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Understanding neurobiology and developing effective interventions for cognitive dysfunction in psychotic disorders remain
elusive. Insufficient knowledge about the biological heterogeneity of cognitive dysfunction hinders progress. We aimed to identify
subgroups of patients with psychosis and distinct patterns of functional brain alterations related to cognition (cognitive biotypes).
We analyzed B-SNIP consortium data (2 270 participants including participants with psychotic disorders, relatives, and controls, 55%
females). We used reference-informed independent component analysis with the standardized and fully automated framework
NeuroMark and the 100k multi-scale intrinsic connectivity networks (ICN) template to obtain subject-specific ICNs and whole-brain
functional network connectivity (FNC). FNC features associated with cognitive performance were identified using multivariate joint
analysis. K-means clustering identified patient subgroups based on these features. Two biotypes with different functional brain
alteration patterns were identified. Relative to controls, biotype 1 exhibited hypoconnectivity in cerebellar-subcortical and
somatomotor-visual networks and worse cognitive performance. Biotype 2 exhibited hyperconnectivity in somatomotor-subcortical
networks, hypoconnectivity in somatomotor-high cognitive processing networks, and better-preserved cognitive performance.
Demographic, clinical, cognitive, and FNC characteristics of biotypes were consistent in discovery and replication sets and in
relatives. 76.56% of relatives were assigned to a psychosis biotype, of those, 70.12% were to the same biotype as their affected
family members. These findings suggest two distinctive psychosis-related cognitive biotypes with differing functional brain patterns
shared with their relatives. Instead of traditional diagnosis, patient stratification based on these biotypes may help optimize future

research and identify biological targets for the treatment of cognitive dysfunction in psychosis.
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INTRODUCTION

Cognitive dysfunction is widely recognized as a transdiagnostic
dimension of psychotic disorders and is consistently associated
with poorer functional outcomes'. While effective pharmacologi-
cal treatments for positive psychotic symptoms have been
available for decades?, treatments targeting cognitive dysfunction
have not achieved the same level of efficacy®*. Cognitive
interventions have been typically designed for participants based
on their DSM diagnosis®. DSM diagnoses rely on patterns of
psychotic or affective symptoms, which do not necessarily map
onto biological mechanisms. Brain alterations can vary signifi-
cantly among individuals with the same DSM diagnosis® and
overlap with those with other diagnoses and relatives’. Distinct
subtypes with different aberrations in neural circuits linked to
cognitive dysfunction may exist within the broad group of
psychotic disorders and may require different treatments®,
However, traditional case-control comparisons may have masked
the biological heterogeneity underlying cognitive dysfunction
within DSM diagnostic categories®, all of it hindering the
development of targeted and more effective therapeutic strate-
gies for cognitive dysfunction®'°,

Previous efforts have aimed to identify subgroups of patients
with psychosis to improve treatment development. Given the high
dimensionality of the human population overall, and of psychotic
disorders specifically, there are numerous valid ways in which
participants with psychosis can be subgrouped'®. However, any
subgrouping might not help understand the biology of cognitive

dysfunction’®. Some studies have focused on identifying sub-
groups using cognitive performance alone, without incorporating
biological measures, which limits their ability to pinpoint different
brain circuits involved in cognitive dysfunction across various
subgroups'’. Other efforts have included cognitive performance
along with other laboratory or neurophysiology parameters'*'3,
These studies have demonstrated differences in brain measures
between the identified Biotypes'>'®. However, these Biotypes
were primarily based on multiple biomarkers related to psychosis
in general, rather than those specifically associated with cognitive
dysfunction, limiting its ability to identify specific brain mechan-
isms underlying cognitive dysfunction that could be used in
treatment development.

Previous studies have tried to identify subgroups based on
whole-brain neuroimaging data''°. Clustering based on this type
of data, specifically on rsfMRI, can be challenging due to the high
dimensionality of the brain, and the usually low signal-to-noise
ratio’®. Consequently, the number of features used in clustering
must be reduced to those of interest for the research question.
Additionally, clustering based on whole-brain neuroimaging data
can be easily driven by variability unrelated to psychosis but to
confounds (e.g. age, sex, sites, ancestry) that may mislead the
clustering. To overcome these problems, previous studies—using
mostly structural magnetic resonance imaging (sMRI)—, have
used different approaches to characterize the heterogeneity
relevant to the research question®'°. Some examples have been
HYDRA, which identifies clusters of patients based on their
differences compared to controls?®?2 and was used in
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schizophrenia?' and first-episode psychosis?®, or a combination of
clinical and brain clustering solutions in early psychosis?.
However, the emphasis has remained on identifying general
biological subgroups rather than focusing on the specific
biological characteristics related to cognitive dysfunc-
tion20-2224-26_ Approaches that do not use cognitive performance
as the primary dimension to parse variability across features are
more likely to produce unhelpful subgroups in disentangling the
biological diversity of cognitive dysfunction and in identifying
potential biological targets for treatment in subsequent steps'®.

Other types of approaches have tried to identify subgroups of
mental health patients using data fusion techniques to combine
symptoms and neuroimaging data?’?%, These approaches had
replication problems due to small sample sizes, instability of the
results, and weak brain-symptom associations?’. Cognition and
rsfMRI?° have been suggested to present a stronger relationship
compared with other combinations like structural MRI-
psychopathology or rsfMRI-psychopathology>°. Therefore, this
type of approach along with larger sample sizes and new fMRI
approaches may be suitable for the identification of cognition-
related fMRI features, on which to base the identification of
subgroups.

Approaches based on Independent Component Analysis (ICA)
divide the functional brain into temporally coherent patterns,
known as intrinsic connectivity networks (ICNs), which may be
spatially overlapping but functionally distinct®'>. Recent
advancements have led to a standardized and fully automated
framework, called Neuromark®® for identifying ICNs across
participants and datasets.

These advancements include a canonical template with 105
multi-scale ICNs from data collected from over 100,000 partici-
pants®’. This ICN template was obtained through ICA with
different model orders®, which allows the ICNs to arise from
different spatial scales (multi-scale ICNs). The temporal coupling
between these multi-scale ICNs is called multi-scale functional
network connectivity (FNC).

This template can be used along with reference-informed
ICA3%3° to identify these multi-scale ICNs and their multi-scale FNC
in datasets, potentially leading to more replicable and stronger
brain-cognition associations, subsequently helping to identify
cognition-related FNC features that can serve to identify FNC-
based cognition-related subgroups.

We hypothesize that subgroups of patients or biotypes with
psychotic disorders with different patterns of multi-scale FNC
related to cognitive dysfunction and different cognitive profiles
can be identified. We used a large dataset of participants with
schizophrenia (SZ), schizoaffective disorder (SAD), and bipolar
disorder with psychotic symptoms (BDP), their first-degree
relatives, and controls. First, we identified FNC features related
to cognition in psychosis, and second, we used these features to
identify subgroups of patients with different patterns of FNC
alterations associated with cognitive performance or cognitive
biotypes. We validated the subgroups in a replication sample and
first-degree relatives.

METHODS AND MATERIALS

Participants

We analyzed data from 2270 participants recruited by the Bipolar-
Schizophrenia Network on Intermediate Phenotypes (B-SNIP)
Consortium 1 and 2. We included participants meeting the criteria
for BDP, SAD, or SZ (N=1179), their first-degree relatives
(N=465), and healthy controls (N =626). We used all available
data from participants with complete rsfMRI and Brief Assessment
of Cognition in Schizophrenia (BACS) data (Table 1).
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Clinical and cognitive assessments

Demographic data were collected for all participants. For details
about clinical assessment see Supplementary Material. All
participants underwent cognitive testing with the Brief Assess-
ment of Cognition in Schizophrenia (BACS)***' that includes six
cognitive constructs: 1) Verbal Memory/List Learning Task, 2)
Working Memory/Digit Sequencing Task, 3) Motor Speed/Token
Motor Task, 4) Verbal Fluency/Category Instances Task, Controlled
Oral Word Association Test, 5) Attention and Speed of processing/
Symbol Coding Task, and 6) Executive functions/Tower of London
and a composite score*'. We also incorporated the Weschler
Memory Scale (WMS) Backward and Forwards subtests for the
cognitive assessment*2. For patients recruited in B-SNIP2, informa-
tion regarding childhood learning difficulties was collected.

Estimating subject-specific multi-scale intrinsic connectivity
networks (ICNs) and multi-scale functional network
connectivity (FNC)

Imaging data acquisition and preprocessing details can be found
in Supplementary Material. We used the GIFT software toolbox
(http://trendscenter.org/software/gift)*® to perform multivariate-
objective optimization ICA with reference (MOO-ICAR*¥*%) and
generated subject-specific ICNs. As a reference, we used the
Neuromark_fMRI_2.0 template (http://trendscenter.org/data),
which includes highly replicated 105 ICNs across different spatial
scales®” in over 100k individuals. Next, we computed subject-level
static FNC by calculating pairwise Pearson correlations between
the cleaned (see Supplementary material) time courses of ICNs.
This process resulted in a 105 x 105 symmetric FNC matrix for
each participant, representing the whole-brain functional con-
nectome**** (Fig. 1A).

Discovery and replication sets

We divided our sample into discovery and replication sets
comprising about 80% and 20% of the sample. The proportion
of patients, relatives, and controls was consistent in both sets. We
regressed out the site-related and mean framewise displacement
(see Supplementary materials for details).

Canonical FNC signatures of cognitive performance

First, we aimed to find FNC features highly associated with
cognitive performance in psychosis that could serve to identify
subgroups of patients. Secondly, we used these features to
identify cognition-related neurobiology-based subgroups of
patients or cognitive biotypes. For this purpose, we used a
Principal Component Analysis Plus Canonical Correlation Analyses
(PCA-CCA) model*6~>°, We performed PCA-CCA between cognitive
variables (six BACS constructs and WMS Backward and Forwards
tests), and the 5460 FNC variables on the discovery set, including
patients, relatives, and controls (Fig. 1B). We excluded BACS
composite score from the PCA-CCA model to avoid redundancy,
as it combines individual BACS subtests. Combining the three
groups allowed us to analyze between-group differences (see
supplemental material for analyses involving first-degree relatives)
and select the canonical variates with statistically significant
differences between patients and controls, reducing the prob-
ability of merely capturing general population variability in the
subsequent cluster analyses. Additionally, we achieved a larger
sample size, boosting the statistical power and mitigating
overfitting?”-3°.

We estimated the optimal number of principal components
directly from the data. To tune the model, find an optimal number
of principal components, and improve the robustness of our
findings, we randomly split the discovery set into 80% train subset
and 20% test subsets, estimated canonical pairs for a given
number of principal components using 80% train subset, and
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Table 1. Demographic, clinical, cognitive, and site characteristics of participants in discovery and replication sets.
Characteristic Replication Discovery
Healthy Relatives Patients Healthy Relatives Patients
Controls N=93 N=256 Controls N=372 N=923
N=126 N =500
BDP? 31 33% 60 23% 121 32% 250 27%
SAD? 28 30% 96 38% 111 30% 299 32%
Sz2 34 37% 100 39% 140 38% 374 41%
Demographic
Mean sDP Mean sDP Mean SDb Mean sDb Mean sDP Mean sDP
Age (years) 35.55 12.94 41.66 15.88 37.69 11.79 35.92 12.20 41.12 15.59 36.74 12.20
Sex (Female) 74 60% 63 69% 137 54% 293 59% 237 64% 445 48%
SES 35.70 14.45 38.41 16.24 45.81 14.26 35.54 13.24 39.77 16.66 47.51 14.67
Ethnicity
Hispanic 14 11% 6 6.5% 35 14% 65 13% 39 10% 111 12%
Not Hispanic 112 89% 87 94% 219 86% 435 87% 333 90% 811 88%
Not ascertainable 0 0% 0 0% 2 0.8% 0 0% 0 0% 1 0.1%
Race
African American 33 26% 32 34% 98 38% 167 33% 100 27% 351 38%
Caucasian 75 60% 61 66% 123 48% 264 53% 255 69% 469 51%
Other 18 14% 0 0% 35 14% 69 14% 17 4.6% 103 11%
Clinical
BSFS 154.87 15.43 149.20 23.98 122.25 22.76 154.21 17.40 146.51 21.25 124.79 2461
GAF 84.19 6.23 76.72 12.49 54.68 1247 85.01 6.75 75.67 13.51 53.61 13.30
MADRS 12.04 9.72 10.79 9.53
PANSS 61.34 18.77 61.14 18.65
SBS 5.11 2.62 5.22 2.85
YMRS 8.31 6.67 8.04 745
Cognition
BACS Composite Score -0.17 1.18 —0.54 1.25 —1.48 1.39 —0.26 1.21 —0.48 1.32 —1.50 1.39
BACS Verbal Memory —0.11 1.13 —0.27 1.26 —1.01 1.33 —0.21 1.20 —0.36 1.22 —1.02 1.40
BACS Digit Sequencing —0.24 1.03 —0.31 1.18 —0.89 117 —0.22 1.06 —0.38 1.24 —0.96 1.24
BACS Token Motor —-0.33 1.1 —0.69 0.99 —1.52 1.28 —0.49 1.22 —0.36 1.16 —1.44 1.16
BACS Verbal Fluency 0.14 1.13 —0.11 1.29 —0.53 1.18 0.14 1.12 —0.11 1.12 —0.46 1.20
BACS Symbol Coding —0.08 1.00 —0.49 1.09 —1.08 1.20 —-0.14 1.03 —0.46 1.08 -1.16 1.12
BACS Tower of London 0.12 0.90 —-0.14 0.96 —0.41 1.09 0.01 0.96 —0.11 1.00 —0.41 1.04
WMS Spatial Span Forward 8.40 2.08 7.96 2.06 7.52 2.07 8.42 2.05 7.88 2.03 7.48 2.09
WMS Spatial Span Backward 7.89 2.08 6.82 2.18 6.53 2.14 7.68 2.02 7.05 2.15 6.47 2.23
Medication
ChlorEq 357.40 350.16 365.34 346.73
Missing 0 540
Site
Baltimore 9 7.1% 21 23% 18 7.0% 42 8.4% 87 23% 105 11%
Boston 8 6.3% 2 2.2% 15 5.9% 26 5.2% 9 2.4% 68 7.4%
Chicago 2 25% 12 13% 58 23% 113 23% 64 17% 229 25%
Dallas 8 14% 13 14% 47 18% 96 19% 59 16% 145 16%
Detroit 7 5.6% 7 7.5% 15 5.9% 15 3.0% 30 8.1% 36 3.9%
Georgia 2 17% 0 0% 26 10% 81 16% 0 0% 89 9.6%
Hartford 0 24% 38 41% 77 30% 127 25% 123 33% 251 27%
Dataset
B-SNIP 1 7 37% 93 100% 95 37% 188 38% 372 100% 399 43%
B-SNIP 2 79 63% 0 0% 151 63% 312 62% 0 0% 524 57%

SES Socioeconomic Status, MADRS Montgomery-Asberg Depression Rating Scale, YMRS Young Mania Rating Scale, PANSS Positive and Negative Syndrome
Scale for Schizophrenia, BSFS Birchwood Social Functioning Scale, GAF Global Assessment of Functioning Scale, SBS Schizo-bipolar Scale, BACS Brief Assessment
of Cognition in Schizophrenia, WMS Weschler Memory Scale, ChlorEq average daily chlorpromazine dose.
For relatives it is the diagnosis of their affected family member.

bStandard Deviation.
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estimated the correlation value for canonical pairs in the test
subset (Fig. 1B). We selected the number of principal components
with the highest average correlation value in the test subsets
across 10,000 random splits (Supplementary material). We
conducted additional approaches to ensure the robustness of
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the results (Supplementary material). We obtained the canonical
variates in the replication set by applying the canonical weights
from the discovery set in the replication data. Finally, we tested
canonical correlations’ statistical significance in the hold-out

replication set.
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Fig. 1 Overview of the analytic pipeline. A We employed multivariate-objective optimization independent component analysis with
reference (MOO-ICAR) to estimate 105 multi-scale intrinsic connectivity networks (ICNs) at the subject level. The reference for the 105 ICNs was
derived from a large sample of over 100,000 participants. We computed subject-level static functional network connectivity (FNC) by
calculating pairwise Pearson correlations between cleaned time courses of ICNs, resulting in a 105 x 105 symmetric FNC matrix for each
participant. ICNs are grouped together based on their anatomical and functional properties. B Principal Component Analyses Plus Canonical
Correlation (PCA-CCA) was fitted on the discovery set, including patients, relatives, and controls, to find FNC features associated with the Brief
Assessment of Cognition in Schizophrenia and Wechsler Memory Scale Backward and Forwards Tests. The optimal number of principal
components was estimated directly from the data using the Elbow criteria. Three canonical correlations remained statistically significant in the
replication set and two remained statistically significant after adjusting for covariates. We conducted a pair-wise comparison between patients
(N = 256) and controls (N = 126) for the remaining two canonical variates adjusting for covariates in the replication set. Similar comparisons
including first degree relatives (N = 93) who make up the rest of the replication set (N = 475) can be found in Supplementary material. Patients
and controls presented statistically significant differences in both cognitive canonical variates and in the first FNC canonical variate but did
not in the second FNC canonical variate, therefore we did not include the second pair in subsequent analyses. C We selected FNC features
with the highest correlation with the first canonical variate in patients in the discovery set. We selected FNC features with a loading >|0.1047|
according to the elbow method (Cognitive FNC features in Psychosis or CFPs). Left: Correlation values of the 5460 functional network
connectivity features and the first FNC canonical variate in 105 x 105 symmetric matrices in patients in the discovery set. Blue colors: negative
correlation. Yellow-red colors: positive correlation. Lighter colors: correlation closer to 0. Middle: elbow plot of ranked absolute values of
correlations with a vertical line at 0.1047, the value chosen as threshold. Right: FNC features with a correlation with absolute values lower than
0.1047 and therefore not included in k-means clustering are shown in white. The 1077 FNC features selected for k-means clustering are shown
in color. D We conducted k-means clustering using patients from the discovery set to find subgroups of patients based on CFPs. Silhouette
index solution for two clusters was statistically significant (p = 0.0005). E We assigned patients from the replication set to one of the clusters
obtained in the discovery set based on the shortest Euclidean distance between each subject’s centroid and the clusters’ centroid for the 1077
CFPs. F We computed the centroid of the 1077 CFPs in the control group to simulate a control cluster. Like E, we assigned first-degree relatives
to either one of the patients’ clusters or to the control cluster based on the shortest distance between the centroid of each subject and the
centroids of the clusters.

Influences of covariates on significant canonical pairs in the
replication set

We analyzed how covariates (age, sex, race, socioeconomic status,
and chlorpromazine equivalents) influenced the relationship
between cognitive and FNC canonical variates in the replication
set. We conducted linear models with canonical cognitive variates
(CVcog) as dependent variables and canonical FNC variates (CVenc)
and covariates as independent variables. We aimed to identify
FNC features associated with cognition that were less influenced
by these covariates; therefore, we excluded canonical pairs
without statistically significant associations when introducing
covariates from subsequent analyses.

Determining cognition-related FNC features in participants
with psychosis

To identify FNC features suitable for clustering, we focused on
canonical variates that showed differences between patients and
healthy controls. This approach aimed to reduce the risk of
identifying subgroups that reflect general population variability
rather than features specific to psychotic disorders. First, we
compared canonical variates between patients and controls while
controlling for the covariates. We selected canonical pairs with
significant between-group differences in both cognitive and FNC
canonical variates in the replication set (psychosis-related variates)
for further analysis (Fig. 1B). Second, with the same purpose, we
calculated Pearson correlations between these FNC canonical
variates and the FNC features in the patient group in the discovery
set. We ranked the correlation values and used the elbow method
to establish a threshold. We selected the 1077 FNC features with a
correlation higher than |0.1047| (Fig. 1C). For this work, we refer to
these FNC features as Cognitive FNC Features in Psychosis or CFPs
(Fig. 10).

Cluster identification, significance, and stability

Clustering analysis procedures always identify clusters in a dataset,
and indices for determining the optimal number of clusters always
provide a result, however, these procedures do not indicate that
the data genuinely exhibit a cluster structure beyond what would
be expected by chance. To overcome this limitation, we used a
statistical procedure (Supplementary material) to evaluate the
presence of clusters in our data?’*'. We obtained the optimal

Published in partnership with the Schizophrenia International Research Society

number of clusters with the Silhouette Index and evaluated the
probability of observing this Index under the null hypothesis of no
clusters (p-value)?”>152,

We evaluated clustering stability with a bootstrapping resam-
pling technique (n bootstraps=1000). We performed K-means
clustering on each bootstrapped resample and we computed the
Jaccard similarity average®3°*,

Biotypes validation and characterization

In k-means clustering, each cluster is represented by its centroid.
The centroid is the arithmetic mean position of all the
observations in the cluster, representing the point in multi-
dimensional space that minimizes the sum of squared distances to
all other points in the cluster. New observations can be assigned
to one of the established clusters based on the shortest Euclidean
distance between the observation and cluster centroids>>°%, We
assigned patients from the replication set to clusters obtained in
the discovery set using this method (Fig. 1E) to replicate the
clusters.

First-degree relatives present intermediate cognitive perfor-
mance between patients and controls’ (Table S1), therefore, we
hypothesized that some relatives presented more similar CFP
patterns to their affected family member than to controls, while
other relatives may be more similar to controls than to patients. To
evaluate this, we computed the centroid of the control group
(healthy cluster or biotype) by calculating the average value of
their CFPs. We assigned relatives to either one of the patients’
clusters or the healthy cluster based on their closest centroid (Fig.
1F). We calculated the proportion of relatives assigned to the same
cluster as their affected family members. To validate the clusters,
we compared clusters/biotypes of patients from discovery and
replication sets and clusters/biotypes of relatives, for demo-
graphic, clinical, cognitive variables, and FNC features. We
considered a result as replicated if it reached statistical
significance in the discovery set in a two-tailed test after False
Discovery Rate (FDR) correction and in a two-tailed test in the
replication set. We use a consistent approach to evaluate the
proportion of relatives that were assigned to the same DSM
diagnosis as their family members (supplementary materials).

Schizophrenia (2025) 45
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RESULTS

Demographic, clinical, and cognitive characteristics of discovery
and replication sets are shown in Table 1.

Canonical FNC signatures of cognitive performance and
influence of covariates on statistically significant
canonical pairs

Three canonical pairs presented statistically significant correlations in
both the diSCOVery (rDiS1 =049, Ppis1 = 0.001; rpis; = 0.34, Ppis2 < 0.001;
foiss = 0.33, ppis3 <0.001, Fig. 2A) and replication set (rgep1 =047,
Prep1 = 0.001; fRep2 = 0.24, Prep2 < 0.001; fRep3 = 0.13, Prep3z = 0.002,
Fig. 2B). Loadings are shown in Fig. 2C and D. Associations in the first
and second pairs remained statistically significant after introducing the
covariates, (Brept = 0.24, Clrep1: 0.16-0.33, Prept < 0.001; Brepo =0.12,
Clgep2: 0.02-0.21, pgep2 = 0.015), but the third pair association did not
(Brepz = 0.03, Clgeps: —0.07-0.14, pgepsz = 0.500). Therefore, we did not
include the third pair in subsequent analyses (supplementary
material). We repeated these analyses excluding chlorpromazine
equivalents and obtained similar results®’.

Determining cognition-related FNC features in participants
with psychosis

We observed statistically significant differences between patients
and controls in the first canonical FNC (controls—patients, d = 0.58,
t=>5.28, p.qj<0.0001), and cognitive variates (controls—patients,
d=053, t=5.05 p,y<0.0001), and in the second cognitive
canonical variate (controls-patients, d = 0.35, t = 3.05, p,q; = 0.007),
but not in second FNC canonical variate (controls—patients, d = 0.07,
t=0.56, pagj=0.84) (Fig. 2H). As we aimed to identify canonical
pairs that exhibited differences in both cognition and FNC between
patients and controls, we included the first pair but not the second
in subsequent analyses. We repeated these analyses excluding
chlorpromazine equivalents and obtained similar results®”’. We
selected FNC features with the highest correlation with the first FNC
canonical variate in patients (Cognitive FNC Features in Psychosis,
CFPs) for k-means clustering. Elbow’s method suggested 0.1047 as a
threshold, comprising 1077 FNC features (Fig. 1C).

Clusters identification, significance, and stability. Validation
and characterization of cognitive biotypes

The Silhouette index suggested two clusters as the optimal
number and was statistically significant (p = 0.0005) against the
null hypothesis of no clusters in our data (Fig. 1D). Bootstrapped
Jaccard similarity values were 0.935 for Cluster 1 and 0.921 for
Cluster 2, both significantly higher than the suggested threshold
of 0.85 for highly stable clusters®>>% We repeated the analysis
using hierarchical clustering (supplementary material). We calcu-
lated the intra-class correlation kappa coefficient to measure the
agreement between the assignment of both methods and
obtained a coefficient of 0.70 (indicative of substantial agreement:
0.61-0.80°%) with a p <0.001. Of those first-degree relatives with
their family members included in analyses, 76.56% (N = 281/367)
were assigned to one of the psychosis clusters. Of those, 70.12%
(N=197/281, x2=17.03, p <0.00001) were assigned to the same
biotype as their family member (Fig. 1F). 23.4% (N = 86/367) of
relatives were assigned to the control biotype (supplementary
material). In the analyses using diagnostic-based clustering (SZ vs
BD), only 54.85% of relatives assigned to psychosis clusters were
assigned to the same diagnosis cluster as their family members
(N=96/175, x2 =1.22, p = 0.269).

Cognitive biotypes of patients in the discovery set

Functional network connectivity: Biotype 1 exhibited more
extensive FNC alterations than biotype 2 when compared to
controls. Relative to controls, biotype 1 displayed hypoconnectiv-
ity between visual-somatomotor, cerebellar-subcortical, high
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cognitive processing-cerebellar, somatomotor-subcortical, and
high cognitive processing-temporal networks. Biotype 1 showed
hyperconnectivity compared to controls in visual-subcortical,
visual-cerebellar, somatomotor-subcortical, and high cognitive-
somatomotor networks (Fig. 3A, B). Biotype 2 displayed hypo-
connectivity relative to healthy controls in high cognitive
processing-somatomotor, high cognitive processing-subcortical,
and subcortical-cerebellar networks. Biotype 2 presented hyper-
connectivity compared to controls in cerebellar-somatomotor,
subcortical-somatomotor, and temporal-high cognitive processing
networks (Fig. 3A and B, and Fig. S1A for between cluster
comparison). comparisons were corrected with FDR for multiple
comparisons.

Demographic, cognitive, and clinical characteristics: Compared
to biotype 2 and after FDR correction, biotype 1 presented a
statistically significantly higher proportion of African Americans
(Vcramer=0.21, prpr < 0.001), a lower proportion of Caucasians
(Vcramer=0.18, prpr<0.001), a higher proportion of SZ (V¢
mer=0.09, pFDR<0'O12)I lower of BPD (VCramer:O'1ol pFDRZO.OOZ),
older age (dconen=0.33, t=4.93, prpr < 0.001), lower socioeco-
nomic status (dcohen=0.32, t =4.80, prpr < 0.001), more similarity
to SZ than BPD (schizo-bipolar scale, SBS, dconen = 0.27, t =4.24,
Pror < 0.001) and lower score in the Global Assessment of
Functioning (GAF, dconen = —0.21, t= —3.14, pgpr = 0.004) and
in Birchwood Social Functioning Scale (BSFS, dconen=-0.25,
t= —3.55, prpr < 0.001) functioning. Biotype 1 presented signifi-
cantly worse cognitive performance across all cognitive subtests
(Fig. 4, see Table S2 for statistical details) and a higher proportion
of patients with a history of childhood learning difficulties in all
categories compared to biotype 2 (Fig. 5A and Table S2 for
statistical details).

Cognitive biotypes of patients in the replication set. A similar
pattern of differences in the same direction was observed
(Figs. 3C, D, 4 and 5B) but fewer differences in FNC, demographic,

clinical, and cognitive characteristics reached statistical
significance.
Demographic, cognitive, and clinical characteristics: Relative to

biotype 2, biotype 1 presented a significantly higher propor-
tion of African Americans (Vcramer=0.15, p < 0.015), and older
age (dcohen=0.52, t=3.198, p < 0.002). Higher similarity to SCZ
in the schizo-bipolar scale (SBS) was close to significance
(dconen=0.23, t=1.815, p=0.07) (Fig. 4 and Table S3).
Regarding cognition, similar to the discovery set, biotype 1
displayed an average worse performance in all cognitive
constructs and a higher proportion of patients with learning
difficulties during childhood in all categories compared to
biotype 2 (see Table S3 for statistical details). Differences in
BACS composite (dconen = —0.28, t = —2.10, p = 0.036), Tower
of London (dcohen = —0.38, t=—2.87, p =0.004), WMS back-
ward (dcohen = —0.36, t=-2.62, p=0.009), and forward
(dconen = —0.32, t=—2.364, p =0.018) reached statistical sig-
nificance. Symbol coding was close to significance (dcohen =
—0.26, t=-1.94, p=0.054) (Figs. 4, 5B and Table S3).
Congruent patterns of differences also emerged in biotypes
of first-degree relatives (Figs. 3E-G, 4, 5C, and Table S4) in FNC,
demographic and clinical characteristics (see supplementary
results). We repeated the cluster analysis using whole-brain
FNC features and found no replicable differences in any of the
nine cognitive measures (Supplementary material).

Cognitive biotypes of First-degree Relatives

367/465 relatives had their family members included in the
analyses. 281/367 (76.57%) were assigned to psychosis clusters/
biotype; of those, 197/281 (70.12%, x2 = 7.0297, p < 0.00001) were
assigned to the same cluster/biotype as their family member. 249/
326 relatives of participants with SZ or BPP had their family
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members included in the analyses. 175/249 (70.28%) were
assigned to BPP or SZ clusters; of those, 96/175 (54.85%,
¥x2 = 1.2215, p = 0.269) were assigned to the same cluster as their
family members (Table S2).
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Functional network connectivity. Compared to controls, biotype 2
also showed hypoconnectivity between visual-high cognitive perfor-
mance networks and hyperconnectivity between visual-subcortical
networks, a pattern not observed in the same biotype in patients. As
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Fig. 2 Canonical correlations and canonical loadings between cognitive performance and functional network connectivity features.
A Scatterplots of the first (left), second (center), and third (right) canonical pairs in the discovery set. Canonical correlations: rp;s; = 0.49,
Pois1 = 0.001; rpisz = 0.34, ppisz = 0.001; rpiss = 0.33, ppiss = 0.001. P-values computed with 1000 permutations. B Scatterplots of the first (left),
second (center), and third (right) canonical pairs in the replication set. Canonical correlations: rgep1 =0.47, Pprep1 <0.001; rgep, = 0.24,
Prep2 < 0.001; rpep3 = 0.13, preps = 0.002. € Loadings (Pearson correlation between cognitive subtests and cognitive canonical variates) for Brief
Assessment of Cognition in Schizophrenia (BACS, blue) subtests and Weschler Memory Scales (WMS, red) Backward and Forward for the first
(left), second (center) and third (right) canonical pairs. D Loadings (Pearson correlation between Functional Network Connectivity (FNC) and
FNC canonical variates) for the 5460 FNC and the first (left), second (center), and third (right) canonical pairs. Loadings are represented in
105 x 105 symmetric matrices. The 105 multiscale intrinsic connectivity networks are grouped as follows: Visual networks (VI), cerebellar
networks (CB), temporal networks (TP), subcortical networks (SC), somatomotor networks (SM), and high cognitive processing networks (HCP).
E-G Brain maps in MNI152 space, where nodes are the coordinates of peak activation points of the 105 intrinsic connectivity networks and
edges are 10% FNC features with the highest loadings for each FNC canonical variate (E, first; F, second; G, third). H Violin plots of participants
with psychosis and controls pairwise comparisons of the first (left) and second (right) canonical pairs in the replication set. Two-tailed t-tests
obtained from linear models adjusting for covariates: First functional network canonical variate, d = 0.58, t(466) = 5.28, p,q; < 0.0001; First
cognitive canonical variate, d=0.53, t(466)=5.05, p,q;<0.0001; Second functional network connectivity canonical variate, d =0.07,
t(466) = 0.56, p.q;=0.84; Second cognitive canonical variate, d =0.35, t(466) = 3.05, p,qj =0.007. t: t-statistic, t(degrees of freedom), d:
difference. * statistically significant differences between groups. EMM: Estimated Marginal Mean. P-value: Tukey method for comparing a

family of 3 estimates.

expected, first-degree relatives assigned to the control biotype
presented substantially fewer FNC differences compared with controls.

Demographic, cognitive, and clinical characteristics. After FDR
correction and compared to biotype 2, biotype 1 exhibited
statistically significant older age (t=3.220, pgpr = 0.009), lower
GAF (t = —3.467, prpr = 0.006), and a higher proportion of African
Americans (x2 = 14.189, pgpr = 0.001). Compared to biotype 2 and
after FDR correction, biotype 1 also presented a worse cognitive
performance in the BACS composite (t=—0.345, pgpr = 0.006),
verbal memory (t=—-2.546, pgpr=0.035), digit sequencing
(t=—2.362, prpr=0.049), symbol coding (t=—3.104, prppr=
0.009), and WMS backward (t = —3.120, prpr = 0.009) and forward
(t=—4.736, prpr=0.001). Compared to relatives in the control
biotype, biotype 1 displayed worse performance in BACS
composite (t=—2.879, prpr = 0.016), verbal memory (t=—2.879
Pror = 0.016), symbol coding (t=—2.44, pgpr=0.042), digit
sequencing (t=-3.119, pgpr=0.009), and WMS forwards
(t=—2.71, pepr = 0.024) constructs after FDR correction. Biotype
2 (more cognitively preserved in patients) and the control biotype
did not exhibit statistically significant differences in cognitive
performance. This pattern mirrored the findings observed in
patients.

