Z ! 0; (8)
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and

0 ! Z ! π1;3½UðnÞ;Ga;nðCÞ� ! Z ! 0: (9)

According to the property of the short exact sequence29, one
yields π2½Gn;2nðCÞ;UðnÞ� ’ Z�Z, and π1;3½UðnÞ;Ga;nðCÞ� ’
Z�Z.

Evaluation of topological invariants
Based on the analysis of relative homotopy group, we come to
present the calculation of the topological invariants for the
gapless Wilson fermions.

Topological invariants for odd dimensions. For odd spatial
dimensions, we restrict our discussion in systems with the
sublattice symmetry, which means that we can always find a
unitary matrix Γ such that ΓHΓ−1=− H. Then the Q−matrix can
be brought into an off-diagonal form

QðkÞ ¼ 0 qðkÞ
qyðkÞ 0

� �
: (10)

After removing the degenerate point, we can use the
spectral flattening technique to evaluate the winding number.
In one and three dimensions, the winding numbers are given
by15,57

w1D ¼ i
Z

dk
2π

Tr½q�1ðkÞ∂kqðkÞ� (11)

and

w3D ¼
Z

d3k
24π2

ϵαβγReTr½q�1∂αqq
�1∂βqq

�1∂γq�; (12)

respectively, where ϵαβγ is the Levi-Civita symbol with α, β, γ= kx,
ky, kz, Re denotes the real part, and Tr denotes the trace. In order to
evaluate the winding number, we parameterize the off-diagonal
matrix q(k) as qðkÞ ¼Pne

iϑnðkÞjuRn;kihuLn;kj with juR;Ln;ki the n-th right

and left Bloch eigenstates satisfying qðkÞjuRn;ki ¼ eiϑnðkÞjuRn;ki,
qyðkÞjuLn;ki ¼ e�iϑnðkÞjuLn;ki and huLn;kjuRm;ki ¼ δn;m. By performing
the integral, the 1D winding number can be converted to the phase
difference of two end points,

w1D ¼ i
Z

dk
2π

∂kTr½ln qðkÞ� ¼ i
2π

ln detðqþÞ � ln detðq�Þ½ � þ N:

(13)

where q±= q(k0 ± δ) with δ is an infinitesimally positive number
and k0 as the band crossing point, N is an integer which is
related to the homotopy group π1[U(m)]= Z classifying the
maps from the Brillouin zone to q(k). Near the two end points,
the chiral symmetry is restored such that the q± matrices are
elements of U(m) and satisfy the hermitian condition
ðq± Þy ¼ q± . The eigenvalues of a hermitian and unitary matrix
can only take the value of ±1. As a consequence, the winding
number is reduced to the difference of the argument angles of
the two end points,

w1D ¼ 1
2

X
n;withϑþn ¼π

1�
X

n;withϑ�n ¼π

1

0
@

1
Aþ N: (14)

Thus the first term is a half of integer which are contributed by
the two end points. Similarly, the 3D winding number reads

w3D ¼
Z

d3k
8π2

ϵαβγRe
X
n;n0

∂γ δnn0ϑn0 ðkÞF n0n0
αβ ðkÞ þ i sin ϑn;n0 ðkÞAn0n

α ðkÞAnn0
β ðkÞ

h i

(15)

with ϑn;n0 ¼ ϑn � ϑn0 and the Berry connection Ann0
α ðkÞ ¼

ihuRn;kj∂αuLn0;ki and the Berry curvature F nn0
αβ ðkÞ ¼ ∂αAnn0

β ðkÞ�
∂βAnn0

α ðkÞ. This expression is a total derivative which only has a
contribution on the boundaries. The degenerate point acts as the
monopole of the Berry curvature in momentum space, thus the first
term will yield a nontrivial contribution to w3D. Since the chiral
symmetry is restored around the degenerate point, the off-diagonal
matrix q(k) is a member of U(2m) which satisfies the hermitian
condition q†(k)= q(k). The eigenvalues of q(k) can be brought into
two sectors with+1 and−1 values which have the argument angle
as 0 and π respectively. We always have sinðϑþ�Þ ¼ 0 at the
boundary. Thus, the second term in the bracket of Eq. (15) vanishes
and we only need to consider the first term. Only the bands with
the−1 eigenvalues will contribution. By introducing the monopole
charge associated with the crossing point, νCh ¼Pn;withϑn¼π

RR
∂BZ

dS
2π n̂ � F nn, the winding number can be expressed as

w3D ¼ 1
2
νCh þ N: (16)

For instance, for the massless Wilson fermions, the unitary
matrix Γ= σ2 in 1D and Γ= γ1γ2γ3 in 3D. Consequently, both
the 1D and 3D winding numbers are given by w1D=3D ¼
� 1

2 sgnðbÞ.

Topological invariants for even dimensions. In even spatial
dimensions, the Chern number can be expressed in terms of the
non-abelian Berry gauge field in momentum space. In order to
figure out how the boundary of Brillouin zone modifies the
topological invariants we express the first Chern number in 2D in
the total derivative form as22,57,

ν2D ¼
Z

d2k
2π

ϵij∂iTr½Aj �: (17)

The whole Brillouin zone Td\{w} can be divided into two
patches, the inner (i) and outer (o) region, respectively, where the
wave function uin

�� 

and uoutj i can be defined smoothly. Along the

shared boundary (∂B), the wave functions are connected by
the gauge transformation uin

�� 
 ¼ g uoutj i which yields Ain
i ¼

g�1Aout
i g� ig�1∂ig where g is a n × n unitary matrix. By using

the Stokes’ theorem, the integral of the Berry curvature over Td\{w}
can be converted into the integrals over the boundaries (∂B and
∂[T2\{w}]),

ν2D ¼ i
2π

Z
∂B
dkn̂iϵ

ijTrðg�1∂igÞ þ P1; (18)

where n̂ is the outward-pointing unit normal vector on the
boundary, and P1 ¼ 1

2π

R
∂½T2nfwg�dkn̂iϵ

ijtr½Aj �. The first term in
Eq. (18) corresponds to the winding number along the boundary
∂B which is an integer. Consider the Hamiltonian H(k) restores
the parity symmetry near the degenerate point, i.e.
PHðkÞP�1 ¼ HðM̂kÞ, where M̂ is an operator in momentum
space transforming k ! M̂k ¼ ðkx ;�kyÞ. Due to the parity
symmetry (mirror symmetry in even spatial dimensions), the
eigenstates of H(k) at k and M̂k on the boundary ∂[T2\{w}] must
be related by a gauge transformation: P uaðkÞj i ¼P

bUabðkÞ ubðM̂kÞ�� 

where Uab(k) are the matrix elements of a

unitary transformation acting on the space of the occupied
bands. Accordingly, the Berry connection is transformed to
AiðkÞ ¼ �iU�ðkÞ∂iUT ðkÞ þPjJijU

�ðkÞAjðM̂kÞUT ðkÞ, where * and
T represent the complex conjugate and transpose, respectively
and Jij ¼ ∂ðM̂kÞj=∂ki . The determinant of the Jacobian matrix Jij
equals−1. It follows that 2P1 ¼ i

2π

R
∂½T2nfwg�dkn̂iϵ

ijTrðUy∂iUÞ is an
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integer. Thus the Chern number is

ν2D ¼ N1 þ 1
2
N2 (19)

with N1 and N2 being integers.
Similarly, we can express the second Chern number in 4D ν4D ¼R
d4k
32π2 ϵ

ijklTr½F ijF kl� as the total derivative form22,57

ν4D ¼
Z

d4k
16π2

ϵijkl∂iTr F jk � 1
3
½Aj;Ak �

� �
Al

� �
; (20)

where the matrix elements of non-Abelian Berry connection and
Berry curvature are defined as Aab

i ðkÞ ¼ ihuaðkÞj∂iubðkÞi and
F ab

ij ðkÞ ¼ ∂iAab
j ðkÞ � ∂jAab

i þ i½Ai ;Aj �ab, respectively. Following
the similar procedure in 2D, Eq. (20) can be converted into
integrals over the boundaries (∂B and ∂[T2\{w}]),

ν4D ¼ i
24π2

Z
∂B
d3kn̂iϵ

ijklTr½ðg�1∂jgÞðg�1∂kgÞðg�1∂lgÞ� þ P3 (21)

where P3 ¼ 1
16π2

R
∂½T4nfwg�d

3kn̂iϵijklTr F jk � 1
3 ½Aj;Ak �

	 
Al
� �

is the
Chern-Simons 3-form integral over the boundary surrounding
the degenerate point. The parity symmetry links two states on the
boundary ∂[T2\{w}], P uaðkÞj i ¼PbUabðkÞ ubðM̂kÞ�� 


, where U(k) is
a unitary matrix acting on the space of the occupied bands,
yielding the relation

2P3 ¼ i
24π2

Z
∂½T4nfwg�

d3kn̂iϵ
ijkltr Uy∂jU

	 

Uy∂kU
	 


Uy∂lU
	 
� �

: (22)

2P3 is expressed as the winding number of unitary matrix U which
has an integer value. We then can prove that

ν4D ¼ N1 þ 1
2
N2 (23)

in the presence of parity symmetry near the crossing point. For the
massless Wilson fermions, both the first Chern number in 2D and
the second Chern number in 4D can be evaluated as a half-integer
� 1

2 sgnðbÞ.

DATA AVAILABILITY
All data needed to evaluate the conclusions in the paper are present in the paper
and/or the Supplementary Materials. Additional data related to this paper may be
requested from the authors.

Received: 11 April 2022; Accepted: 30 August 2022;

REFERENCES
1. Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determi-

nation of the fine-structure constant based on quantized Hall resistance. Phys.
Rev. Lett. 45, 494–497 (1980).

2. Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).
3. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82,

3045–3067 (2010).
4. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod.

Phys. 83, 1057–1110 (2011).
5. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-

dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).
6. Shen, S. Q. Topological insulators. Springer Series of Solid State Science, Vol. 174

(Springer, Heidelberg, 2012).
7. Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev.

Phys. 1, 126–143 (2019).
8. Murakami, S. Phase transition between the quantum spin Hall and insulator

phases in 3D: emergence of a topological gapless phase. New J. Phys. 9, 356
(2007).

9. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and
Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys.
Rev. B 83, 205101 (2011).

10. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).
11. Burkov, A. A., Hook, M. D. & Balents, L. Topological nodal semimetals. Phys. Rev. B

84, 235126 (2011).
12. Fang, C., Chen, Y., Kee, H.-Y. & Fu, L. Topological nodal line semimetals with and

without spin-orbital coupling. Phys. Rev. B 92, 081201(R) (2015).
13. Bzdušek, T., Wu, Q. S., Rüegg, A., Sigrist, M. & Soluyanov, A. A. Nodal-chain metals.

Nature 538, 75–78 (2016).
14. Yang, B.-J. & Nagaosa, N. Classification of stable three-dimensional Dirac semi-

metals with nontrivial topology. Nat. Commun. 5, 4898 (2014).
15. Schnyder, A. P., Ryu, S., Furusaki, A. & Ludwig, A. W. W. Classification of topolo-

gical insulators and superconductors in three spatial dimensions. Phys. Rev. B 78,
195125 (2008).

16. Chiu, C. K., Teo, J. C. Y., Schnyder, A. P. & Ryu, S. Classification of topological
quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).

17. Nielsen, H. B. & Ninomiya, M. A no-go theorem for regularizing chiral fermions.
Phys. Lett. B 105, 219–223 (1981).

18. Rothe, H. J. Lattice gauge theories: an introduction. 3rd ed. (World Scientific,
Singapore, 2005).

19. Wang, H.-W., Fu, B., Zou, J.-Y., Hu, Z.-A. & Shen, S.-Q. Fractional electromagnetic
response in three-dimensional chiral anomalous semimetal. Phys. Rev. B 106,
045111 (2022).

20. Zou, J.-Y., Fu, B., Wang, H.-W., Hu, Z.-A. & Shen, S.-Q. Half-quantized Hall effect and
power law decay of edge current distribution. Phys. Rev. B 105, L201106 (2022).

21. Wilson, K. G. New phenomena in subnuclear physics. ed. A. Zichichi (New York,
Plenum, 1975).

22. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal
invariant insulators. Phys. Rev. B 78, 195424 (2008).

23. Deser, S., Jackiw, R. & Templeton, S. Topologically massive gauge theories. Ann.
Phys. 281, 409–449 (2000).

24. Karsten, L. & Smit, J. Lattice Fermions: Species doubling, chiral invariance and the
triangle anomaly. Nucl. Phys. B 183, 103–140 (1981).

25. Adler, S. L. Axial-vector vertex in spinor electrodynamics. Phys. Rev. 177,
2426–2438 (1969).

26. Bell, J. S. & Jackiw, R. A PCAC puzzle: π0→ γγ in the σ-model. Il Nuovo Cimento A
60, 47–61 (1969).

27. Niemi, A. J. & Semenoff, G. W. Axial-anomaly-induced fermion fractionization and
effective gauge-theory actions in odd-dimensional space-times. Phys. Rev. Lett.
51, 2077–2080 (1983).

28. Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-
matter realization of the "parity anomaly". Phys. Rev. Lett. 61, 2015–2018 (1988).

29. Hatcher, A. Algebraic topology (Cambridge University Press, Cambridge, 2002).
30. Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys.

51, 591–648 (1979).
31. Altland, A. & Zirnbauer, M. R. Nonstandard symmetry classes in mesoscopic

normal-superconducting hybrid structures. Phys. Rev. B 55, 1142–1161 (1997).
32. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc.

A Math. Phys. Eng. Sci. 392, 45–57 (1984).
33. Resta, R. Theory of the electric polarization in crystals. Ferroelectrics 136, 51–55 (1992).
34. King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys.

Rev. B 47, 1651–1654 (1993).
35. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-Abelian anyons

and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).
36. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev.

Mod. Phys. 82, 1959–2007 (2010).
37. Wilczek, F. & Zee, A. Appearance of gauge structure in simple dynamical systems.

Phys. Rev. Lett. 52, 2111–2114 (1984).
38. Zhang, S. L. & Zhou, Q. Two-leg Su-Schrieffer-Heeger chain with glide reflection

symmetry. Phys. Rev. A 95, 061601(R), (2017).
39. Thouless, D. J. Quantum of particle transport. Phys. Rev. B 27, 6083–6087 (1983).
40. Niu, Q. Towards a quantum pump of electric charges. Phys. Rev. Lett. 64,

1812–1815 (1990).
41. Nakajima, S. et al. Topological Thouless pumping of ultracold fermions. Nat. Phys.

12, 296–300 (2016).
42. Lohse, M. et al. A Thouless quantum pump with ultracold bosonic atoms in an

optical superlattice. Nat. Phys. 12, 350–354 (2016).
43. Crowley, P. J. D., Martin, I. & Chandran, A. Half-integer quantized topological response

in quasiperiodically driven quantum system. Phys. Rev. Lett. 125, 100601 (2020).
44. Hatsugai, Y. Chern number and edge states in the integer quantum Hall effect.

Phys. Rev. Lett. 71, 3697–3700 (1993).
45. Chu, R. L., Shi, J. R. & Shen, S. Q. Surface edge state and half-quantized Hall

conductance in topological insulators. Phys. Rev. B 84, 085312 (2011).
46. Jackiw, R. & Rebbi, C. Solitons with fermion number 1/2. Phys. Rev. D 13,

3398–3409 (1976).
47. Fradkin, E. Field theories of condensed matter physics (Cambridge University

Press, 2013).

B. Fu et al.

8

npj Quantum Materials (2022)    94 Published in partnership with Nanjing University



48. Böttcher, J., Tutschku, C., Molenkamp, L. W. & Hankiewicz, E. M. Survival of the
quantum anomalous Hall effect in orbital magnetic fields as a consequence of
the parity anomaly. Phys. Rev. Lett. 123, 226602 (2019).

49. Burkov, A. A. Dirac fermion duality and the parity anomaly. Phys. Rev. B 99, 035124
(2019).

50. Callan, C. G.Jr. & Harvey, J. V. Anomalies and fermion zero modes on strings and
domain walls. Nucl. Phys. B 250, 427–436 (1985).

51. Wen, X. G. Gapless boundary excitations in the quantum Hall states and in the
chiral spin states. Phys. Rev. B 43, 11025–11036 (1991).

52. Büttner, B. et al. Single valley Dirac fermions in zero-gap HgTe quantum wells.
Nat. Phys. 7, 418–422 (2011).

53. Mutch, J. et al. Evidence for a straintuned topological phase transition in ZrTe5.
Sci. Adv. 5, eaav9771 (2019).

54. Elcoro, L. et al. Magnetic topological quantum chemistry. Nat. Commun. 12, 5965
(2021).

55. Chernodub, M. N. The Nielsen-Ninomiya theorem, PT-invariant non-Hermiticity
and single 8-shaped Dirac cone. J. Phys. A 50, 385001 (2017).

56. Mogi, M. et al. Experimental signature of parity anomaly in semi-magnetic
topological insulator. Nat. Phys. 18, 390–394 (2022).

57. Ryu, S., Schnyder, A. P., Furusaki, A. & Ludwig, A. W. W. Topological insulators and
superconductors: tenfold way and dimensional hierarchy. New J. Phys. 12, 065010
(2010).

ACKNOWLEDGEMENTS
This work was supported by the Research Grants Council, University Grants Committee,
Hong Kong under Grant Nos. C7012-21G and 17301220, and the National Key R&D
Program of China under Grant No. 2019YFA0308603.

AUTHOR CONTRIBUTIONS
All authors contributed to performing the calculations and the analysis of the results.
S.Q.S. was responsible for the supervision of the project. S.Q.S. and B.F. wrote the
manuscript with suggestions from all authors.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41535-022-00503-0.

Correspondence and requests for materials should be addressed to Shun-Qing Shen.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

B. Fu et al.

9

Published in partnership with Nanjing University npj Quantum Materials (2022)    94 

https://doi.org/10.1038/s41535-022-00503-0
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Quantum anomalous semimetals
	Introduction
	Results
	Model and Wilson fermions
	Classification of relative homotopy group
	Spin texture interpretation of the half quantized topological invariants
	1D solvable model and topological half-charge pumping
	Generalized bulk-boundary correspondence
	Quantum anomaly in a domain wall

	Discussion
	Methods
	Dirac matrices in one, two, and three spatial dimensions
	The classification of the relative homotopy group
	Evaluation of topological invariants
	Topological invariants for odd dimensions
	Topological invariants for even dimensions


	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




