Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Quantum Materials
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj quantum materials
  3. articles
  4. article
A wide-range topological thermometer with Ta2Pd3Te5: from power-law response to application prospects
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 February 2026

A wide-range topological thermometer with Ta2Pd3Te5: from power-law response to application prospects

  • Yupeng Li1,2 na1,
  • Anqi Wang2,3 na1,
  • Senyang Pan4,
  • Dayu Yan2,
  • Guang Yang2,
  • Xingchen Guo2,3,
  • Yu Hong2,3,
  • Zhiyuan Zhang2,3,
  • Ziwei Dou2,
  • Guangtong Liu2,5,
  • Fanming Qu2,3,5,
  • Zhijun Wang2,3,
  • Tian Qian2,5,
  • Jinglei Zhang4,
  • Youguo Shi2,5,
  • Li Lu2,3,5 &
  • …
  • Jie Shen2,5 

npj Quantum Materials , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Materials science
  • Nanoscience and technology
  • Physics

Abstract

In recent decades, there has been a persistent pursuit of applications for surface/edge states in topological systems, driven by their dissipationless transport effects. This work demonstrates the remarkable properties of the topological material Ta2Pd3Te5, as a thermometer. At low temperatures, it shows a power-law correlation in temperature-dependent resistance, while behaving like a semiconductor at high temperatures. This dual behavior effectively mitigates the issue of infinite resistance in semiconductor thermometers at ultra-low temperatures, making it ideal for millikelvin-range refrigerators. Through chemical doping, thickness adjustment, and gate voltage control, its performance can be finely tuned, and can also enable micron-scale local temperature measurement from millikelvin to room temperature. Furthermore, this thermometer exhibits excellent temperature sensitivity and resolution, and can be fine-tuned to show small magnetoresistance. In summary, the Ta2Pd3Te5-based thermometer, also referred to as a topological thermometer, demonstrates considerable potential for broad-temperature-range detection and merits further investigation and optimization.

Similar content being viewed by others

Unusual violation of the Wiedemann–Franz law at ultralow temperatures in topological compensated semimetals

Article Open access 02 January 2025

Non-local triple quantum dot thermometer based on Coulomb-coupled systems

Article Open access 23 September 2022

Diamond with Sp2-Sp3 composite phase for thermometry at Millikelvin temperatures

Article Open access 08 May 2024

Data availability

The data within this paper are available from the corresponding author.

References

  1. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Google Scholar 

  2. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Google Scholar 

  3. Bernevig, B. A., Felser, C. & Beidenkopf, H. Progress and prospects in magnetic topological materials. Nature 603, 41–51 (2022).

    Google Scholar 

  4. Brahlek, M. Criteria for realizing room-temperature electrical transport applications of topological materials. Adv. Mater. 32, 2005698 (2020).

    Google Scholar 

  5. Gilbert, M. J. Topological electronics. Commun. Phys. 4, 70 (2021).

    Google Scholar 

  6. Zhao, Y. et al. Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd3As2. Phys. Rev. X 5, 031037 (2015).

    Google Scholar 

  7. Munyan, S., Guo, B., Huynh, W., Huang, V. & Stemmer, S. Edge mode percolation and equilibration in the topological insulator cadmium arsenide. npj Quantum Mater. 8, 70 (2023).

    Google Scholar 

  8. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Google Scholar 

  9. He, M., Sun, H. & He, Q. L. Topological insulator: spintronics and quantum computations. Front. Phys. 14, 43401 (2019).

    Google Scholar 

  10. Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Google Scholar 

  11. Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).

    Google Scholar 

  12. Vojta, M. Quantum phase transitions. Rep. Prog. Phys. 66, 2069–2110 (2003).

    Google Scholar 

  13. Xing, Y. et al. Quantum Griffiths singularity of superconductor-metal transition in Ga thin films. Science 350, 542–545 (2015).

    Google Scholar 

  14. Stern, A. Non-Abelian states of matter. Nature 464, 187–193 (2010).

    Google Scholar 

  15. Steane, A. Quantum computing. Rep. Prog. Phys. 61, 117–173 (1998).

    Google Scholar 

  16. Sarsby, M., Yurttagül, N. & Geresdi, A. 500 microkelvin nanoelectronics. Nat. Commun. 11, 1492 (2020).

    Google Scholar 

  17. Yan, J., Yao, J., Shvarts, V., Du, R.-R. & Lin, X. Cryogen-free one hundred microKelvin refrigerator. Rev. Sci. Instrum. 92, 025120 (2021).

    Google Scholar 

  18. Rothfuß, D., Reiser, A., Fleischmann, A. & Enss, C. Noise thermometry at ultra low temperatures. Appl. Phys. Lett. 103, 052605 (2013).

    Google Scholar 

  19. Rusby, R. L. et al. The provisional low temperature scale from 0.9 mK to 1 K, PLTS-2000. J. Low Temp. Phys. 126, 633 (2002).

    Google Scholar 

  20. Yurttagül, N., Sarsby, M. & Geresdi, A. Coulomb blockade thermometry beyond the universal regime. J. Low Temp. Phys. 204, 143–162 (2021).

    Google Scholar 

  21. Lusher, C. P. et al. Current sensing noise thermometry using a low Tc DC SQUID preamplifier. Meas. Sci. Technol. 12, 1–15 (2001).

    Google Scholar 

  22. Buchal, C., Hanssen, J., Mueller, R. M. & Pobell, F. Platinum wire NMR thermometer for ultralow temperatures. Rev. Sci. Instrum. 49, 1360–1361 (1978).

    Google Scholar 

  23. Pobell, F. Nuclear refrigeration and thermometry at microkelvin temperatures. J. Low Temp. Phys. 87, 635–649 (1992).

    Google Scholar 

  24. Courts, S. S. & Swinehart, P. R. Review of Cernox™ (zirconium oxy-nitride) thin-film resistance temperature sensors. AIP Conf. Proc. 684, 393–398 (2003).

    Google Scholar 

  25. Zak, D. et al. Implementation of RuO2-glass based thick film resistors in cryogenic thermometry. Meas. Sci. Technol. 17, 22–27 (2006).

    Google Scholar 

  26. Lake Shore Cryotronics, Inc., USA. See https://www.lakeshore.com/.

  27. Guo, Z., Deng, J., Xie, Y. & Wang, Z. Quadrupole topological insulators in Ta2M3Te5 (M = Ni, Pd) monolayers. npj Quantum Mater. 7, 87 (2022).

    Google Scholar 

  28. Wang, A. et al. A robust and tunable Luttinger liquid in correlated edge of transition-metal second-order topological insulator Ta2Pd3Te5. Nat. Commun. 14, 7647 (2023).

    Google Scholar 

  29. Guo, Z. et al. Quantum spin Hall effect in Ta2M3Te5 (M =Pd,Ni). Phys. Rev. B 103, 115145 (2021).

    Google Scholar 

  30. Huang, J. et al. Evidence for an excitonic insulator state in Ta2Pd3Te5. Phys. Rev. X 14, 011046 (2024).

    Google Scholar 

  31. Hossain, M. S. et al. Topological excitonic insulator with tunable momentum order. Nat. Phys. 21, 1250–1259 (2025).

    Google Scholar 

  32. Zhang, P. et al. Spontaneous gap opening and potential excitonic states in an ideal Dirac semimetal Ta2Pd3Te5. Phys. Rev. X 14, 011047 (2024).

    Google Scholar 

  33. Wang, X. et al. Observation of topological edge states in the quantum spin Hall insulator Ta2Pd3Te5. Phys. Rev. B 104, L241408 (2021).

    Google Scholar 

  34. Li, Y. et al. Interfering Josephson diode effect in Ta2Pd3Te5 asymmetric edge interferometer. Nat. Commun. 15, 9031 (2024).

    Google Scholar 

  35. Guo, X. et al. Magnetic-field control of Tomonaga-Luttinger liquids in Ta2Pd3Te5 edge states. Preprint at https://doi.org/10.48550/arXiv.2510.07973 (2025).

  36. Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999).

    Google Scholar 

  37. Li, T. et al. Observation of a helical Luttinger liquid in InAs/GaSb quantum spin Hall edges. Phys. Rev. Lett. 115, 136804 (2015).

    Google Scholar 

  38. Stühler, R. et al. Tomonaga-Luttinger liquid in the edge channels of a quantum spin Hall insulator. Nat. Phys. 16, 47–51 (2020).

    Google Scholar 

  39. Chang, A. M., Pfeiffer, L. N. & West, K. W. Observation of chiral Luttinger behavior in electron tunneling into fractional quantum Hall edges. Phys. Rev. Lett. 77, 2538–2541 (1996).

    Google Scholar 

  40. Hashisaka, M., Hiyama, N., Akiho, T., Muraki, K. & Fujisawa, T. Waveform measurement of charge- and spin-density wavepackets in a chiral Tomonaga-Luttinger liquid. Nat. Phys. 13, 559–562 (2017).

    Google Scholar 

  41. Yeager, C. J. & Courts, S. S. A review of cryogenic thermometry and common temperature sensors. IEEE Sens. J. 1, 352–360 (2001).

    Google Scholar 

  42. Courts, S. S. & Krause, J. K. A commercial ruthenium oxide thermometer for use to 20 millikelvin. AIP Conf. Proc. 985, 947–954 (2008).

    Google Scholar 

  43. Jiao, W.-H. et al. Weak antilocalization in the transition metal telluride Ta2Pd3Te5. Phys. Rev. B 108, 245145 (2023).

    Google Scholar 

  44. Hu, J., Xu, S.-Y., Ni, N. & Mao, Z. Transport of topological semimetals. Annu. Rev. Mater. Res. 49, 207–252 (2019).

    Google Scholar 

  45. Li, Y. et al. Quantum transport in a compensated semimetal W2As3 with nontrivial Z2 indices. Phys. Rev. B 98, 115145 (2018).

    Google Scholar 

  46. Li, Y. et al. Pressure-induced superconductivity in topological semimetal NbAs2. npj Quantum Meter. 3, 58 (2018).

    Google Scholar 

  47. Wang, Z. et al. Helicity-protected ultrahigh mobility Weyl fermions in NbP. Phys. Rev. B 93, 121112(R) (2016).

    Google Scholar 

  48. Xu, Z. et al. Quasi-linear magnetoresistance and paramagnetic singularity in hypervalent bismuthide. npj Quantum Mater. 10, 41 (2025).

    Google Scholar 

  49. Mitin, V. F., Dugaev, V. K. & Ihas, G. G. Large negative magnetoresistance in Ge films at ultralow temperatures and low magnetic fields. Appl. Phys. Lett. 91, 202107 (2007).

    Google Scholar 

  50. Jones, A. T. et al. Progress in Cooling Nanoelectronic Devices to Ultra-Low Temperatures. J. Low Temp. Phys. 201, 772–802 (2020).

    Google Scholar 

  51. Myers, S. A., Li, H. & Csáthy, G. A. A ruthenium oxide thermometer for dilution refrigerators operating down to 5 mK. Cryogenics 119, 103367 (2021).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the Synergetic Extreme Condition User Facility (SECUF), the Center for Materials Genome, and the China High Magnetic Field Laboratory (CHMFL) in Hefei. This work was supported by the Beijing Natural Science Foundation (Grant No. JQ23022), the National Natural Science Foundation of China (Grant Nos. 12404154, 92065203, U2032204, 11974395, 12188101 and 12122411), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB33000000 and XDB33030000), National Key Research and Development Program of China (Grant Nos. 2023YFA1607400 and 2024YFA1613200), the HZNU scientific research and innovation team project (Grant No. TD2025013), the National Key R&D Program of the MOST of China (Grant No. 2022YFA1602602), the Informatization Plan of Chinese Academy of Sciences (Grant No. CAS-WX2021SF-0102), the Beijing National Laboratory for Condensed Matter Physics (Grant No. 2025BNLCMPKF013), and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LMS26A040010).

