Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Quantum Materials
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj quantum materials
  3. articles
  4. article
Optical phonons as a testing ground for spin group symmetries
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 17 February 2026

Optical phonons as a testing ground for spin group symmetries

  • F. Schilberth1,2 na1,
  • M. Kondákor3,4 na1,
  • D. Ukolov5,
  • A. Pawbake6,
  • K. Vasin1,7,
  • O. Ercem1,
  • L. Prodan1,
  • V. Tsurkan1,8,
  • A. A. Tsirlin9,
  • C. Faugeras6,
  • P. Lemmens5,
  • K. Penc4,
  • I. Kézsmárki1,
  • S. Bordács1,2,10 &
  • …
  • J. Deisenhofer1 

npj Quantum Materials , Article number:  (2026) Cite this article

  • 220 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Materials science
  • Physics

Abstract

Lattice vibrations are highly sensitive to crystal symmetries and their changes across phase transitions. The latter can modify irreducible (co)representations and corresponding infrared and Raman selection rules of phonons. This concept is established for relativistic magnetic point groups, simultaneously transforming spatial and spin coordinates. However, in altermagnets described by non-relativistic spin groups with disjunct symmetry operations for both vector spaces, the phonon selection rules have remained unexplored. Here, we present a detailed study of the infrared- and Raman-active modes in the collinear antiferromagnet and altermagnet candidate Co2Mo3O8. Comparing to ab initio calculations accurately capturing the eigenfrequencies, we identify all expected phonon modes at room temperature and deduce their selection rules using both symmetry approaches. Importantly, we observe the change of selection rules upon antiferromagnetic ordering, agreeing with the relativistic symmetry approach, while the spin group formalism predicts no changes. Therefore, optical phonons sensing the symmetry of the magnetic order can reveal if relevant magnon-phonon coupling is compatible with the spin-group approach or not.

Similar content being viewed by others

Unusual behaviour of the spin-phonon coupling in the quasi-one-dimensional antiferromagnet RbCoCl3

Article Open access 18 August 2022

First-principles study of the magneto-Raman effect in van der Waals layered magnets

Article Open access 19 December 2024

Symmetry, microscopy and spectroscopy signatures of altermagnetism

Article 21 January 2026

Data availability

The IR, Raman, and THz spectra are available on Zenodo https://doi.org/10.5281/zenodo.17663262.

References

  1. Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022).

    Google Scholar 

  2. Bhowal, S. & Spaldin, N. A. Ferroically ordered magnetic octupoles in d-wave altermagnets. Phys. Rev. X 14, 011019 (2024).

    Google Scholar 

  3. Morano, V. C. et al. Absence of altermagnetic magnon band splitting in MnF2. Phys. Rev. Lett. 134, 226702 (2025).

    Google Scholar 

  4. Yu, B.-W. & Liu, B.-G. Spin-split flat bands at the band edge and two-dimensional hole gases towards quantum Hall effect in altermagnetic CoF2. Preprint at https://arxiv.org/abs/2411.16188 (2024).

  5. Dubrovin, R. M. et al. Polar phonons and magnetic excitations in the antiferromagnet CoF2. Phys. Rev. B 109, 224312 (2024).

    Google Scholar 

  6. Lee, S. et al. Broken Kramers degeneracy in altermagnetic MnTe. Phys. Rev. Lett. 132, 036702 (2024).

    Google Scholar 

  7. Krempaský, J. et al. Altermagnetic lifting of Kramers spin degeneracy. Nature 626, 517 (2024).

    Google Scholar 

  8. Liu, Z., Ozeki, M., Asai, S., Itoh, S. & Masuda, T. Chiral split magnon in altermagnetic MnTe. Phys. Rev. Lett. 133, 156702 (2024).

    Google Scholar 

  9. Jost, D. et al. Chiral altermagnon in MnTe. Preprint at https://arxiv.org/abs/2501.17380 (2025).

  10. Fedchenko, O. et al. Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2. Sci. Adv. 10, adj4883 (2024).

    Google Scholar 

  11. Wenzel, M. et al. Fermi-liquid behavior of nonaltermagnetic RuO2. Phys. Rev. B 111, l041115 (2025).

    Google Scholar 

  12. Liu, J. et al. Absence of altermagnetic spin splitting character in rutile oxide RuO2. Phys. Rev. Lett. 133, 176401 (2024).

    Google Scholar 

  13. Naish, V. E. On magnetic symmetry of crystals. Izv. Akad. Nauk SSSR 27, 1496 (1963).

    Google Scholar 

  14. Brinkman, W. F. & Elliott, R. J. Theory of spin-space groups. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 294, 343 (1966).

    Google Scholar 

  15. Litvin, D. & Opechowski, W. Spin groups. Physica 76, 538 (1974).

    Google Scholar 

  16. Litvin, D. B. Spin point groups. Acta Crystallogr. Sect. A 33, 279 (1977).

    Google Scholar 

  17. Bradley, C. J. & Cracknell, A. P. The Mathematical Theory Of Symmetry In Solids: Representation theory for point groups and space groups (Oxford University PressOxford, 2009). https://doi.org/10.1093/oso/9780199582587.001.0001.

  18. Kurumaji, T., Ishiwata, S. & Tokura, Y. Doping-tunable ferrimagnetic phase with large linear magnetoelectric effect in a polar magnet Fe2Mo3O8. Phys. Rev. X 5, 031034 (2015).

    Google Scholar 

  19. Wang, Y. et al. Unveiling hidden ferrimagnetism and giant magnetoelectricity in polar magnet Fe2Mo3O8. Sci. Rep. 5, 12268 (2015).

    Google Scholar 

  20. Kurumaji, T., Ishiwata, S. & Tokura, Y. Diagonal magnetoelectric susceptibility and effect of Fe doping in the polar ferrimagnet Mn2Mo3O8. Phys. Rev. B 95, 045142 (2017).

    Google Scholar 

  21. Tang, Y. S. et al. Collinear magnetic structure and multiferroicity in the polar magnet Co2Mo3O8. Phys. Rev. B 100, 134112 (2019).

    Google Scholar 

  22. Csizi, B. et al. Magnetic and vibronic terahertz excitations in Zn-doped Fe2Mo3O8. Phys. Rev. B 102, 174407 (2020).

    Google Scholar 

  23. Tang, Y. S. et al. Metamagnetic transitions and magnetoelectricity in the spin-1 honeycomb antiferromagnet Ni2Mo3O8. Phys. Rev. B 103, 014112 (2021).

    Google Scholar 

  24. Tang, Y. S. et al. Successive electric polarization transitions induced by high magnetic field in the single-crystal antiferromagnet Co2Mo3O8. Phys. Rev. B 105, 064108 (2022).

    Google Scholar 

  25. Reschke, S. et al. Confirming the trilinear form of the optical magnetoelectric effect in the polar honeycomb antiferromagnet Co2Mo3O8. npj Quantum Mater. 7, 1 (2022).

    Google Scholar 

  26. Prodan, L. et al. Dilution of a polar magnet: structure and magnetism of Zn-substituted Co2Mo3O8. Phys. Rev. B 106, 174421 (2022).

    Google Scholar 

  27. Ghara, S. et al. Magnetization reversal through an antiferromagnetic state. Nat. Commun. 14, 5174 (2023).

    Google Scholar 

  28. Szaller, D. et al. Coexistence of antiferromagnetism and ferrimagnetism in adjacent honeycomb layers. Phys. Rev. B 111, 184404 (2025).

    Google Scholar 

  29. Kurumaji, T. et al. Electromagnon resonance in a collinear spin state of the polar antiferromagnet Fe2Mo3O8. Phys. Rev. B 95, 020405(R) (2017).

    Google Scholar 

  30. Wu, F. et al. Fluctuation-enhanced phonon magnetic moments in a polar antiferromagnet. Nat. Phys. 1868 https://doi.org/10.1038/s41567-023-02210-4 (2023).

  31. Bao, S. et al. Direct observation of topological magnon polarons in a multiferroic material. Nat. Commun. 14, 6093 (2023).

    Google Scholar 

  32. Vasin, K. V. et al. Optical magnetoelectric effect in the polar honeycomb antiferromagnet Fe2Mo3O8. Phys. Rev. B 110, 054401 (2024).

    Google Scholar 

  33. Cheong, S.-W. & Huang, F.-T. Altermagnetism with non-collinear spins. npj Quantum Mater. 9, 13 (2024).

    Google Scholar 

  34. Chen, X. et al. Unconventional magnons in collinear magnets dictated by spin space groups. Nature 640, 349 (2025).

    Google Scholar 

  35. Varret, F., Czeskleba, H., Hartmann-Boutron, F. & Imbert, P. Étude par effet Mössbauer de lion Fe2+ en symétrie trigonale dans les composés du type (Fe, M)2Mo3O8 (M = Mg, Zn, Mn, Co, Ni) et propriétés magnétiques de (Fe, Zn)2Mo3O8. J. Phys. 33, 549 (1972).

    Google Scholar 

  36. Cotton, F. A. Metal atom clusters in oxide systems. Inorg. Chem. 3, 1217 (1964).

    Google Scholar 

  37. Reschke, S. et al. Structure, phonons, and orbital degrees of freedom in Fe2Mo3O8. Phys. Rev. B 102, 094307 (2020).

    Google Scholar 

  38. McClarty, P. A. & Rau, J. G. Landau theory of altermagnetism. Phys. Rev. Lett. 132, 176702 (2024).

    Google Scholar 

  39. Schiff, H., McClarty, P., Rau, J. G. & Romhányi, J. Collinear altermagnets and their Landau theories. Phys. Rev. Res. 7, 033301 (2025).

    Google Scholar 

  40. Stanislavchuk, T. N. et al. Spectroscopic and first principle DFT+eDMFT study of complex structural, electronic, and vibrational properties of M2Mo3O8 (M = Fe, Mn) polar magnets. Phys. Rev. B 102, 115139 (2020).

    Google Scholar 

  41. Cracknell, A. P. Scattering matrices for the Raman effect in magnetic crystals. J. Phys. C Solid State Phys. 2, 500 (1969).

    Google Scholar 

  42. Schiff, H., Corticelli, A., Guerreiro, A., Romhányi, J. & McClarty, P. A. The crystallographic spin point groups and their representations. SciPost Phys. 18, 109 (2025).

    Google Scholar 

  43. Jaeschke-Ubiergo, R., Bharadwaj, V. K., Jungwirth, T., Šmejkal, L. & Sinova, J. Supercell altermagnets. Phys. Rev. B 109, 094425 (2024).

    Google Scholar 

  44. Hayes, W. & Loudon, R. Scattering of Light by Crystals (Dover, 2004).

  45. Manuel Cardona, G. G. ed. Light Scattering in Solids II (Springer Berlin Heidelberg, 1982) https://doi.org/10.1007/3-540-11380-0.

  46. Shapiro, S. M. & Axe, J. D. Raman Scattering from Polar Phonons. Phys. Rev. B 6, 2420 (1972).

    Google Scholar 

  47. Ovander, L. N. & Tyu, N. S. Theory of Raman scattering on polar phonons. Phys. Status Solidi B 91, 763 (1979).

    Google Scholar 

  48. Martin, R. M. & Damen, T. C. Breakdown of selection rules in resonance Raman scattering. Phys. Rev. Lett. 26, 86 (1971).

    Google Scholar 

  49. Trallero-Giner, C., Cantarero, A. & Cardona, M. One-phonon resonant Raman scattering: Fröhlich exciton-phonon interaction. Phys. Rev. B 40, 4030 (1989).

    Google Scholar 

  50. Rikken, G. L. J. A., Strohm, C. & Wyder, P. Observation of magnetoelectric directional anisotropy. Phys. Rev. Lett. 89, 133005 (2002).

    Google Scholar 

  51. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).

    Google Scholar 

  52. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Google Scholar 

  53. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Google Scholar 

Download references

Acknowledgements

M.K. and K.P. thank Hana Schiff for stimulating discussions. This research was partly funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)-TRR 360-492547816. The support by 0.25 N within the project ANCD (cod 011201 Moldova) is also acknowledged. The authors gratefully acknowledge the use of computing resources of the ALCC HPC cluster (Institute of Physics, University of Augsburg). We acknowledge the support of the LNCMI-CNRS, member of the European Magnetic Field Laboratory (EMFL). This research was supported by the Ministry of Culture and Innovation and the National Research, Development and Innovation Office within the Quantum Information National Laboratory of Hungary (Grant No. 2022-2.1.1-NL-2022-00004) as well as the Hungarian NKFIH Grant No. K 142652 and FK135003. M.K. was partially funded by the scholarship program DKÖP-25-1-BME-25 of NKFIH and Budapest University of Technology and Economics.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Author notes
  1. These authors contributed equally: F. Schilberth, M. Kondákor.

Authors and Affiliations

  1. Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute for Physics, University of Augsburg, Augsburg, Germany

    F. Schilberth, K. Vasin, O. Ercem, L. Prodan, V. Tsurkan, I. Kézsmárki, S. Bordács & J. Deisenhofer

  2. Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Müegyetem rkp. 3., H-1111, Budapest, Hungary

    F. Schilberth & S. Bordács

  3. Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, Budapest, Hungary

    M. Kondákor

  4. Institute for Solid State Physics and Optics, HUN-REN Wigner Research Centre for Physics, Budapest, Hungary

    M. Kondákor & K. Penc

  5. Institute of Condensed Matter Physics, TU Braunschweig, Braunschweig, Germany

    D. Ukolov & P. Lemmens

  6. LNCMI, UPR 3228, CNRS, EMFL, Université Grenoble Alpes, Grenoble, France

    A. Pawbake & C. Faugeras

  7. Institute for Physics, Kazan (Volga region) Federal University, Kazan, Russia

    K. Vasin

  8. Institute of Applied Physics, Moldova State University, Chisinau, Republic of Moldova

    V. Tsurkan

  9. Felix Bloch Institute for Solid-State Physics, Leipzig University, Leipzig, Germany

    A. A. Tsirlin

  10. HUN-REN-BME Condensed Matter Physics Research Group, Budapest University of Technology and Economics, Müegyetem rkp. 3., H-1111, Budapest, Hungary

    S. Bordács

Authors
  1. F. Schilberth
    View author publications

    Search author on:PubMed Google Scholar

  2. M. Kondákor
    View author publications

    Search author on:PubMed Google Scholar

  3. D. Ukolov
    View author publications

    Search author on:PubMed Google Scholar

  4. A. Pawbake
    View author publications

    Search author on:PubMed Google Scholar

  5. K. Vasin
    View author publications

    Search author on:PubMed Google Scholar

  6. O. Ercem
    View author publications

    Search author on:PubMed Google Scholar

  7. L. Prodan
    View author publications

    Search author on:PubMed Google Scholar

  8. V. Tsurkan
    View author publications

    Search author on:PubMed Google Scholar

  9. A. A. Tsirlin
    View author publications

    Search author on:PubMed Google Scholar

  10. C. Faugeras
    View author publications

    Search author on:PubMed Google Scholar

  11. P. Lemmens
    View author publications

    Search author on:PubMed Google Scholar

  12. K. Penc
    View author publications

    Search author on:PubMed Google Scholar

  13. I. Kézsmárki
    View author publications

    Search author on:PubMed Google Scholar

  14. S. Bordács
    View author publications

    Search author on:PubMed Google Scholar

  15. J. Deisenhofer
    View author publications

    Search author on:PubMed Google Scholar

Contributions

L.P. and V.T. synthesized and characterized the crystals; F.S., O.E., and K.V. measured the reflectivity and transmission spectra; D.U., A.P., C.F. and P.L. measured the Raman spectra; F.S., K.V., O.E. and J.D. analyzed the data; A.A.T. performed the ab initio calculations; M.K., K.P., S.B. and J.D. performed the group theoretical analysis; F.S., M.K., K.P., S.B. and J.D. wrote the paper; I.K., S.B. and J.D. planned and coordinated the project; All authors contributed to the discussion and interpretation of the experimental and theoretical results and to the completion of the paper.

Corresponding authors

Correspondence to F. Schilberth or J. Deisenhofer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schilberth, F., Kondákor, M., Ukolov, D. et al. Optical phonons as a testing ground for spin group symmetries. npj Quantum Mater. (2026). https://doi.org/10.1038/s41535-026-00857-9

Download citation

  • Received: 07 August 2025

  • Accepted: 25 January 2026

  • Published: 17 February 2026

  • DOI: https://doi.org/10.1038/s41535-026-00857-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • About the Editors
  • Contact
  • Open Access
  • Calls for Papers
  • Article Processing Charges
  • Editorial policies
  • Journal Metrics
  • About the Partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Quantum Materials (npj Quantum Mater.)

ISSN 2397-4648 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing