Table 5 Change in cognitive performance from baseline to Day 28 in active compared to sham treatment.
Cognitive assessment variables | Linear contrast test | Average trajectory difference: interaction test | |||
---|---|---|---|---|---|
Treatment * Time | Treatment | Time | |||
BART | Average Adjusted Pumps | Estimate = −9.32, df(11.87), p = 0.152 | F = 2.35, df(11.87), p = 0.152 | F = 0.05, df(15.09), p = 0.832 | F = 1.42, df(11.87), p = 0.257 |
Total Money Earned | Estimate = 1.04, df(14.46), p = 0.745 | F = 0.11, df(14.46), p = 0.745 | F = 0.75, df(14.90), p = 0.399 | F = 0.01, df(14.46), p = 0.923 | |
HVLT | Total Recall | Estimate = −2, df(16.03), p = 0.468 | F = 0.55, df(16.03), p = 0.468 | F = 0.96, df(17.45), p = 0.340 | F = 0.83, df(16.03), p = 0.376 |
Delayed Recall | Estimate = −0.21, df(15.91), p = 0.866 | F = 0.03, df(15.91), p = 0.866 | F = 0.15, df(17.29), p = 0.702 | F = 0.03, df(15.91), p = 0.866 | |
% Retention | Estimate = 10.92, df(15.92), p = 0.288 | F = 1.21, df(15.92), p = 0.288 | F = 0.04, df(17.30), p = 0.838 | F = 3.5, df(15.92), p = 0.080 | |
Discrimination Index | Estimate = −1.37, df(16.76), p = 0.248 | F = 1.43, df(16.76), p = 0.248 | F = 0.98, df(17.56), p = 0.335 | F = 0.001, df(16.76), p = 0.974 | |
SDR | 30 s Delay | Estimate = 4.70, df(15.87), p = 0.611 | F = 0.27, df(15.87), p = 0.611 | F = 0.57, df(17.66), p = 0.461 | F = 0.10, df(15.87), p = 0.755 |
TMT | Trial A | Estimate = 1.01, df(15.22), p = 0.665 | F = 0.20, df(15.22), p = 0.665 | F = 0.37, df(17.05), p = 0.549 | F = 15.22, df(16.96), p = 0.001* |
Trial B | Estimate = −5.11, df(15.56), p = 0.716 | F = 0.14, df(15.56), p = 0.716 | F = 0.36, df(17.25), p = 0.554 | F = 0.11, df(15.56), p = 0.748 | |
Digit Span | Forward | Estimate = 0.25, df(15.78), p = 0.844 | F = 0.04, df(15.78), p = 0.844 | F = 0.07, df(16.98), p = 0.799 | F = 1.22, df(15.78), p = 0.285 |
Backward | Estimate = −0.23, df(15.24), p = 0.807 | F = 0.06, df(15.24), p = 0.807 | F = 0.38, df(16.77), p = 0.544 | F = 1.40, df(15.24), p = 0.255 | |
Total | Estimate = −0.37, df(15.64), p = 0.806 | F = 0.06, df(15.64), p = 0.806 | F = 0.33, df(17.27), p = 0.571 | F = 4.04, df(15.64), p = 0.062 | |
CpT | % Correct Hits | Estimate = −1.05, df(12.41), p = 0.242 | F = 1.51, df(12.41), p = 0.242 | F = 0.001, df(14.99), p = 0.974 | F = 0.37, df(12.41), p = 0.557 |
% Omissions | Estimate = 7.37, df(12.04), p = 0.385 | F = 0.81, df(12.04), p = 0.385 | F = 0.07, df(14.59), p = 0.790 | F = 0.30, df(12.04), p = 0.591 | |
% Commissions | Estimate = −3.20, df(14.14), p = 0.469 | F = 0.55, df(14.14), p = 0.469 | F = 4.49, df(15.89), p = 0.050 | F = 0.86, df(14.14), p = 0.371 | |
Hit Reaction Time | Estimate = 6.58, df(15.18), p = 0.048* | F = 4.64, df(15.18), p = 0.048* | F = 2.19, df(17.58), p = 0.157 | F = 0.58, df(15.18), p = 0.457 | |
Variability | Estimate = −14.91, df(14.70), p = 0.044* | F = 4.85, df(14.70), p = 0.044* | F = 0.19, df(16.90), p = 0.672 | F = 0.07 df(14.70), p = 0.796 | |
Attentiveness | Estimate = −2.65, df(14.49), p = 0.493 | F = 0.49, df(14.49), p = 0.493 | F = 6.01, df(16.75), p = 0.025* | F = 0.11, df(14.49), p = 0.746 | |
Grooved pegboard | Dominant Hand | Estimate = −12.53, df(15.68), p = 0.152 | F = 2.27, df(15.68), p = 0.152 | F = 0.03, df(17.24), p = 0.874 | F = 0.06, df(15.68), p = 0.812 |
Dominant Hand # Dropped | Estimate = 0.09, df(16.94), p = 0.855 | F = 0.04, df(16.94), p = 0.855 | F = 0.70, df(17.18), p = 0.415 | F = 0.04, df(16.94), p = 0.855 | |
Non-Dominant Hand | Estimate = −24.26, df(15.71), p = 0.044* | F = 4.79, df(15.71), p = 0.044* | F = 0.18, df(17.24), p = 0.681 | F = 0.06, df(15.71), p = 0.805 | |
Non-Dominant Hand # Dropped | Estimate = −0.56, df(16.54), p = 0.337 | F = 0.98, df(16.54), p = 0.337 | F = 1.39, df(17.24), p = 0.254 | F = 1.81, df(16.54), p = 0.196 | |
KDDT | Ln(k) Small Reward | Estimate = −1.37, df(10.1), p = 0.273 | F = 1.35, df(10.1), p = 0.273 | F = 0.53, df(10.7), p = 0.484 | F = 3.37, df(10.1), p = 0.096 |
Ln(k) Medium Reward | Estimate = −2.05 df(10), p = 0.152 | F = 2.4, df(10), p = 0.152 | F = 0.31, df(10), p = 0.589 | F = 1.83, df(10), p = 0.206 | |
Ln(k) Large Reward | Estimate = −3.44 df(24), p = 0.059 | F = 3.92, df(24), p = 0.059 | F = 0.76, df(24), p = 0.391 | F = 5.23, df(24), p = 0.031* | |
Ln Geometric k | Estimate = −1.54, df(11.5), p = 0.175 | F = 2.09, df(11.5), p = 0.175 | F = 0.57, df(11.74), p = 0.464 | F = 3.17, df(11.5), p = 0.101 | |
TOL | Total Moves | Estimate = −2.5, df(6), p = 0.784 | F = 0.057, df(6), p = 0.819 | F = 0.93, df(6), p = 0.372 | F = 10.44, df(6), p = 0.018* |
Total Correct | Estimate = 3.5, df(6), p = 0.801 | F = 0.07, df(6), p = 0.801 | F = 0.11, df(6), p = 0.756 | F = 1.73, df(6), p = 0.237 | |
Total Time Violation | Estimate = 5, df(12), p = 0.722 | F = 0.13, df(12), p = 0.722 | F = 1.36, df(12), p = 0.267 | F = 1.36, df(12), p = 0.267 | |
Total Initiation Time | Estimate = −7.0, df(6), p = 0.241 | F = 1.69, df(6), p = 0.241 | F = 0.01, df(6), p = 0.923 | F = 0.86, df(6), p = 0.389 | |
Total Execution Time | Estimate = 4, df(6), p = 0.398 | F = 0.83, df(6), p = 0.398 | F = 0.86, df(6), p = 0.389 | F = 10.14, df(6), p = 0.019* | |
Total Problem-Solving Time | Estimate = 8, df(6), p = 0.218 | F = 1.89, df(6), p = 0.218 | F = 0.43, df(6), p = 0.54 | F = 1.44, df(6), p = 0.274 | |
MMN | Amplitude | Estimate = −0.32, df(12.33), p = 0.557 | F = 0.37, df(12.33), p = 0.557 | F = 1.32, df(14.57), p = 0.268 | F = 2.46, df(12.33), p = 0.142 |