Author information

Author notes
  1. These authors contributed equally: Yupeng Li, Anqi Wang.

Authors and Affiliations

  1. Hangzhou Key Laboratory of Quantum Matter, School of Physics, Hangzhou Normal University, Hangzhou, China

    Yupeng Li

  2. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China

    Yupeng Li, Anqi Wang, Dayu Yan, Guang Yang, Xingchen Guo, Yu Hong, Zhiyuan Zhang, Ziwei Dou, Guangtong Liu, Fanming Qu, Zhijun Wang, Tian Qian, Youguo Shi, Li Lu & Jie Shen

  3. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China

    Anqi Wang, Xingchen Guo, Yu Hong, Zhiyuan Zhang, Fanming Qu, Zhijun Wang & Li Lu

  4. Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei, Anhui, China

    Senyang Pan & Jinglei Zhang

  5. Songshan Lake Materials Laboratory, Dongguan, China

    Guangtong Liu, Fanming Qu, Tian Qian, Youguo Shi, Li Lu & Jie Shen

Authors
  1. Yupeng Li
    View author publications

    Search author on:PubMed Google Scholar

  2. Anqi Wang
    View author publications

    Search author on:PubMed Google Scholar

  3. Senyang Pan
    View author publications

    Search author on:PubMed Google Scholar

  4. Dayu Yan
    View author publications

    Search author on:PubMed Google Scholar

  5. Guang Yang
    View author publications

    Search author on:PubMed Google Scholar

  6. Xingchen Guo
    View author publications

    Search author on:PubMed Google Scholar

  7. Yu Hong
    View author publications

    Search author on:PubMed Google Scholar

  8. Zhiyuan Zhang
    View author publications

    Search author on:PubMed Google Scholar

  9. Ziwei Dou
    View author publications

    Search author on:PubMed Google Scholar

  10. Guangtong Liu
    View author publications

    Search author on:PubMed Google Scholar

  11. Fanming Qu
    View author publications

    Search author on:PubMed Google Scholar

  12. Zhijun Wang
    View author publications

    Search author on:PubMed Google Scholar

  13. Tian Qian
    View author publications

    Search author on:PubMed Google Scholar

  14. Jinglei Zhang
    View author publications

    Search author on:PubMed Google Scholar

  15. Youguo Shi
    View author publications

    Search author on:PubMed Google Scholar

  16. Li Lu
    View author publications

    Search author on:PubMed Google Scholar

  17. Jie Shen
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.S. and Y.P.L. conceived and designed the experiment. Y.P.L. and A.Q.W. fabricated the devices with the assistance of G.Y., X.C.G., Z.Y.Z., and Y.H. Y.P.L. and A.Q.W. performed the transport measurements, supervised by T.Q., Z.W.D., G.T.L., F.M.Q., L.L., and J.S. S.Y.P. and J.L.Z. performed the high-field transport measurements. D.Y.Y. and Y.G.S. prepared Ta2Pd3Te5 crystals. Z.J.W. provided the theoretical support. Y.P.L., A.Q.W. and J.S. wrote the manuscript with help from all other co-authors.

Corresponding authors

Correspondence to Jinglei Zhang, Youguo Shi, Li Lu or Jie Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, A., Pan, S. et al. A wide-range topological thermometer with Ta2Pd3Te5: from power-law response to application prospects. npj Quantum Mater. (2026). https://doi.org/10.1038/s41535-026-00866-8

Download citation

  • Received: 28 September 2025

  • Accepted: 05 February 2026

  • Published: 20 February 2026

  • DOI: https://doi.org/10.1038/s41535-026-00866-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • About the Editors
  • Contact
  • Open Access
  • Calls for Papers
  • Article Processing Charges
  • Editorial policies
  • Journal Metrics
  • About the Partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Quantum Materials (npj Quantum Mater.)

ISSN 2397-4648 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing