Abstract
In recent decades, there has been a persistent pursuit of applications for surface/edge states in topological systems, driven by their dissipationless transport effects. This work demonstrates the remarkable properties of the topological material Ta2Pd3Te5, as a thermometer. At low temperatures, it shows a power-law correlation in temperature-dependent resistance, while behaving like a semiconductor at high temperatures. This dual behavior effectively mitigates the issue of infinite resistance in semiconductor thermometers at ultra-low temperatures, making it ideal for millikelvin-range refrigerators. Through chemical doping, thickness adjustment, and gate voltage control, its performance can be finely tuned, and can also enable micron-scale local temperature measurement from millikelvin to room temperature. Furthermore, this thermometer exhibits excellent temperature sensitivity and resolution, and can be fine-tuned to show small magnetoresistance. In summary, the Ta2Pd3Te5-based thermometer, also referred to as a topological thermometer, demonstrates considerable potential for broad-temperature-range detection and merits further investigation and optimization.
Similar content being viewed by others
Data availability
The data within this paper are available from the corresponding author.
References
Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).
Bernevig, B. A., Felser, C. & Beidenkopf, H. Progress and prospects in magnetic topological materials. Nature 603, 41–51 (2022).
Brahlek, M. Criteria for realizing room-temperature electrical transport applications of topological materials. Adv. Mater. 32, 2005698 (2020).
Gilbert, M. J. Topological electronics. Commun. Phys. 4, 70 (2021).
Zhao, Y. et al. Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd3As2. Phys. Rev. X 5, 031037 (2015).
Munyan, S., Guo, B., Huynh, W., Huang, V. & Stemmer, S. Edge mode percolation and equilibration in the topological insulator cadmium arsenide. npj Quantum Mater. 8, 70 (2023).
Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).
He, M., Sun, H. & He, Q. L. Topological insulator: spintronics and quantum computations. Front. Phys. 14, 43401 (2019).
Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).
Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).
Vojta, M. Quantum phase transitions. Rep. Prog. Phys. 66, 2069–2110 (2003).
Xing, Y. et al. Quantum Griffiths singularity of superconductor-metal transition in Ga thin films. Science 350, 542–545 (2015).
Stern, A. Non-Abelian states of matter. Nature 464, 187–193 (2010).
Steane, A. Quantum computing. Rep. Prog. Phys. 61, 117–173 (1998).
Sarsby, M., Yurttagül, N. & Geresdi, A. 500 microkelvin nanoelectronics. Nat. Commun. 11, 1492 (2020).
Yan, J., Yao, J., Shvarts, V., Du, R.-R. & Lin, X. Cryogen-free one hundred microKelvin refrigerator. Rev. Sci. Instrum. 92, 025120 (2021).
Rothfuß, D., Reiser, A., Fleischmann, A. & Enss, C. Noise thermometry at ultra low temperatures. Appl. Phys. Lett. 103, 052605 (2013).
Rusby, R. L. et al. The provisional low temperature scale from 0.9 mK to 1 K, PLTS-2000. J. Low Temp. Phys. 126, 633 (2002).
Yurttagül, N., Sarsby, M. & Geresdi, A. Coulomb blockade thermometry beyond the universal regime. J. Low Temp. Phys. 204, 143–162 (2021).
Lusher, C. P. et al. Current sensing noise thermometry using a low Tc DC SQUID preamplifier. Meas. Sci. Technol. 12, 1–15 (2001).
Buchal, C., Hanssen, J., Mueller, R. M. & Pobell, F. Platinum wire NMR thermometer for ultralow temperatures. Rev. Sci. Instrum. 49, 1360–1361 (1978).
Pobell, F. Nuclear refrigeration and thermometry at microkelvin temperatures. J. Low Temp. Phys. 87, 635–649 (1992).
Courts, S. S. & Swinehart, P. R. Review of Cernox™ (zirconium oxy-nitride) thin-film resistance temperature sensors. AIP Conf. Proc. 684, 393–398 (2003).
Zak, D. et al. Implementation of RuO2-glass based thick film resistors in cryogenic thermometry. Meas. Sci. Technol. 17, 22–27 (2006).
Lake Shore Cryotronics, Inc., USA. See https://www.lakeshore.com/.
Guo, Z., Deng, J., Xie, Y. & Wang, Z. Quadrupole topological insulators in Ta2M3Te5 (M = Ni, Pd) monolayers. npj Quantum Mater. 7, 87 (2022).
Wang, A. et al. A robust and tunable Luttinger liquid in correlated edge of transition-metal second-order topological insulator Ta2Pd3Te5. Nat. Commun. 14, 7647 (2023).
Guo, Z. et al. Quantum spin Hall effect in Ta2M3Te5 (M =Pd,Ni). Phys. Rev. B 103, 115145 (2021).
Huang, J. et al. Evidence for an excitonic insulator state in Ta2Pd3Te5. Phys. Rev. X 14, 011046 (2024).
Hossain, M. S. et al. Topological excitonic insulator with tunable momentum order. Nat. Phys. 21, 1250–1259 (2025).
Zhang, P. et al. Spontaneous gap opening and potential excitonic states in an ideal Dirac semimetal Ta2Pd3Te5. Phys. Rev. X 14, 011047 (2024).
Wang, X. et al. Observation of topological edge states in the quantum spin Hall insulator Ta2Pd3Te5. Phys. Rev. B 104, L241408 (2021).
Li, Y. et al. Interfering Josephson diode effect in Ta2Pd3Te5 asymmetric edge interferometer. Nat. Commun. 15, 9031 (2024).
Guo, X. et al. Magnetic-field control of Tomonaga-Luttinger liquids in Ta2Pd3Te5 edge states. Preprint at https://doi.org/10.48550/arXiv.2510.07973 (2025).
Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999).
Li, T. et al. Observation of a helical Luttinger liquid in InAs/GaSb quantum spin Hall edges. Phys. Rev. Lett. 115, 136804 (2015).
Stühler, R. et al. Tomonaga-Luttinger liquid in the edge channels of a quantum spin Hall insulator. Nat. Phys. 16, 47–51 (2020).
Chang, A. M., Pfeiffer, L. N. & West, K. W. Observation of chiral Luttinger behavior in electron tunneling into fractional quantum Hall edges. Phys. Rev. Lett. 77, 2538–2541 (1996).
Hashisaka, M., Hiyama, N., Akiho, T., Muraki, K. & Fujisawa, T. Waveform measurement of charge- and spin-density wavepackets in a chiral Tomonaga-Luttinger liquid. Nat. Phys. 13, 559–562 (2017).
Yeager, C. J. & Courts, S. S. A review of cryogenic thermometry and common temperature sensors. IEEE Sens. J. 1, 352–360 (2001).
Courts, S. S. & Krause, J. K. A commercial ruthenium oxide thermometer for use to 20 millikelvin. AIP Conf. Proc. 985, 947–954 (2008).
Jiao, W.-H. et al. Weak antilocalization in the transition metal telluride Ta2Pd3Te5. Phys. Rev. B 108, 245145 (2023).
Hu, J., Xu, S.-Y., Ni, N. & Mao, Z. Transport of topological semimetals. Annu. Rev. Mater. Res. 49, 207–252 (2019).
Li, Y. et al. Quantum transport in a compensated semimetal W2As3 with nontrivial Z2 indices. Phys. Rev. B 98, 115145 (2018).
Li, Y. et al. Pressure-induced superconductivity in topological semimetal NbAs2. npj Quantum Meter. 3, 58 (2018).
Wang, Z. et al. Helicity-protected ultrahigh mobility Weyl fermions in NbP. Phys. Rev. B 93, 121112(R) (2016).
Xu, Z. et al. Quasi-linear magnetoresistance and paramagnetic singularity in hypervalent bismuthide. npj Quantum Mater. 10, 41 (2025).
Mitin, V. F., Dugaev, V. K. & Ihas, G. G. Large negative magnetoresistance in Ge films at ultralow temperatures and low magnetic fields. Appl. Phys. Lett. 91, 202107 (2007).
Jones, A. T. et al. Progress in Cooling Nanoelectronic Devices to Ultra-Low Temperatures. J. Low Temp. Phys. 201, 772–802 (2020).
Myers, S. A., Li, H. & Csáthy, G. A. A ruthenium oxide thermometer for dilution refrigerators operating down to 5 mK. Cryogenics 119, 103367 (2021).
Acknowledgements
The authors acknowledge the support from the Synergetic Extreme Condition User Facility (SECUF), the Center for Materials Genome, and the China High Magnetic Field Laboratory (CHMFL) in Hefei. This work was supported by the Beijing Natural Science Foundation (Grant No. JQ23022), the National Natural Science Foundation of China (Grant Nos. 12404154, 92065203, U2032204, 11974395, 12188101 and 12122411), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB33000000 and XDB33030000), National Key Research and Development Program of China (Grant Nos. 2023YFA1607400 and 2024YFA1613200), the HZNU scientific research and innovation team project (Grant No. TD2025013), the National Key R&D Program of the MOST of China (Grant No. 2022YFA1602602), the Informatization Plan of Chinese Academy of Sciences (Grant No. CAS-WX2021SF-0102), the Beijing National Laboratory for Condensed Matter Physics (Grant No. 2025BNLCMPKF013), and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LMS26A040010).
Author information
Authors and Affiliations
Contributions
J.S. and Y.P.L. conceived and designed the experiment. Y.P.L. and A.Q.W. fabricated the devices with the assistance of G.Y., X.C.G., Z.Y.Z., and Y.H. Y.P.L. and A.Q.W. performed the transport measurements, supervised by T.Q., Z.W.D., G.T.L., F.M.Q., L.L., and J.S. S.Y.P. and J.L.Z. performed the high-field transport measurements. D.Y.Y. and Y.G.S. prepared Ta2Pd3Te5 crystals. Z.J.W. provided the theoretical support. Y.P.L., A.Q.W. and J.S. wrote the manuscript with help from all other co-authors.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Li, Y., Wang, A., Pan, S. et al. A wide-range topological thermometer with Ta2Pd3Te5: from power-law response to application prospects. npj Quantum Mater. (2026). https://doi.org/10.1038/s41535-026-00866-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41535-026-00866-8


