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Origin and stability of generalized Wigner
crystallinity in triangular moiré systems

Check for updates

Aman Kumar1,2 , Cyprian Lewandowski1,2 & Hitesh J. Changlani1,2

GeneralizedWigner crystals (GWC) on triangular moiré superlattices, formed from stacking two layers
of transition metal chalcogenides, have been observed at multiple fractional fillings [Nature 587,
214–218 (2020), Nat. Phys. 17, 715–719 (2021), Nature 597, 650–654 (2021)]. Motivated by these
experiments, tied with the need for accurate microscopic descriptions of these materials, we explore
the origins of GWC at n = 1/3 and 2/3 filling. We demonstrate the general limitations of theoretical
descriptions relying on finite-range, versus long-range interactions, however, we clarify why some
properties are captured by an effective nearest-neighbormodel.We study both classical andquantum
effects at zero and finite temperatures, discussing the role of charge frustration, identifying a “pinball”
phase, a partially quantum melted GWC, with no classical analog. Our work addresses several
experimental observations and makes predictions for how many of the theoretical findings can be
potentially realized in future experiments.

The study of moiré systems has opened up multiple new avenues of
research in condensed matter physics1–3. Previously conjectured phases of
electronic matter that were attributed to just the imagination of creative
theorists are now being realized and observed in these platforms, e.g., see
refs. 4–9. The unique properties of moiré systems that allow for these
proposed phases to be readily realized rely on the significant reduction in
overall energy scales enabled by the moiré superlattice (while keeping
strong correlations intact) combined with the tunability of carrier den-
sities by the electrostatic gating characteristic of 2D materials. An
excellent example of such theoretical and experimental synergy is shown
by recent works that demonstrate how the triangular lattice Hubbard
model qualitatively explains the properties of moiré transition metal
dichalcogenide systems (TMD)6,7,10–16 that display itinerant ferro-
magnetism (above half filling)17–19 and antiferromagnetism from kinetic
frustration (below half filling)20,21, with observable effects at “inter-
mediate” temperatures19,22,23.

While the Hubbard model description of the moiré TMD sys-
tems has undoubtedly been very successful14,24, a crucial aspect
missing is the role the long-range nature of the Coulomb interaction
can play controlling the electronic phase diagram (e.g. see the dis-
cussion on the importance of non-local/finite range interaction terms
in Hubbard model in ref. 25–27). In this work, we focus on the role of
long-range Coulomb interaction in these systems and analyze the
consequences of projecting it to a finite-range extended Hubbard
model. Specifically, we systematically explore, at zero and finite
temperature, both finite-range (FR) and long-range (LR) Hubbard

models given by,
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where i, j refer to the sites of a (moiré) triangular lattice, σ is the spin index,
and tij,U andVij refer to the hopping, on-site Hubbard interaction strength
and density-density interactions respectively, see Fig. 1a. cyi;σ and ci,σ are
fermion creation and annihilation operators respectively and ni;σ � cyi;σci;σ
andni≡ni,↑+ni,↓ arenumber operators.We focus specifically on thefillings
(n) of 1/3 and 2/3 to make the physics of the LR Coulomb interaction
truncation the center of our discussion, leaving an exhaustive study of other
fillings for future work.

The experimental platform that realizes the relevant physics for this
manuscript is themoiré heterobilayerWSe2/WS2 system

6,7,10–12, which hosts
generalized Wigner crystals (GWC) at fillings commensurate with the
moiré superlattice enabledby theWSe2,WS2 latticemismatch14,28. Interest in
GWCs has been fueled by recent experiments that used optical probes6 and
scanning tunneling microscopy (STM)7 to confirm their presence in moiré
TMDs. In the STM work in particular, a state consistent with an expectedffiffiffi
3

p
×

ffiffiffi
3

p
triangular charge orderwas found in small local patches, however,

vacancies in the underlying charge order with motifs that visually resemble
other orders are also seen. The nature of these insulating GWC orders has
been studied theoretically through a combination of theoretical techniques
starting from a continuum-model or Hubbard-model-like description and
employing field theory, Hartree-Fock, dynamical mean field theory,
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Monte-Carlo, density matrix renormalization group (DMRG), and exact
diagonalization (ED)15,26,29–32,32–35. We note that the termGWC is often used
interchangeably with charge density wave (CDW), however, the difference
is that CDW emerges as an instability due to Fermi surface nesting whereas
in aGWCthe charge localization is interactiondriven and the kinetic energy
is strongly quenched.

Ourwork addresses currently unresolved aspects of these experiments,
contributing to the theoretical understanding of the moiré TMD systems
and presenting both zero-temperature and finite-temperature studies in a
unified framework. Our paper is structured in three parts, each addressing
one precise objective. The first objective is to demonstrate that while FR
Hubbard models have the essential elements to describe a GWC, they are
typically inadequate for a quantitative explanation of the experiments if the
LR tail is rigidly truncated. This analysis involves a general exploration of
energetically competitive phases at the classical (t = 0,U→∞) andquantum

mechanical level for the Hamiltonian in Eq. (1) at zero temperature. The
next objective is to understand the finite temperature melting of these
GWCs. We build on the classical treatment that accurately modeled many
aspects of the experiments6, but did not address the role of quantum effects
—after all, it is not apriori clear if themelting of theGWC(at ~37 K)has any
quantum origin given that the kinetic energy is t~20 K. Our numerical
calculations explain the small but experimentally detectable6 (few Kelvin)
difference in the transition temperatures of the n = 1/3 and 2/3 GWC, that
are exactly dual to one another at the classical level.Anatural outcomeof the
first two objectives is the partial reconciliation of conflicting parameter sets
chosen bydifferent groups6,13,36. Our third objective is to predict the extent of
the stability of GWC with screening gate distance (see also ref. 15)—a key
component of the moiré TMD experimental setup. This objective aims to
pave the way for informed experiment design by determining at what
temperatures the magnetic correlations present in GWC13,16,37–40, are most
prominent and thus most easily detectable.

Results
Classical phase diagram and competing charge-ordered states
Todevelop an intuition for theGWCproblem,wefirst construct the classical
groundstatephase-competitiondiagram(t = 0andU→∞) forn= 1/3of the
Hamiltonian inEq. (1)by exactly enumerating all states ona6 × 6 latticewith
periodic boundary conditions and picking the ground state(s). This calcu-
lation serves as a helpful starting point for further analyses, as the leading
energy scale of the problem is the Coulomb interaction between electrons
trapped indeepmoiré potentialwells14—apoint towhichwe return later.We
consider nearest (NN, strengthV1 = 1), next-nearest (NNN, strengthV2) and
next-to-next nearest neighbor interactions (NNNN, strengthV3); our results
are summarized in Fig. 1b, c. No double occupancy is allowed, i.e., U→∞,
and spin is irrelevant. The n = 2/3 results can be obtained by swapping the
rolesof particles andholes. (For systems larger than6 × 6,wehavecarriedout
additional low temperature classicalMonteCarlo calculations tonavigate the
low energy landscape. We have observed the existence of regions of phase
space where the configurations reported in Fig. 1b, c do not strictly corre-
spond to the true ground state, just low energy states.)

For small V2, V3 the
ffiffiffi
3
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×

ffiffiffi
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p
triangular GWC is stable, as the total

charge configuration completely avoids theV1 andV3 costs at the expense of
a V2 cost. However, other phases are favored for modest V2/V1 and V3/V1.
For example, forV3 = 0, 0.2 ≤V2/V1≤ 1 stabilizes a “dimer” crystal, the state
that arises out of a compromise - the system pays someV1,V2 andV3 costs
by pairing up into dimers, as shown in Fig. 1c. Interestingly, on the 6 × 6
torus, this arrangement is found to be degenerate with 3707 other states
(degeneracies include those beyond those arising from translation and
different orientations of the dimer crystal) suggesting a high amount of
“charge frustration”. This degeneracy persists forV3 = 0 for allV2/V1 as long
as the system is in the dimer phase. (On larger system sizes, we observe a
finite residual entropy per site from integration of the specific heat from
classical Monte Carlo, suggesting this number is exponential with system
size). On adding small, but finite, V3 > 0, the dimer (and symmetry related
states) are favored, and this large degeneracy is lifted.

At much largerV3, a crystal is formed out of a cluster of three charges,
which we refer to as a “trimer”. This state pays noV2 cost but pays someV3

costsbetween trimers. It is exactly degeneratewithaperiod-3 “stripe” state, a
periodic arrangement of one-dimensional lines of charges. In the case of this
state, which will feature in Fig. 2, all V1 and V3 costs are paid within each
one-dimensional stripe. (On larger sizes we have observed the existence of
lower energy amorphous states, featuring short stripes and trimers.) Then,
when V2 and V3 are both large, a “fourmer” crystal, shown in Fig. 1c, is
stabilized. In general, we note that at low density the system avoids energy
penalties by clustering particles, even in the absence of any attractive
interactions—reminiscent of a pairing mechanism discussed in ref. 41 and
recent reports of “bubble phases” in Landau levels42.

We now ask where in the phase-competition diagram of Fig. 1b are
typical moiré TMDmaterials expected to be. To answer that question, it is
necessary to compute the extended Vij Hubbard parameters. Following

Fig. 1 | Hamiltonian, classical phases, and energetics of the extended Hubbard
model on the triangular lattice. aA schematic of the extendedHubbardmodel as in
Eq. (1), with nearest neighbor hopping t, on-siteHubbard interactionU, and nearest,
next-nearest and next-next-nearest neighbor interactions denoted by V1, V2, V3

respectively. b Locations of lowest energy states in phase space, restricted to n = 1/3
charge configurations shown in (c), in the V1−V2−V3 model (V1 > 0, U ! 1,
t = 0). c Charge configurations for n = 1/3 showing the triangular, dimer, trimer,
fourmer crystals, from left to right, and expressions for the corresponding total
energy for N sites. d, e The individual energy differences of the dimer and trimer
configurations, each with respect to the triangular configuration, as a function of
interaction cutoff rc/a for a fixed d/a = 10 (d), and gate distance d/a for rc → ∞ (e).
The calculation is carried out on a N = 72 × 72 system with periodic boundary
conditions. The y-axis label for panels d, e is the same.
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ref. 6, we consider a double-gate screened Coulomb interaction

Vð r!Þ ¼ e2

4πϵϵ0a

Xk¼1

k¼�1

ð�1Þkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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a

� �2 þ j r!j
a

� �2
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ð2Þ

where a is the moiré lattice constant, d is the separation between gates, ϵ is
the dimensionless dielectric constant, ϵ0 is the vacuum permittivity, and r!
refers to the vector connecting the twomoiré lattice sites. The above formof
the Coulomb interaction assumes two gates symmetrically located (above
and below) at a distance d/2 from the moiré system, as relevant for the
experiment of ref. 6, however our conclusions should generalize, with
appropriate quantitative modifications, to other gate configurations7. In the
above calculation of Vij � Vð r!i � r!jÞ parameters, we also assume that
theWannier functions are localized on a length scalemuch smaller than the
moiré lattice constant (which is expected for this topologically trivial system1

4,28). In such a case it is reasonable to approximate the interactions as those
between point charges—we employ this approximation throughout this
work. We clarify that, in principle, the Wannier function overlap can be
incorporated (e.g. see ref. 13,14,25) into estimating the on-site Hubbard U
and extended Vij. While this treatment is expected to only provide a small
correction to the extendedVij parameters, it is essential for the estimation of
the HubbardU e.g., as discussed in ref. 36. However, since our work focuses
on fillings away from one electron per moiré cell, our results are not
significantly influencedby theprecise valueofU- all that is important for our
conclusions is that U is large enough to prevent any appreciable double
occupancy on a site.

As is explained in Supplementary Note 1, we treat the LR nature of the
interaction by tiling the finite size cluster (the fundamental unit cell) mul-
tiple times tocover all of space, and thenuse the arrangement tocalculate the
effective interaction between any two sites (including the site with itself) in
the fundamental unit cell. This effective Hamiltonian is simulated with
classical and quantummethods. We note that the exponential decay of the
potential with distance guarantees rapid convergence of the procedure with
increasing the number of tiles. We also clarify that these effective interac-
tions must not be confused with the renormalization of the NN interaction
due to the LR tails that we discuss later in the paper.

To highlight how the competition between ground states is sensitive
to the range of truncation, we consider a sequence of models with
increasing range rc (the distance at which the interaction is truncated) i.e.,
increasing number of non-zeroVij extended Hubbardmodel terms in Eq.
(1). Specifically, we takeVð r!Þ to have the form in Eq.(2) for r � j r!j≤ rc

and Vð r!Þ ¼ 0 for r > rc. In Fig. 1d, we plot, for d/a = 10, the energy
difference (per site) of each of the competing states we found in Fig. 1b
with respect to the energy of the triangular crystal. For NN interactions,
indeed, the triangular

ffiffiffi
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p
crystal is the ground state, however,

truncating to NNN yields the dimer crystal and truncating to higher
neighbor interactions generically gives more complex ground states.
Figure 1e shows the competition between ground states for the LR
interaction (i.e., rc→∞) as a function of d/a. When the LR interaction is
considered, we find that the
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GWC is always the ground state for

any gate distance d/a≳ 1.

Quantum treatment, “pinball phase”, and state selection
The small energydifferences between competing classical states, particularly
when the interactions are long-ranged, as in Fig. 1d, highlight the need to
account for quantum effects accurately. To do so, we consider the simplest
possible kinetic term, the NN hopping, which was estimated to be much
larger than other hoppings (see Table 1). In principle, in analogy to the Vij

Hubbard terms in Eq. (1), the kinetic term could have contributions beyond
NN hopping. However, since kinetic energy is significantly suppressed in
GWCs and largely acts as a perturbation to ground states selected by the
Coulomb interactions, we argue that it is sufficient to consider just the
dominant NN term to capture the relevant charge physicswe discuss in this
work. In future work, it would be interesting to study the role of extended
hoppings, especially in parts of the phase diagramwheremultiple charge or
magnetic orders compete closely13,36.

We obtain the quantum mechanical ground state on finite clusters
using matrix product state (MPS) based DMRG calculations43,44. We work
withfixedparticle number and total Sz = 0.Ona given system size,DMRG is
limited only by finite bond dimension, when this is inadequate DMRG
favors low entanglement states such as those with broken translational
symmetry. Given the 1-D nature of the MPS which is used to “snake
through” a 2-D system, the accuracy of DMRG is typically limited on
systems with periodic boundaries (torus in 2D) or those with long corre-
lation lengths45. On the other hand, the torus geometry has the advantage of
having no boundary effects and so is possibly more representative of the
thermodynamic limit. Thuswe interpret the results of our bond dimension-
limited runs on tori, that favor symmetry-broken states with low entan-
glement, to be genuinely representative of the underlying physics, despite
them not being exact eigenstates. To supplement these results and build
confidence inour results,wehave carriedout additionalDMRGcalculations
on cylinders. The quasi-1D nature of the cylinders, while conducive for
DMRG, is known to affect the physics especially if the length of the cylinder
is taken to bemuch larger than its width46. Despite these caveats, we arrive at

Fig. 2 | Charge ordered quantum phases for a
series of extended Hubbard models. (a–d) show
the expectation value of the local charge density 〈ni〉
on every site i of a 6 × 6 torus for n = 1/3, computed
in the quantum ground state (obtained from
DMRG) for a series of models. These models were
obtained by truncating the LR model (model 3 in
Table 1) to various ranges (a) model 4 but with
V2 = V3 = 0 (b) model 4 with V3 = 0 (c) model 4 (d)
model 3. The y axis is vertical and the x axis is hor-
izontal. (e–h) show the corresponding absolute
value of the Fourier transform of the charge dis-
tribution in momentum space; nð k!Þ is defined as
∣
P

i hnii � 1
3

� �
eik�ri ∣ and Np is the number of parti-

cles (i.e. N/3). The DMRG simulations utilized a
maximum bond dimension of up to 10000 and were
carried out in the Sz = 0 sector.
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similar qualitative conclusions on cylinders, see additional results and dis-
cussion in Supplementary Note 2.

The representative results for n = 1/3 for a sequence of FR and LR
Hubbard models on a 6 × 6 torus (computed with a maximum bond
dimension of 10000) are shown in Fig. 2a–d. All the finite-range models
discussed in this section are obtained by combining the parameters from
ref. 6 and ref. 36 (i.e.model 3with ϵ = 3.9 and d/a = 10, see Table 1) and then
setting all Vij beyond a certain range to zero. (Note that when model 3 is
truncated to V1, V2, V3 it yields model 4.) We plot the charge density (〈ni〉)
on every lattice site and also show the Fourier transform of the density
correlation function, Fig. 2e–h. As expected, we find that for the NNmodel
(V1/t = 22.1) the

ffiffiffi
3

p
×

ffiffiffi
3

p
triangular crystal seen classically is stable to the

introduction of a hopping i.e. quantum effects, see Fig. 2a. The charge
density is sharply localized on the sites of the

ffiffiffi
3

p
×

ffiffiffi
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p
crystal, c.f. Fourier

transform in Fig. 2e, confirming the identification of this charge density
wave ground state with that of a GWC.

However, the ground state of the NNN model (t−V1−V2 model, i.e.
model 4withV3 = 0) is strikingly distinct from the classical expectation—we
find no evidence of stabilization of a dimer crystal or any of the other
classically degenerate ground states. Instead, we see the appearance of
charge centers (with 〈ni〉 ≈ 1) at sites of a triangular crystal with a spacing of
two (moiré) lattice constants, Fig. 2b, f. This emergent 2 × 2 triangular
crystal accounts only for 1/4 filling, and the remaining 1/3−1/4 = 1/12
charge density was found to be delocalized on the other sites. This “partially
melted” GWC arises out of a compromise - the system avoids paying both
V1 andV2 costs between the charges on the “pinned” sites and also benefits
from kinetic energy delocalization of the remaining charges. There is also a
Coulomb energy cost associated with the delocalized charges interacting
with thepinnedcharges, but overall, thefirst twoeffects dominate, leading to
the stabilization of such a crystal. We envisage that while this NNNmodel

does not govern the realistic moiré TMD system, the phase we have found
here could be potentially realized in other platforms such as cold atoms23,47.
We also note that previous theoretical work established a “pinball liquid
phase”48,49 at a different density n = 1/2 (quarter filling) and in an extended
Hubbardmodel on the triangular latticewith onlyV1 interactions i.e.V2 = 0.
For n = 1/2 the pins are arranged on a

ffiffiffi
3

p
×

ffiffiffi
3

p
triangular crystal (in

contrast to the 2 × 2 cell seen here), but the essential physics of coexisting
insulating and delocalized degrees of freedom appears to be similar.

The NNNNmodel (t− V1− V2− V3 model for the parameter set in
Table 1 i.e. model 4) yields a period-3 stripe ground state, resembling its
classical counterpart—see Fig. 2c.Here, one of three equivalent directions of
the triangular lattice is spontaneously selected. Unlike the classical result,
however, charge localization isweakened in strengthdue toquantumeffects,
leading to smaller peaks in the Fourier transform of the charge density
profile, see Fig. 2g. It is interesting to observe that extended stripes are
favored over local trimers—a possible mechanism is “order by disorder”
which dictates how quantum state selection occurs among a collection of
classically degenerate states50,51 andwhichhas alsobeen shown tobe relevant
for other materials with charge order52.

Most importantly, we find that the LRmodel (i.e. model 3) stabilizes affiffiffi
3

p
×

ffiffiffi
3

p
triangular GWC, see Fig. 2d. The resulting charge density loca-

lization is identical to the NN model, with only minor quantitative differ-
ences in the densities on the GWC sites, c.f. Fig. 2e, h. This result suggests
that the NN model, with appropriate renormalization of the extended
interaction V1, may capture the essential physics of GWC melting at finite
temperature, which we will explore next.

Finite temperature properties of GWC
We now proceed to analyze the finite temperature properties of the GWCs.
We begin by considering the classical case first (t = 0, U → ∞ in Eq.(1)).

Fig. 3 | Specific heat per site (Cv/N) as a function of temperature (T), for various
models considered in this work. a Cv(T)/N for the LR model (model 2 in Table 1)
and the NNmodel (model 2 but truncated to have onlyV1 non-zero) computed with
classical Metropolis Monte Carlo for multiple system sizes. The classical model with
t = 0, U → ∞ is particle-hole symmetric, so the results for n = 1/3 and n = 2/3 are
identical. (b, c) show Cv(T)/N for the quantum models obtained from exact

diagonalization forN = 18 sites (see Supplementary Note 3) for three densities n = 1/
3, 2/3 and 5/3. (b)Cv(T)/N for the LR quantummodel (model 3) and (c)Cv(T)/N for
a NN (model 1). Additionally, in panels (b) and (c) we show the “classical” result for
n = 1/3 for the same system size, obtained by setting t = 0 but not changing the other
parameters (i.e. keeping U large, but finite).

Table 1 | Summary of parameter sets employed in this work, which we refer to as models 1–4

Parameter values

Model t (meV) U (meV) Vij (meV)

1 1.81 75 t V1 = 10.5 t36

2 0 ∞ a = 7.98 nm, ϵ = 3.9, d/a = 106

3 1.81 75 t a = 7.98 nm, ϵ = 3.9, d/a = 10

4 1.81 75 t V1= 39.92, V2= 20.44, V3= 16.89

All energyunitsare inmeV.a is themoiré lattice constant. For thedoublegatedpotential,d is the separationbetween thegates. The functional formof this potential is stated inEq. (2) and its implementation is
discussed in SupplementaryNote 1.Model 1 (ref. 36) andmodel 2 (ref. 6) appeared previously in the literature. Reference 36 also considered non-zero further range hoppings (t2, t3), whichwe have ignored in
this work. Model 4 is obtained by truncating model 3 to next-next neighbor interactions.
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Figure 3a shows the specific heat per site Cv/N as a function of temperature
for the LR and truncated NN classical models for the case of d/a = 10 i.e.
model 2, andmodel 2with onlyV1 ≠ 0, respectively. Calculationswere done
with classicalMetropolisMonteCarlo forn = 1/3 for a range of system sizes;
the n = 2/3 results are identical due to particle-hole symmetry. While finite
size effects are naturally expected, we observe that the location of Tc for
system sizes as small as N = 27 sites is broadly consistent with much larger
sizes (to within 10%). Importantly, we find that despite bothmodels having
the sameclassical ground state, the chargeordering temperatureTcof theLR
model is a factor of ≈ 3.6 smaller than that of the NNmodel; indicating that
the long-range tail significantly renormalizes the NN interaction. We will
revisit this finding soon and also provide an explanation for it.

With an expectation of the classical melting behavior in place, we now
consider a quantum mechanical finite-temperature study of the Hamilto-
nian in Eq. (1), specifically for model 1 and 3 in Table 1, using ED (full
diagonalization) and the finite temperature Lanczos method (FTLM)53,54,
see the Methods section. Since spin has an important role to play in the
quantum simulations, we have also shown results for the n = 5/3 case; this
density is a spinful particle-hole partner of the n = 1/3 case, its Hamiltonian
is equivalent to that of n = 1/3, but with t→ − t.

Given that meaningful conclusions and trends can be drawn from
small clusters,we compute thequantummechanical specificheat for theN=
18 system(see SupplementaryNote 3 for cluster shape and symmetries used
and SupplementaryNote 4 for simulations onmore sizes).We also consider
(using the same ED procedure) the “classical” case with t = 0 but with
otherwise identical parameters, i.e.,U large but finite. Our results are shown
in Fig. 3b, c on a log temperature scale for the LR (model 3) andNN (model
1) case, respectively. The NN interaction strength in model 1 is in the
ballpark of that studied in ref. 36 where ϵ was chosen to be 10.

The differences in the choices of ϵ (see for example work of ref. 6 and
ref. 36) followed by truncation (or lack of it) can potentially reconcile
parameter sets that otherwise look very different. In particular, two effects
compete with one another: increasing ϵ has the effect of decreasing the
overall strength of Coulomb interactions and hence lowering the ordering
temperature, and truncating the LR interaction eliminates the overall
renormalization that comes from the LR tail, in turn increasing the ordering
temperature. The end result is that the effectiveV1/tused in theNNmodel is
approximately 10.536. We find that this, in turn, results in the GWC tem-
perature melting temperature that is a factor of roughly two higher (see Fig.
3c) than that measured in experiment and reproduced by classical Monte
Carlo with the full LR model with ϵ = 3.96.

The quantum-mechanical finite-temperature simulations show that
the entropy is released in multiple steps for both LR and NN models. For
example, for n = 2/3 there are at least three prominent and distinct tem-
perature scales associated with either a crossover or transition. The highest
scale is associatedwith the largeHubbardU, as has been noted previously in
ref. 19 in the context of the on-site Hubbard model. The intermediate scale
corresponds to the melting of the charge order and has been accessed
experimentally6. The low-temperature bump (crossover) corresponds to the
destruction offinite-rangemagnetic correlations (there is no true long order
at finite temperature due to the Mermin-Wagner theorem55). For n = 1/3
and n = 5/3, the Hubbard feature, while present, is greatly suppressed. The
charge ordering scales are similar, but not exactly the same, and the mag-
netic scales are different fromone another and then = 2/3 case. Asmagnetic
correlations are quantummechanical in nature, they are completely absent
in the classical calculations. (We also note the presence of an additional
ultra-low temperature feature which is expected to emerge from small but
finite size gaps, and hence we ignore its presence for the discussion here).

The suppression of kinetic energy in theGWCmeans that itsmelting is
essentially, but not completely, classical in origin. This is true for both the
NN and LRmodels. For theNNmodel withV1/t= 10.5 (model 1), we find a
small difference (within≈ 0.3 K) in the locations ofTc for n = 1/3, 2/3 and 5/
3, and an approximately 2K differencewith the “classical” case wheren = 1/
3 and t = 0, while all other parameterswere keptfixed (i.e.Uwas kept finite).
We attribute these observations to the small amount of quantummelting of

the ground states and the kinetic energy term on the triangular lattice
breaking the particle-hole symmetry of the t = 0 model. The LR model
(model 3) has effectivelyweakerNN interactionswhich results in a lowerTc.
Importantly, for thismodel the difference between the n = 1/3 and 2/3 cases
is bigger i.e. approximately 1 K, which is in the ballpark of the experimental
findings6.

As mentioned previously, the difference between n = 1/3, 2/3, 5/3
manifests itself even more prominently in the low-temperature magnetic
features, which remain to be experimentally explored, c.f. Fig. 3b. Our
calculations predict the magnetic crossover temperatures in the range
approximately 0.2–1 K. These magnetic crossover scales are potentially
within an experimentally realizable range, suggesting that future experi-
ments sensitive to spin texture (e.g., NV center scanning techniques, spin-
polarized scanning tunnelingmicroscopy or nanoSQUID) could resolve the
nature of the various spin ground states13,16,37–40.

Predictions for quantum and thermal melting of GWC
We now study the possible quantum mechanical melting of the GWC
charge order by controlling the screening environment by tuning d/a.
Smaller d corresponds to stronger screening, manifesting in a shorter
length scale over which the LR Coulomb interaction becomes sup-
pressed by the gate. This suppression of the effective LR Coulomb
interaction rangewith decreasing d/a should eventually drive the system
tometallicity despiteU being large because of the low density of particles
or holes. This is quantitatively established in Fig. 4a, which shows the
value of the order parameter computed on the N = 27 site cluster (see
Supplementary Note 3) from ED using the Lanczos method for both
n = 1/3 and 2/3. (The order parameter corresponds to the Fourier
component of the density-density correlation function at the K points.)
At large d/a, its value is approximately constant, in contrast, on lowering
d/a, its value rapidly decreases for d/a ≲ 1.We note in passing that given
that a ≈ 8 nm, achieving ratio d/a≲ 1 is within experimental range of the
hBN dielectric thicknesses56,57.

The dependence of the screenedCoulomb interaction fromEq. (2) as a
functionofd/adoesnot immediately revealwhy theorder parameter should
be essentially constant for large d/a. For example, V1 grows (albeit slowly)
with increasing d/a, see Fig. 4b (red, V1,Coulomb curve), and the tail decays
rapidlywith decreasing d/a, see SupplementaryNote 1.Wepropose that the
origin of the relative independence of the order parameter with d/a stems
from the “cancellations” of the LR tail which yield an effective NN strength.
This NN strength is much smaller than V1,Coulomb, confirming the expec-
tation we had from the classical specific heat analysis.

We verify this hypothesis in two complementary ways, as shown in
Fig. 4b. First, at the purely classical level in the LRmodel (model 2 but with
variable d), we calculate the energy to create a “defect”, by moving one
charge in the triangular GWC to a neighboring unoccupied site of the
triangular lattice. Both theGWCand representative defect configuration are
shown in Fig. 5. For a given d/a, the energy difference between the two
configurations was computed and defined to be 2V1,ΔE - this is the energy
cost of a defect in the effective NNmodel.V1,ΔE/t is found to be roughly 6.9
and is essentially independent of d/a (purple curve in Fig. 4b). Figure 5 also
graphically depicts the Coulomb energy contributions associated with both
configurations. The corresponding expression suggests that their subtrac-
tion leads to effective cancellations of the long range tail. It is this cancel-
lation that leads to an energy difference that is (almost) independent of d/a.

In the secondmethod,we varyV1 in theNNmodel such that its specific
heat profilemost closelymatches that of the LRquantummodel.We refer to
this optimal value ofV1 asV1,C,fit. For this purpose, we define a cost function
(see SupplementaryNote5), andwefind that this procedure reproduceswell
both the magnetic bump and charge peak. We find that this value is in the
same ballpark, V1,C,fit/t ≈ 5.9, and importantly, it is essentially independent
of d/a confirming our hypothesis (orange curve in Fig 4b). We collectively
refer to both these values as V1,eff with the understanding that it refers to
V1,ΔE in the classical case andV1,C,fit in the quantum case.We note that both
these values of V1,eff/t place the material on the insulating side of the
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metal-insulator transition (MIT) for n = 1/3 (VMIT/t ≈ 458), but this value of
V1,eff/t is considerably lower than what has been reported for these moiré
materials (e.g. ref. 36). The transition between metal to insulator is also
expected to be first order58. This closeness to a phase boundary suggests that
local disorder may stabilize pockets of insulating (charge-ordered) and
metallic regions. We conjecture that this proximity to the MIT transition
potentially lies at the origins of the real-space signal variation ofwhat should
be a pristine

ffiffiffi
3

p
×

ffiffiffi
3

p
GWC in the STM maps of ref. 7.

The impact of the renormalization of the NN interaction is also
confirmed by plotting the Tc of the classical and quantum models as a
function of d/a in Fig. 4c. As expected, Tc follows V1,eff from either
method rather than V1,Coulomb, which we also check by plotting the ratio
ofV1,eff/Tc in the inset. (We remark that similar observations for Tcwere
made for specific values of d/a for the classical model in ref. 6, but the
origin of this effect was not explained.) Based on our calculations we
predict that Tc must not change appreciably for large d/a but at and
below d/a ≈ 1− 2 the GWC becomes unstable and melts to give a Fermi
liquid.

Magnetic interactions of GWC for n = 1/3
We conclude by addressing briefly the question of magnetism of GWCs in
the moiré TMDs, which remains an active area of research. We present
some estimates of the GWC melting (crossover) temperature (which we
refer to as Tm) for n = 1/3 as a function of V1/t in the NN model. Strictly
speaking, there is no true long-range magnetic order in two dimensions at
finite temperature, so there is no sharp peak in the specific heat at low
temperature, and we associate Tm with the location of the local maximum.

For V1/t large (and assuming U ≫ V1), where the charge order cor-
responds to the

ffiffiffi
3

p
×

ffiffiffi
3

p
triangular crystal, themagnetic exchange between

two particles with opposite spins is generated (to lowest order) by an
exchange process that involves four hops (two hops for each particle) on the
underlying triangular lattice, shown in Fig. 6b. This gives rise to a magnetic

Fig. 4 | Dependence of effective ground state and finite temperature properties of
GWCs on gate distance. aOrder parameter (defined in terms of the charge structure
factor, SðkÞ � 1

N

P
i;jhninjieik�ðri�rjÞ computed at a representative momentum point

k ffiffi
3

p
×

ffiffi
3

p that shows a peak for the
ffiffiffi
3

p
×

ffiffiffi
3

p
triangular charge order) in the quantum

ground state, as a function of d/a. Calculations were carried out in the momentum
(0,0) sector for N = 27 and n = 1/3 (in the Sz = 1/2 sector) and n = 2/3 (in the
maximally polarized Sz sector). The parameters correspond to model 3 (Table 1) for
variable d/a. The dotted line represents the reference value for a perfect

ffiffiffi
3

p
×

ffiffiffi
3

p

triangular charge order. b Effective NN V1,eff/t interaction as a function of d/a
obtained from: the bare interaction potential (V1,Coulomb≡V(r = a), see Eq. (2)), one
defect energy (V1,ΔE), and from fitting the specific heat curve of the LRmodel (model
3 with variable d) and NNmodel (V1,C,fit). cThe critical temperature Tc corresponds
to charge order melting transition for three cases: classical, quantum n = 1/3, and
n = 2/3, as a function of d/a. (Inset) Ratio of theV1,eff toTc usingV1,ΔE (classical) and
V1,C,fit (quantum) from (b).

Fig. 5 | Schematic of energetic contributions arising from a single defect in the
triangular GWC. The left panel shows the

ffiffiffi
3

p
×

ffiffiffi
3

p
triangular GWC and the

underlying original moiré triangular lattice. The right panel corresponds to the
configuration where a single charge in this GWC is moved to a vacant nearest
neighbor site, creating a “defect” in theGWC. In both cases some (not all) of the non-
zero contributions to the Coulomb energy are highlighted, the expression shown
corresponds to the energy difference between the two configurations, which is thus
the energy of a single defect 2V1,ΔE in the effective nearest neighbor model. Vn

corresponds to the potential energy arising from the nth nearest neighbors.

Fig. 6 | Magnetism in the triangular GWC at n = 1/3. aMagnetic crossover scale
Tm as a function of NN interaction V1/t on a log-log scale for three system sizes
N = 12, 15, 18 for n = 1/3. The overall factor of t = 1.81 meV is incorporated in Tm to
connect to physical temperature scales. The straight linefit, biased towards largerV1/
t, shows the approximate V�3

1 dependence. b A schematic for the exchange process
of two particles with opposite spin involving four hops, that gives rise to the effective
magnetic interaction. The orange solid lines show the NN interaction V1 which
occurs during the hopping process.
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exchange scale that is expected to scale as t4=V3
1. We see evidence of this

scale indirectly in Tmwhich scales as the same power ofV1 (see Fig. 6a).We
plot physical estimates for Tm in Kelvin, incorporating the overall scale
factor coming from t, which clarifieswhat temperatures should be probed in
future experiments. More work is needed to ascertain detailed properties in
the context of LR interactions and beyond NN hoppings, along with higher
order spin exchange effects.

Discussion
In summary, we have studied zero- and finite-temperature properties of
GWCs at n = 1/3 and n = 2/3 filling. We employed a combination of
numerical techniques to describe an effective extended Hubbard model on
the triangular lattice, relevant to moiré materials. Crucially, throughout the
manuscript, we related the extendedHubbardmodel parameters to realistic
values expected from the Coulomb interaction and tight-binding estimates
of the band structure.

On the theoretical front, our results introduce systematic com-
plementary procedures for mapping a LR Coulomb model to a NN Hub-
bard model. Our method for matching the specific heat is in the spirit of
matching partition functions (or density matrices of excited states) that has
previously been employed in the context of single layer graphene59–61. We
showed that when the GWC physics is (largely) controlled by classical
effects (i.e., Coulomb interaction dominates; classical and quantum charge
order temperature are nearly identical) then the total quantummechanical
LR model can be (approximately) mapped to an NNmodel by considering
the energy of creating a single charge “defect”. This renormalization should
be strongly dependent on the underlying charge- ordered GWC itself and it
will be interesting to see how this impacts the physics offillings beyondwhat
has been considered here. We also remark that while our renormalization
procedure correctly matches the NN and LR charge ordering andmagnetic
crossover temperatures, this does not necessarily imply that the twomodels
are equivalent in all their aspects; for example, theymay differ in themany-
body excitation gap62,63. Understanding the limitations of such effective
mappings is something we intend to investigate in future work. More
generally, however, we anticipate that this procedure may help in future
theoretical studies of GWCs and more generally, moiré systems.

Through this mapping, we realized that the GWC systems are much
closer to the MIT than previous estimates of the NN interaction (based on
truncating the LR interaction) would suggest. Our results clarify that the
truncation of the LR interaction can stabilize a plethora of charge-ordered
states, and must be treated with caution—a sentiment shared with many
frustratedmagnetic systemswhere LR tails have been found to be important
not only quantitatively but also qualitatively (see for e.g. work in the context
of classical spin ice64–66).

Finally, our results explain several outstanding experimental puzzles.
First, we showed that despite the kinetic energy being comparable to the
charge ordering transition temperature Tc, its role is significantly sup-
pressed.However,wedemonstratedhow thekinetic energy is still important
for quantitatively capturing the small asymmetry in the experimentally
detected Tc at n = 1/3 and n = 2/36. Next, the conclusion that the effective
parameters situate the GWC close to the MIT may suggest it is fragile to
added perturbations such as disorder, which in turn may be crucial for
explaining the origin of the motifs seen in the STM images of ref. 7. Lastly,
we predicted the impact of adjusting the gate-to-sample distance on charge
andmagnetic ordering temperature scales. The physical scales for the latter
are in the ballpark of what is potentially accessible in spin-resolved STM,
andwhencombinedwith theoretical calculations this couldbeused toprobe
the precise microscopic spin ordering patterns of GWCs.

Methods
Classical Monte Carlo
Specific heat calculations for spinless particles (no double occupancy) at
fixed density n = 1/3 were carried out onN = L × L sized triangular clusters
(with periodic boundary conditions in both directions) with classicalMonte
Carlo, employing the standard Metropolis algorithm. Moves consisted of

choosing one occupied site and one unoccupied site at random, and then
proposing the particle from the former be moved to the latter. One Monte
Carlo sweep (MCS) is defined as Nmoves; measurements were done once
everyMCSafteran initialwarm-up stage starting fromacompletely random
configuration. 106−107 MCS were used.

Exact diagonalization, finite temperature Lanczos, and density
matrix renormalization group calculations
The quantum mechanical models studied in this work utilized a combi-
nation of exact diagonalization (ED), finite temperature Lanczos method
(FTLM), and density matrix renormalization group (DMRG).

ED calculations involved either full diagonalization, to compute zero
and finite temperature properties, or Lanczos to obtain accurate ground
state(s) of finite size clusters; more details on these clusters can be found in
SupplementaryNote 3. In the case of full diagonalization, expectation values
of generic operators Ô were computed in accordance with quantum sta-
tistical mechanics,

hÔiβ �
P

ie
�βEi ψi

�
∣Ô∣ψi

�P
ie
�βEi

ð3Þ

where Ei are exact eigenenergies, ∣ψi

�
are the corresponding normalized

eigenkets, and β is the inverse temperature. Translational symmetries
(momentum sectors) and Sz conservation were applied to block diag-
onalize the many-body Hamiltonian and reduce the cost of the
computation.

For the ground state Lanczos calculations, M = 100−400 Krylov vec-
tors were typically used to guarantee convergence on the system sizes stu-
died. In situations where ground state properties were required and the
ground state is exactly degenerate (in the same symmetry sector), the
algorithmwas restartedand the starting vectorwas explicitly orthogonalized
to the previously obtained ground state. Then in accordance with Eq. (3) in
the limit of β→∞, the expectation values were averaged over all degenerate
states.

FTLM was employed for finite temperature properties where full
diagonalization was not possible. The FTLM method utilizes a stochastic
representation of Eq. (3) and utilizes information from independent
Lanczos runs with R starting randomly prepared vectors. Our calculations
utilizedM = 200 and R = 10 per symmetry sector (which for N = 18 means
R = 180 for every Sz sector) whichwas found to be sufficient to converge the
specific heat up to a scale of 0.1 K.More details of FTLM and its application
to magnetic and fermionic systems can be found in refs. 19,53,54. Our
implementation of ED and FTLM was built on top of the QuSpin library67

and our own custom codes.
DMRG is a matrix product state (MPS) variational wavefunction

method43,45 employed in situationswhereED is impractical for obtaining the
quantumground state. The accuracy is controlled by the size of thematrices
(bond dimension), and the efficient optimization of the variational para-
meters entering them using a sweep algorithm.We state the protocols used
at various places in themain text and SupplementaryNote 2.We carried out
DMRG calculations based on the implementation in the TenPy44 library.

Generation of figures and plots
All figures and plots in this paper were generated with a combination of
Mathematica68 and Python.

Data Availability
The data and post-processing scripts used to generate the figures in the
present study are available from the first author (A.K.) upon reasonable
request.

Code availability
The basic scripts and codes used for the simulations reported in this paper
are available at https://github.com/kaushman1996/quantum-classical-
simulation.
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