DISCUSSION

Our study aimed to identify neurobiology-based cognition-related
biotypes in patients with psychotic disorders, characterized by
distinct functional brain alterations related to cognition. Firstly, we
identified a robust multivariate correlation between brain-wide
FNC and cognitive performance across patients, relatives, and
controls in a replication set. We found a higher correlation
between the first canonical variates than previously reported®®,
potentially attributable to methodological improvements through
our constrained ICA NeuroMark approach and the multi-scale ICNs
template. Patients exhibited significantly lower scores in the first
FNC and cognitive canonical variates which is in line with previous
studies that suggested that disruptions in brain networks may be
implicated in cognitive dysfunction in psychosis®°.

Secondly, we identified two biotypes with distinct FNC
characteristics linked to cognitive performance. Biotype 1
consistently exhibited poorer cognitive performance and a higher
prevalence of childhood learning difficulties (Tables S2 and S3).
BACS composite score, which provides a global measure of
cognitive performance, and three other cognitive tests showed
replicable differences between biotypes. We did not find
replicable differences in five cognitive subtests, although BACS
Symbol coding was close to significance (p =0.054). However,

Schizophrenia (2025) 45

except for BACS Tower of London whose effect size was reduced
to -0.05 in the replication set, the remaining effect sizes were
comparable to those observed in the discovery set, suggesting
that the lack of significance were likely due to limited statistical
power (see Supplementary material for power analyses). This is
also supported by the similar patterns observed in demographic,
clinical, cognitive, and FNC characteristics between biotypes in
both the discovery and replication sets. Analogous patterns were
observed in first-degree relatives: biotype 1 displayed inferior
cognitive performance in six cognitive constructs compared to
biotype 2 and in five compared to the healthy biotype (first-
degree relatives more similar to controls). Biotypes in first-degree
relatives also presented similar patterns in FNC alterations.

The two biotypes may represent distinct subgroups of patients,
each characterized by divergent patterns of brain network
alterations associated with cognitive dysfunction. These altera-
tions appear to be distributed widely across the brain. Compared
to biotype 2, biotype 1 exhibited increased FNC primarily between
temporal-high cognitive processing and somatomotor-cerebellar
networks and decreased FNC between somatomotor-high cogni-
tive processing, some somatomotor-high cognitive processing
networks, and temporal-cerebellar networks (Fig. S1). FNC
between temporal-subcortical and temporal-somatomotor net-
works were largely spared (Figs. S1 and 3). Compared to healthy
controls, biotype 1 was characterized by hypoconnectivity in
cerebellar-subcortical and somatomotor-visual networks and
worse cognitive performance. Biotype 2 was characterized by
hyperconnectivity in somatomotor-subcortical networks and
hypoconnectivity in somatomotor-high cognitive processing net-
works, and better preserved cognitive performance. This distinct
pattern of hypo- and hyperconnectivity, with opposite directions
and significant differences between biotypes, primarily involves
the somatomotor-high cognitive processes, temporal-high cogni-
tive processes, and subcortical-high cognitive processes networks
(Figs. S1 and 3). These findings suggest that the biotypes may
differ not only in the severity of alterations but also in the type of
these alterations or potential compensatory mechanisms. Notably,
not all FNC features that differed between biotypes or compared
to controls were CFPs (Figs. 3 and S1).

Our results support that psychosis-free first-degree relatives
presented similar biotypes as the participants with psychosis,
suggesting that cognitive biotypes are not completely dependent
on disease severity. Additionally, biotype 1 showed replicable
differences in hospitalizations (but not in the ratio of hospitaliza-
tions to age), lifetime duration of psychotic symptoms, and the
ratio of lifetime duration of psychosis to age (Tables S8 and S9).
Cognitive impairment is associated with reduced treatment
adherence, higher hospital admission rates, and longer hospital
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disease in terms of positive or negative symptoms. FNC features that showed alterations compared to controls in
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Fig. 3 Matrices for the differences in functional network connectivity between controls (N = 626) and cognitive biotypes. Discovery set:
biotype 1, N = 426; biotype 2, N = 497. Replication set: biotype 1, N= 110, biotype 2 N = 146. First-degree relatives: biotype 1, N = 153; biotype
2, N =178, control biotype, N = 95. For each functional network connectivity (FNC) feature, we fit a linear model adjusting for sex, age, race,
ethnicity, site, and head motion and conducted a two-tailed t-test to compare controls with each biotype of patients and relatives. Bottom-left
triangle: t-statistic. Top-right triangle: p-values, those that reached statistical significance (p <0.05) are shown with colors (-log10(p-
value)xsign(t-statistic) scale); otherwise, they are shown in gray. The discovery set is corrected for multiple comparisons (False Discovery Rate).
Yellow-Red colors: higher FNC in patients/relatives compared to controls. Blue colors: lower FNC in patients/relatives compared to controls.
A Biotype 1 from discovery set. B Biotype 2 from discovery set. C Biotype 1 from replication set. D Biotype 2 from replication set. E First-degree
relatives biotype 1. F First-degree relatives biotype 2. G First-degree relatives control biotype. Cognitive FNC features in psychosis (CFPs) included
in k-means clustering are shown with a black line. Visual networks (VI), cerebellar networks (CB), temporal networks (TP), subcortical networks
(SC), somatomotor networks (SM), and high cognitive processing networks (HCP). First-degree relatives with a diagnosis of a psychotic

disorder were excluded from these analyses.

each biotype, especially those with distinct patterns of dyscon-
nectivity between biotypes (mainly somatomotor-high cognitive
processing, temporal-high cognitive processing, and subcortical-
high cognitive processing networks) and belonging to CFPs, may
serve as the basis for identifying different altered brain circuits
responsible for cognitive dysfunction in psychosis. These circuits
could be targeted for therapeutic interventions. Subsequent
investigations could explore the impact of treatments purportedly
capable of modulating cognition in psychotic disorders' on CFPs.

We consider our approach a potential advancement in
unraveling the biological heterogeneity of cognitive dysfunction
within psychosis, compared to previous efforts based on cognitive
performance, other biomarkers or neuroimaging
approaches'1220-2226  more [imited in identifying subgroups
based on the specific brain networks related to cognitive
dysfunction. One study'® used cognition and neurophysiological
tests in the same sample and identified three Biotypes, where
Biotypes 1 and 2 did not exhibit significant differences in general
cognitive ability, though both differed from biotype 3 (Fig. S2)'>.
Two studies used structural brain metrics and three clusters in
their respective discovery sets; one'® reported significant differ-
ences only between subgroups 1 and 2 on the N-back test, and
another'® (with subsample from B-SNIP 1) only between biotypes
1 and 3 on the BACS composite and Digit Sequencing. A third
study®® with structural brain metrics found no cognitive perfor-
mance differences between the two identified subgroups.
Similarly, we repeated the analysis using whole-brain FNC and
found no replicable differences in any cognitive measures
(supplementary material). Therefore, our approach appears to
more effectively capture subgroups with distinct cognitive
dysfunction and underlying brain mechanisms.

Our third key finding reveals that from 76.56% of relatives
assigned to a psychosis biotype, 70.12% (x2 = 7.0297, p < 0.00001)
were assigned to the same biotype as their family member with
psychosis, suggesting that relatives present similarities in the
functional brain patterns related to cognition that delineate
biotypes. Previous studies have suggested intermediate cognitive
dysfunction in relatives in the same sample’ and altered network
connectivity in relatives of participants with psychosis®'. Inter-
mediate neurobiology of biotypes may be present in psychosis-
free first-degree relatives and contribute to their intermediate
cognitive performance, even if not all relatives show clinically
relevant cognitive dysfunction as those in biotype 2 and healthy
biotype. Shared genetic and environmental backgrounds likely
contribute to this phenomenon. Consistent differences in the
prevalence of childhood learning difficulties in the discovery and
replication set, suggest potential biotype-related distinctions in
cognitive performance present, at least, since childhood. Notably,
biotype 1 showed a higher representation of African Americans
among patients and relatives, aligning with research on childhood
adversity disparities in African Americans impacting structural
brain differences®2. This overrepresentation may reflect adverse
environments for biotype 1, potentially influencing cognitive
development, leading to learning difficulties since childhood and
more pronounced FNC disruptions in adulthood.
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The consistent observation of older age in biotype 1 might
initially indicate a potential confounding factor. We found this
unlikely given the modest age disparities (4-5 years), the age-
adjusted analyses, and the disparities in childhood learning
difficulties, all of which make it unlikely that age alone accounts
for the differences between biotypes. Nevertheless, we conducted
k-means clustering again after regressing the influence of age
from FNC features and obtained similar results. (supplementary
material).

Finally, the percentage of relatives in the same cluster is
reduced to 54.85% (x2 = 1.22, p = 0.269) when using SZ and BPD
diagnoses instead of cognitive biotypes, suggesting that SZ and
BPD groups are overlapping in CFPs. Neurobiologically driven
stratification could be a better approach to foster treatment
development for cognitive dysfunction, rather than approaches
based on DSM diagnoses.

We did not explore solutions involving three or more clusters,
as our analyses indicated that two clusters were the most
appropriate. While we relied on Pearson correlation for
computing static FNC it has been shown that new methodol-
ogies, such as nonlinear approaches®® or tangent space
methods®?, may offer advantages and improve sensitivity to
differences between patients with schizophrenia and healthy
controls®3, Future studies could explore these methodological
alternatives or combinations of them and compare their findings
with the present study. Additional studies could evaluate the
capacity of FNC-based or brain structure-based classification
models to accurately distinguish between biotypes as has been
done in previous work®>,

Limitations

First, even though we have a relatively large sample size, it may
have been insufficient for some analyses (see supplementary
material for power analyses). Second, to avoid simply capturing
general population variability in clustering, we selected 1) FNC
canonical variates within pairs with differences between
participants with psychosis and controls in both canonical
variates and 2) FNC features with the highest correlation with
this canonical variate in participants with psychosis. It still may
be possible that identified biotypes correspond to general
population variability and are not specific to psychotic
disorders. Third, it remains possible that clusters may not
conform the data and these subgroups represent degrees of
severity of a single dimension. To address this possibility, 1) we
conducted a statistical procedure to evaluate the presence of
clusters in our data, with positive results; 2) we identified
similar biotypes in first-degree relatives without psychosis,
supporting that biotypes are at least partially independent of
disease severity; 3) we found no differences between biotypes,
even in the discovery set with greater statistical power, in key
clinical markers of symptom severity such as PANSS, MADRS,
YMRS, age of disease onset, suicidal tendencies, or antipsycho-
tic dose (Tables S2, S3, S8 and S9), and 4) we observed distinct
patterns of FNC alterations in biotypes that may suggest
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different brain mechanisms. Therefore, the identified biotypes
may plausibly represent useful subgroups for advancing the
understanding and treatment of cognitive dysfunction. How-
ever, potential overlap between disease severity and biotypes
may exist, as poorer cognitive performance is linked to worse
real-world outcomes’. This may partially explain the reported
differences between biotypes in lifetime psychotic symptoms
or psychosis duration relative to age. Although it is unlikely

presence in psychosis-free relatives, the extent to which these
differences stem from cognitive performance or shared
biological mechanisms remains unclear and warrants further
investigation. Fourth, although we identified FNC features
related to cognition, its translational utility for developing
therapeutic targets is not straightforward. Fifth, we did not
include cannabis or other substance use in the analyses.
However, the biotypes showed no differences in cannabis use

that biotypes were purely driven by disease severity given their (Tables S8 and S9), reducing the likelihood of it acting as a
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Fig. 4 Comparison of demographic, clinical and cognitive characteristics of biotypes (l). Discovery set: biotype 1, N=426; biotype 2,
N = 497. Replication set: biotype 1, N= 110, N = 146. First-degree relatives: biotype 1, N = 153; biotype 2, N= 178, control biotype, N = 95.
WMS Weschler Memory Scale, BACS Brief Assessment of Cognition in Schizophrenia, YMRS Young Mania Rating Scale, BSFS Birchwood Social
Functioning Scale, SES Socioeconomic Status (Hollingshead index), SBS Schizo-bipolar Scale, PANSS Positive and Negative Syndrome Scale for
Schizophrenia, Chlorpromazine equivalentes: Average daily chlorpromazine dose; MADRS Montgomery-Asberg Depression Rating Scale, BACS
Brief Assessment of Cognition in Schizophrenia, BSFS Birchwood Social Functioning Scale, SES Socioeconomic status, SBS Schizo-bipolar Scale,
Chlorpromazine equivalents: Average daily chlorpromazine dose; MADRS Montgomery-Asberg Depression Rating Scale, GAF Global
Assessment of Functioning Scale; Z-scores are shown. BACS z-scores were obtained from normative data stratified by age and sex. * Non-
adjusted p-value < 0.05 from a two-tailed t-test; ** False discovery rate correction for multiple testing p-value < 0.05. Comparisons with three
biotypes in first-degree relatives were adjusted with Tukey method for comparing a family of three estimates. WMS: Statistics were obtained
from linear models that also accounted for the influence of age, sex, race, ethnicity, site, and socioeconomic status. BACS: Statistics were
obtained from linear models that also accounted for the influence of race, ethnicity, site, and socioeconomic status (age and sex accounted for
when computing z-scores). Statistical details are shown in Tables S2, S3, and S4. First-degree relatives with a diagnosis of a psychotic disorder
were excluded from these analyses.
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Fig. 5 Comparison of demographic and clinical characteristics (ll) and childhood learning difficulties between biotypes. A Patients from
discovery set: biotype 1, N=426; biotype 2, N=497. B Patients from replication set: biotype 1, N=110, N = 146. C First-degree relatives:
biotype 1, N=153; biotype 2, N=178, control biotype, N=95. * Non-adjusted p-value <0.05 from Pearson’s Chi-squared test; ** False
discovery rate correction for multiple testing p-value < 0.05. DSM diagnosis in first-degree relatives refers to the diagnosis of the affected
family member. Statistical details are shown in Tables S2, S3 and S4. First-degree relatives with a diagnosis of a psychotic disorder were
excluded from these analyses.

confounding factor. However, the role of other substances or
medical conditions known to impact cognition (i.e. metabolic
disturbances)'5%7 remains less clear. Sixth, about 60% of our
sample were white/caucasian, limiting the generalization.
Differences in the representation of races in biotypes may
not extrapolate outside the US to countries with different social
structures. Additionally, our sample included a higher propor-
tion of women than other samples of psychosis, likely due to
the inclusion of a representative sample of participants with
affective psychosis, more frequent in women®®.
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CONCLUSIONS

We have identified and replicated, to a reasonable extent, two
distinct cognitive biotypes in a large sample of patients with
psychotic disorders. These biotypes exhibit disparities in cognitive
dysfunction severity, demographics, and brain functional altera-
tions with distinct patterns of hypo-hyperconnectivity. These
biotypes may be partially present in first-degree relatives. Utilizing
these biotypes as a stratification framework in future investiga-
tions focused on cognitive dysfunction may be promising for
enhancing their success.
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overseen by the National Institute of Mental Health (NIMH) through the National Data
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CODE AVAILABILITY

Preprocessing and data analysis were conducted using MATLAB 9.9.0.1857802
(R2020b) Update 7, alongside the Statistical Parametric Mapping toolbox (SPM 12),
the FMRIB Software Library (FSL v6.0), the Group ICA of fMRI Toolbox (GIFT v4.0),
RStudio (R v4.1.2), and Python 3.10.10. MATLAB R2020b can be downloaded from
https://www.mathworks.com. The FSL v6.0 toolbox can be downloaded from https://
fsl.fmrib.ox.ac.uk/fsl/fslwiki. The SPM 12 toolbox can be downloaded from https://
www filion.uclac.uk/spm/.  GIFT v4.0 can be downloaded from https://
trendscenter.org/software/gift/. R v4.1.2 can be downloaded from https://cran.r-
project.org/. R packages used included ggplot2, stats, tidymodels, caret, tidyclust,
cluster, emmeans, gtsummary, ggstatsplot, NbClust, fpc, MASS, hclust, and vcd. These
packages can be installed directly from CRAN (https://cran.r-project.org/). Python
3.10.10 can be downloaded from https://www.python.org/downloads/release/
python-31010/. The Netplotbrain library used to create brain maps can be
downloaded from https://github.com/wiheto/netplotbrain. Additional MATLAB or R
scripts used in this study are available from the corresponding authors upon
reasonable request.

Received: 17 September 2024; Accepted: 26 February 2025;
Published online: 19 March 2025

REFERENCES

1. McCutcheon, R. A, Keefe, R. S. E. & McGuire, P. K. Cognitive impairment in
schizophrenia: aetiology, pathophysiology, and treatment. Mol Psychiatry. https:/
doi.org/10.1038/541380-023-01949-9 (2023).

2. Huhn, M. et al. Comparative efficacy and tolerability of 32 oral antipsychotics for
the acute treatment of adults with multi-episode schizophrenia: a systematic
review and network meta-analysis. Lancet 394, 939-951 (2019).

3. Nielsen, R. E. et al. Second-generation antipsychotic effect on cognition in
patients with schizophrenia—a meta-analysis of randomized clinical trials. Acta
Psychiatr. Scandinavica 131, 185-196 (2015).

4. Keefe, R. S. E. et al. Neurocognitive Effects of Antipsychotic Medications in
Patients With Chronic Schizophrenia in the CATIE Trial. Arch. Gen. Psychiatry 64,
633-647 (2007).

5. Baldez, D. P. et al. The effect of antipsychotics on the cognitive performance of
individuals with psychotic disorders: Network meta-analyses of randomized
controlled trials. Neurosci. Biobehav. Rev. 126, 265-275 (2021).

6. Alnzes, D. et al. Brain Heterogeneity in Schizophrenia and Its Association With
Polygenic Risk. JAMA Psychiatry 76, 739-748 (2019).

7. Hill, S. K. et al. Neuropsychological Impairments in Schizophrenia and Psychotic
Bipolar Disorder: Findings from the Bipolar-Schizophrenia Network on Inter-
mediate Phenotypes (B-SNIP) Study. AJP 170, 1275-1284 (2013).

8. Zhang, W., Sweeney, J. A, Bishop, J. R, Gong, Q. & Lui, S. Biological subtyping of
psychiatric syndromes as a pathway for advances in drug discovery and perso-
nalized medicine. Nat. Ment. Health 1, 88-99 (2023).

9. Feczko, E. & Fair, D. A. Methods and Challenges for Assessing Heterogeneity. Biol.
Psychiatry 88, 9-17 (2020).

10. Feczko, E. et al. The Heterogeneity Problem: Approaches to Identify Psychiatric
Subtypes. Trends Cogn. Sci. 23, 584-601 (2019).

11. Green, M. J,, Girshkin, L., Kremerskothen, K., Watkeys, O. & Quidé, Y. A Systematic
Review of Studies Reporting Data-Driven Cognitive Subtypes across the Psychosis
Spectrum. Neuropsychol. Rev. 30, 446-460 (2020).

12. Clementz, B. A. et al. Identification of Distinct Psychosis Biotypes Using Brain-
Based Biomarkers. Am. J. Psychiatry 173, 373-384 (2016).

13. Clementz, B. A. et al. Psychosis Biotypes: Replication and Validation from the
B-SNIP Consortium. Schizophrenia Bull. 48, 56-68 (2022).

14. Planchuelo-Gémez, A. et al. Identificacion of MRI-based psychosis subtypes: Replica-
tion and refinement. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 100, 109907 (2020).

15. Lubeiro, A. et al. Identification of two clusters within schizophrenia with different
structural, functional and clinical characteristics. Prog. Neuro-Psychopharmacol.
Biol. Psychiatry 64, 79-86 (2016).

16. Pan, Y. et al. Morphological Profiling of Schizophrenia: Cluster Analysis of MRI-
Based Cortical Thickness Data. Schizophrenia Bull. 46, 623-632 (2020).

Published in partnership with the Schizophrenia International Research Society

P. Andrés-Camazon et al.

17. Xiao, Y. et al. Subtyping Schizophrenia Patients Based on Patterns of Structural
Brain Alterations. Schizophrenia Bull. 48, 241-250 (2022).

18. Sugihara, G. et al. Distinct Patterns of Cerebral Cortical Thinning in Schizophrenia:
A Neuroimaging Data-Driven Approach. Schizophrenia Bull. 43, 900-906 (2017).

19. Yan, W. et al. Mapping relationships among schizophrenia, bipolar and schi-
zoaffective disorders: A deep classification and clustering framework using fMRI
time series. Schizophrenia Res. 245, 141-150 (2022).

20. Dwyer, D. B. et al. Psychosis brain subtypes validated in first-episode cohorts and
related to illness remission: results from the PHENOM consortium. Mol. Psychiatry
28, 2008-2017 (2023).

21. Chand, G. B. et al. Two distinct neuroanatomical subtypes of schizophrenia
revealed using machine learning. Brain 143, 1027-1038 (2020).

22. Chand, G. B. et al. Schizophrenia Imaging Signatures and Their Associations With
Cognition, Psychopathology, and Genetics in the General Population. AJP 179,
650-660 (2022).

23. Dwyer, D. B. et al. Clinical, Brain, and Multilevel Clustering in Early Psychosis and
Affective Stages. JAMA Psychiatry 79, 677-689 (2022).

24. Brucar, L. R, Feczko, E., Fair, D. A. & Zilverstand, A. Current Approaches in Com-
putational Psychiatry for the Data-Driven Identification of Brain-Based Subtypes.
Biol. Psychiatr. 50006322322018698 https://doi.org/10.1016/j.biopsych.2022.12.020
(2022).

25. Honnorat, N., Dong, A., Meisenzahl-Lechner, E., Koutsouleris, N. & Davatzikos, C.
Neuroanatomical heterogeneity of schizophrenia revealed by semi-supervised
machine learning methods. Schizophrenia Res. 214, 43-50 (2019).

26. Dwyer, D. B. et al. Brain Subtyping Enhances The Neuroanatomical Discrimination
of Schizophrenia. Schizophrenia Bull. 44, 1060-1069 (2018).

27. Dinga, R. et al. Evaluating the evidence for biotypes of depression: Methodolo-
gical replication and extension of. Neurolmage: Clin. 22, 101796 (2019).

28. Jacobs, G. R. et al. Integration of brain and behavior measures for identification of
data-driven groups cutting across children with ASD, ADHD, or OCD. Neu-
ropsychopharmacology 46, 643-653 (2021).

29. Voineskos, A. N. et al. Functional magnetic resonance imaging in schizophrenia:
current evidence, methodological advances, limitations and future directions.
World Psychiatry 23, 26-51 (2024).

30. Marek, S. et al. Reproducible brain-wide association studies require thousands of
individuals. Nature 603, 654-660 (2022).

31. Calhoun, V. Data-driven approaches for identifying links between brain structure
and function in health and disease. Dialogues Clin. Neurosci. 20, 87-99 (2018).

32. Calhoun, V. D. & Adali, T. Multisubject Independent Component Analysis of fMRI:
A Decade of Intrinsic Networks, Default Mode, and Neurodiagnostic Discovery.
IEEE Rev. Biomed. Eng. 5, 60-73 (2012).

33. Iraji, A. et al. Canonical and Replicable Multi-Scale Intrinsic Connectivity Networks in
100k+ Resting-State fMRI Datasets. https://doi.org/10.1101/2022.09.03.506487
(2022).

34. Iraji, A. et al. Moving beyond the ‘CAP’ of the Iceberg: Intrinsic connectivity
networks in fMRI are continuously engaging and overlapping. Neurolmage 251,
119013 (2022).

35. Calhoun, V. D. & de Lacy, N. Ten Key Observations on the Analysis of Resting-state
Functional MR Imaging Data Using Independent Component Analysis. Neuroi-
maging Clin. N. Am. 27, 561-579 (2017).

36. Du, Y. et al. NeuroMark: An automated and adaptive ICA based pipeline to
identify reproducible fMRI markers of brain disorders. Neurolmage: Clin. 28,
102375 (2020).

37. Iraji, A. et al. Identifying canonical and replicable multi-scale intrinsic connectivity
networks in 100k+ resting-state fMRI datasets. Hum. Brain Mapp. 44, 5729-5748
(2023).

38. Dy, Y. & Fan, Y. Group information guided ICA for fMRI data analysis. Neurolmage
69, 157-197 (2013).

39. Lin, Q-H, Liy, J,, Zheng, Y.-R, Liang, H. & Calhoun, V. D. Semiblind spatial ICA of
fMRI using spatial constraints. Hum. Brain Mapp. 31, 1076-1088 (2010).

40. Keefe, R. The Brief Assessment of Cognition in Schizophrenia: reliability, sensi-
tivity, and comparison with a standard neurocognitive battery. Schizophrenia Res.
68, 283-297 (2004).

41. Keefe, R. et al. Norms and standardization of the Brief Assessment of Cognition in
Schizophrenia (BACS). Schizophrenia Res. 102, 108-115 (2008).

42. Wechsler, D. Wechsler Adult Intell. Scale-Third Ed. https://doi.org/10.1037/t49755-000
(2019).

43. Duda, M. et al. Reliability and clinical utility of spatially constrained estimates of
intrinsic functional networks from very short fMRI scans. Hum. Brain Mapp. 44,
2620-2635 (2023).

44, Jafri, M. J,, Pearlson, G. D., Stevens, M. & Calhoun, V. D. A method for functional
network connectivity among spatially independent resting-state components in
schizophrenia. Neurolmage 39, 1666-1681 (2008).

45. Allen, E. A. et al. A baseline for the multivariate comparison of resting-state
networks. Front. Syst. Neurosci. 5, 2 (2011).

Schizophrenia (2025) 45

13


https://nda.nih.gov/edit_collection.html?id=2274
https://nda.nih.gov/edit_collection.html?id=2165
https://nda.nih.gov/
https://www.mathworks.com
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://trendscenter.org/software/gift/
https://trendscenter.org/software/gift/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://www.python.org/downloads/release/python-31010/
https://www.python.org/downloads/release/python-31010/
https://github.com/wiheto/netplotbrain
https://doi.org/10.1038/s41380-023-01949-9
https://doi.org/10.1038/s41380-023-01949-9
https://doi.org/10.1016/j.biopsych.2022.12.020
https://doi.org/10.1101/2022.09.03.506487
https://doi.org/10.1037/t49755-000

P. Andrés-Camazon et al.

14

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.
57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Mihalik, A. et al. Canonical Correlation Analysis and Partial Least Squares for
Identifying Brain-Behavior Associations: A Tutorial and a Comparative Study. Biol.
Psychiatry.: Cogn. Neurosci. Neuroimaging 7, 1055-1067 (2022).

Mihalik, A., Adams, R. A. & Huys, Q. Canonical Correlation Analysis for Identifying
Biotypes of Depression. Biol. Psychiatry.: Cogn. Neurosci. Neuroimaging 5, 478-480
(2020).

Uurtio, V. et al. A Tutorial on Canonical Correlation Methods. ACM Comput. Surv.
50, 1-33 (2018).

Wang, H.-T. et al. Finding the needle in a high-dimensional haystack: Canonical
correlation analysis for neuroscientists. Neurolmage 216, 116745 (2020).
Zhuang, X., Yang, Z. & Cordes, D. A technical review of canonical correlation
analysis for neuroscience applications. Hum. Brain Mapp. 41, 3807-3833
(2020).

Liu, Y., Hayes, D. N., Nobel, A. & Marron, J. S. Statistical Significance of Clustering
for High-Dimension, Low-Sample Size Data. J. Am. Stat. Assoc. 103, 1281-1293
(2008).

Seether, L. S. et al. Inflammation and cognition in severe mental illness: patterns
of covariation and subgroups. Mol. Psychiatry. https://doi.org/10.1038/5s41380-
022-01924-w (2022).

Hennig, C. Cluster-wise assessment of cluster stability. Computational Stat. Data
Anal. 52, 258-271 (2007).

Hennig, C. Dissolution point and isolation robustness: Robustness criteria for
general cluster analysis methods. J. Multivar. Anal. 99, 1154-1176 (2008).
Hartigan, J. A. & Wong, M. A. Algorithm AS 136: A K-Means Clustering Algorithm.
J. R. Stat. Soc. Ser. C. (Appl. Stat.) 28, 100-108 (1979).

Hvitfeldt, E. & Bodwin, K. tidyclust: A Common API to Clustering, (2023).

Miller, G. A. & Chapman, J. P. Misunderstanding analysis of covariance. J. Abnorm.
Psychol. 110, 40-48 (2001).

McHugh, M. L. Interrater reliability: the kappa statistic. Biochem Med (Zagreb) 22,
276-282 (2012).

Sheffield, J. M. & Barch, D. M. Cognition and resting-state functional connectivity
in schizophrenia. Neurosci. Biobehav. Rev. 61, 108-120 (2016).

Sheffield, J. M. et al. Transdiagnostic Associations Between Functional Brain
Network Integrity and Cognition. JAMA Psychiatry 74, 605 (2017).

Meda, S. A. et al. Examining Functional Resting-State Connectivity in Psychosis
and Its Subgroups in the Bipolar-Schizophrenia Network on Intermediate
Phenotypes Cohort. Biol. Psychiatry.: Cogn. Neurosci. Neuroimaging 1, 488-497
(2016).

Dumornay, N. M,, Lebois, L. A. M., Ressler, K. J. & Harnett, N. G. Racial Disparities in
Adversity During Childhood and the False Appearance of Race-Related Differ-
ences in Brain Structure. AJP 180, 127-138 (2023).

Kinsey, S. et al. Networks extracted from nonlinear fMRI connectivity exhibit
unique spatial variation and enhanced sensitivity to differences between indi-
viduals with schizophrenia and controls. Nat. Ment. Health 1-12. https://doi.org/
10.1038/544220-024-00341-y (2024).

Bijsterbosch, J. et al. Challenges and future directions for representations of
functional brain organization. Nat. Neurosci. 23, 1484-1495 (2020).

Koen, J. D. et al. Supervised machine learning classification of psychosis biotypes
based on brain structure: findings from the Bipolar-Schizophrenia network for
intermediate phenotypes (B-SNIP). Sci. Rep. 13, 12980 (2023).

Takayanagi, Y., Cascella, N. G,, Sawa, A. & Eaton, W. W. Diabetes is associated with
lower global cognitive function in schizophrenia. Schizophrenia Res. 142, 183-187
(2012).

Bora, E., Akdede, B. B. & Alptekin, K. The relationship between cognitive impair-
ment in schizophrenia and metabolic syndrome: a systematic review and meta-
analysis. Psychological Med. 47, 1030-1040 (2017).

Riecher-Rossler, A., Butler, S. & Kulkarni, J. Sex and gender differences in schi-
zophrenic psychoses—a critical review. Arch. Women’s Ment. Health 21, 627-648
(2018).

Schizophrenia (2025) 45

ACKNOWLEDGEMENTS

P.A.C. has received grant support from Programa Intramural de Impulso a la 1+ D + i
2023 (Instituto de Investigacion Sanitaria Gregorio Maraién). C.D.C. has received
grant support from Instituto de Salud Carlos Ill, Spanish Ministry of Science and
Innovation (P120/00721, PI23/00625, JR19/00024), and the European Commission
(grant 101057182, project Youth-GEMs). V.C. has received grant support from the
National Institutes of Health (ROTMH123610). Al has received grant support from the
National Institutes of Health (ROTMH123610).

AUTHOR CONTRIBUTIONS

P.A.C. and ALl conceived and designed the study, with guidance from J.C. and V.C. RB.
was responsible for the processing and analysis of the neuroimaging data and
contributed to the creation of the figures. P.A.C. and Al conducted the data analysis,
with input from J.C,, V.C, and C.D.C. J.C. and V.C. contributed to the interpretation of the
findings, while C.D.C. also provided guidance on the clinical implications. P.A.C. drafted
the manuscript and figures, and all authors critically reviewed and revised it for
important intellectual content. All authors approved the final version of the manuscript.

COMPETING INTERESTS

P.A.C. has received travel support from Neuraxpharm, ROVI, and Casen Recordati. C.D.C.
has received honoraria or travel support from Angelini, Viatris, and Janssen. J.C, RB,
V.C, and Al reported no biomedical financial interests or potential conflicts of interest.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/541537-025-00593-2.

Correspondence and requests for materials should be addressed to
Pablo Andrés-Camazén.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

@@@@ Open Access This article is licensed under a Creative Commons
ATl Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if you modified
the licensed material. You do not have permission under this licence to share adapted
material derived from this article or parts of it. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Published in partnership with the Schizophrenia International Research Society


https://doi.org/10.1038/s41380-022-01924-w
https://doi.org/10.1038/s41380-022-01924-w
https://doi.org/10.1038/s44220-024-00341-y
https://doi.org/10.1038/s44220-024-00341-y
https://doi.org/10.1038/s41537-025-00593-2
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Neurobiology-based cognitive biotypes using multi-scale intrinsic connectivity networks in psychotic disorders
	Introduction
	Methods and materials
	Participants
	Clinical and cognitive assessments
	Estimating subject-specific multi-scale intrinsic connectivity networks (ICNs) and multi-scale functional network connectivity (FNC)
	Discovery and replication sets
	Canonical FNC signatures of cognitive performance
	Influences of covariates on significant canonical pairs in the replication set
	Determining cognition-related FNC features in participants with psychosis
	Cluster identification, significance, and stability
	Biotypes validation and characterization

	Results
	Canonical FNC signatures of cognitive performance and influence of covariates on statistically significant canonical pairs
	Determining cognition-related FNC features in participants with psychosis
	Clusters identification, significance, and stability. Validation and characterization of cognitive biotypes
	Cognitive biotypes of patients in the discovery set
	Functional network connectivity
	Demographic, cognitive, and clinical characteristics

	Cognitive biotypes of patients in the replication set
	Demographic, cognitive, and clinical characteristics


	Cognitive biotypes of First-degree Relatives
	Functional network connectivity
	Demographic, cognitive, and clinical characteristics


	Discussion
	Limitations

	Conclusions
	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




