Table 1 The irreducible representations allowed by symmetry and their corresponding basis vectors and moment components.

From: Spin structure and dynamics of the topological semimetal Co3Sn2-xInxS2

No.

Irrep

Basis Vectors

M (x,y,z)

(x,y,z) = (1/2,1/2,1/2)

(1/2,0,1/2)

(0,1/2,1/2)

1

\({{\Gamma }}_1^ +\)

\(\psi _1\)

\({{{\mathbf{M}}}} = \left( {\begin{array}{*{20}{c}} a \\ a \\ 0 \end{array}} \right)\)

\(\left( {\begin{array}{*{20}{c}} { - a} \\ 0 \\ 0 \end{array}} \right)\)

\(\left( {\begin{array}{*{20}{c}} 0 \\ { - a} \\ 0 \end{array}} \right)\)

2

\({{\Gamma }}_2^ +\)

\(\psi _2\)

\(\left( { - \begin{array}{*{20}{c}} a \\ a \\ 0 \end{array}} \right)\)

\(\left( {\begin{array}{*{20}{c}} a \\ {2a} \\ 0 \end{array}} \right)\)

\(\left( {\begin{array}{*{20}{c}} { - 2a} \\ { - a} \\ 0 \end{array}} \right)\)

3

\(\psi _3\)

\(\left( {\begin{array}{*{20}{c}} 0 \\ 0 \\ 1 \end{array}} \right)\)

\(\left( {\begin{array}{*{20}{c}} 0 \\ 0 \\ 1 \end{array}} \right)\)

\(\left( {\begin{array}{*{20}{c}} 0 \\ 0 \\ 1 \end{array}} \right)\)

4

\({{\Gamma }}_3^ +\)

\(\psi _4\)

\(\left( {\begin{array}{*{20}{c}} 1 \\ 0 \\ 0 \end{array}} \right)\)

\(\left( {\begin{array}{*{20}{c}} 0 \\ {b^ \ast } \\ 0 \end{array}} \right)\)

\(\left( {\begin{array}{*{20}{c}} { - b} \\ { - b} \\ 0 \end{array}} \right)\)

5

\(\psi _5\)

\(\left( {\begin{array}{*{20}{c}} 1 \\ 0 \\ 0 \end{array}} \right)\)

\(\left( {\begin{array}{*{20}{c}} 0 \\ b \\ 0 \end{array}} \right)\)

\(\left( {\begin{array}{*{20}{c}} { - b^ \ast } \\ { - b^ \ast } \\ 0 \end{array}} \right)\)

6

\(\psi _6\)

\(\left( {\begin{array}{*{20}{c}} 0 \\ 1 \\ 0 \end{array}} \right)\)

\(\left( {\begin{array}{*{20}{c}} { - b^ \ast } \\ { - b^ \ast } \\ 0 \end{array}} \right)\)

\(\left( {\begin{array}{*{20}{c}} b \\ 0 \\ 0 \end{array}} \right)\)

7

\(\psi _7\)

\(\left( {\begin{array}{*{20}{c}} 0 \\ 1 \\ 0 \end{array}} \right)\)

\(\left( {\begin{array}{*{20}{c}} { - b} \\ { - b} \\ 0 \end{array}} \right)\)

\(\left( {\begin{array}{*{20}{c}} {b^ \ast } \\ 0 \\ 0 \end{array}} \right)\)

8

\(\psi _8\)

\(\left( {\begin{array}{*{20}{c}} 0 \\ 0 \\ 1 \end{array}} \right)\)

\(\left( {\begin{array}{*{20}{c}} 0 \\ 0 \\ {b^ \ast } \end{array}} \right)\)

\(\left( {\begin{array}{*{20}{c}} 0 \\ 0 \\ b \end{array}} \right)\)

9

\(\psi _9\)

\(\left( {\begin{array}{*{20}{c}} 0 \\ 0 \\ { - 1} \end{array}} \right)\)

\(\left( {\begin{array}{*{20}{c}} 0 \\ 0 \\ { - b} \end{array}} \right)\)

\(\left( {\begin{array}{*{20}{c}} 0 \\ 0 \\ { - b^ \ast } \end{array}} \right)\)