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From phytochemicals to recipes: health
indications and culinary uses of herbs
and spices
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Herbs and spices each contain about 3000 phytochemicals on average, and there is much traditional
knowledge on their health benefits. However, there is a lack of systematic studies to understand the
relationship among herbs and spices, their phytochemical constituents, their potential health benefits,
and their usage in regional cuisines. Here, we use a network-based approach to elucidate established
relationships and predict novel associations between the phytochemicals present in herbs and spices
and health indications. Our top 100 inferred indication-phytochemical relationships rediscover 40%
known relationships and 20% that have been inferred via gene-chemical interactions with high
confidence. The remaining 40%are hypotheses generated in a principledway for further experimental
investigations. We also develop an algorithm to find the minimum set of spices needed to cover a
target group of health conditions. Drawing on spice usage patterns in several regional Indian cuisines
and a copy-mutate model for regional cuisine evolution, we characterize the spectrum of health
conditions covered by existing regional cuisines. The spectrum of health conditions can expand
through the nationalization/globalization of culinary practice.

The co-evolution of plants with their pests and pathogens has led to che-
mical defenses in plants in the form of phytochemicals1–3. These phyto-
chemicals, even in trace quantities, have a range of disease-alleviating
properties as antioxidants, anti-inflammatories, and even anticarcinogens.
Across the globe, traditional knowledge systems have long recognized these
properties of phytochemicals and incorporated them into culinary and
therapeutic practices tomitigate foodborne pathogens and promote health.
In China and India, extensive pharmacopeias and long-standing ethnobo-
tanical traditionshave led to the systematizationof spice use in both culinary
and formal medical systems, such as traditional Chinese medicine (TCM)
and Ayurveda4–10. Additionally, Mediterranean civilizations have used
oregano (Origanum vulgare), thyme (Thymus vulgaris), and rosemary
(Salvia rosmarinus) for millennia, whereas Mesoamerican cultures devel-
oped sophisticated applications of chili peppers (Capsicum annuum) and
epazote (Dysphania ambrosioides) to alleviate intestinal parasites and
digestive discomfort11,12. This widespread pattern of spice use for both
culinary enhancement and medicinal benefits reflects a cross-cultural
understanding of bioactive properties of phytochemicals that has evolved
across diverse traditions worldwide13.

There has been some past work to understand the evolution of flavor
compounds and phytochemicals in culinary practices10,14. Several studies
have investigated the health benefits ofwell-known spices andherbs, suchas

turmeric, saffron, fennel, and clove15–22. Although their role in disease alle-
viation is well known, only 63 spices and herbs are tracked by the United
States Department of Agriculture (USDA)23. As of 2024, FooDB24 has listed
a total of 70,926 phytochemicals and only 124 spices and herbs, out of 797
foods. Yet, plants have a high chemical diversity with approximately 3000
phytochemicals ormore23,24. Still, 85% of these chemicals, whichmay play a
role in disease prevention, remain untracked by national databases, unex-
plored through experimental research, and unknown to the public at large25.
This necessitates a systematic study of the relationships between spices-
herbs, phytochemicals, and health conditions.

Researchers have developed network-based frameworks to study
phytochemical-disease relationships, largely focused on a single type of
phytochemical or disorder, e.g., understanding the impact of polyphenols
on cardiovascular health26,27. Tools like PhyteByte28 and HyperFoods29

employmachine learning to identify cancer-fightingmolecules in foods, but
focus solely on carcinogenicmolecules.While these studies provide valuable
insights, they do not comprehensively analyze the relationships between
spices-herbs, phytochemicals, and health conditions. Rakhi et al.30 attempt
to explore spice-phytochemical-disease relationships, but they conduct only
a small-scale study with 188 ingredients, yielding only 8957 spice-disease
connections. Further, they do not generate phytochemical-indication
association hypotheses that can be tested experimentally. Similarly, Gao
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et al.5 used network approaches to study Chinese herb and disease rela-
tionships and verified their predictions with real-world patient data.
However, the study is limited to Chinese herbs.

The use of ingredients varies across regional cuisines, influenced by
factors such as local food availability, climatic conditions, and religious-
cultural preferences31. While extensive research has been conducted on the
health benefits of certain cuisines, such as the Mediterranean diet, these
studies have primarily focused on macronutrients and overall dietary
composition32. However, the role of phytochemicals, particularly those
found in herbs and spices, remains understudied in the context of regional
cuisines33. Thesebioactive compounds represent a crucial aspect of the “food
as medicine" principle and have potential health benefits beyond basic
nutrition34. For instance, theMediterranean diet—rich in olive oil, nuts, and
variousherbs—contains diverse polyphenols andother phytochemicals that
have various health effects33.

The objectives of our work are twofold. First, our study aims to explore
the relationships between spices and herbs, phytochemicals, and health
indications using a network-based approach (Fig. 1) and introduce a spe-
cificity score to quantify the strength of phytochemical-disease associations.
We analyze 1094 herbs and spices to generate 34,113 spice-disease
relationships.

With globalization, there has been a notable fusion of cuisines, leading
to the adaptation of traditional recipes with new ingredients. The second
objective of our work is to investigate whether this culinary evolution offers
any health benefits (Fig. 1b). To address this question, we use a dataset of
Indian recipes from 18 regions, as spices and herbs are integral to India’s
regional cuisines35,36. We estimate the spice and herb usage in different
regional cuisines of India and then analyze the spectrumof diseases covered
by different regional cuisines based on their spice usage. Further, we gen-
erate new spice combinations to simulate culinary globalization using copy-
mutate models and compare their effectiveness to traditional Indian recipe
spice combinations in termsof broadeninghealth indications.We show that
randomly generated spice combinations required fewer ingredients to cover
varioushealth indications compared to traditional recipes, suggestinghealth
benefits from culinary fusion.

Results
In this section, we first present results for spice-herb, phytochemical, and
indications bipartite networks, systematically analyzing the associations
between health indications and phytochemicals. Second, we present results

on spice usage in different Indian regional cuisines using recipe corpora,
analyzing the relationships between cuisine and health indications, and
comparing the minimum number of spices needed to cover a spectrum of
indications using copy-mutate models.

Network analysis of spices & herbs, phytochemicals, and health
indications
Two bipartite networks were created: one between spices and phytochem-
icals, and another between spices and health indications. From these two
networks, a third bipartite networkwas constructed, linking indications and
phytochemicals (see Fig. 1a). The first three sub-sections provide a
descriptive analysis of the three bipartite networks, and the fourth section
makes specific predictions of the indication-phytochemical associations.

A spice-indication bipartite network on two sets of nodes: (i) 1094
spices and herbs and (ii) 1597 medical indications was first built. Datasets
were obtained from theHandbook ofMedicinal Herbs37 and theHandbook
of Medicinal Spices38, providing extensive information about herbs and
spices and their associated medical indications. Next, we created bipartite
network projections where two nodes representing spices and herbs are
connected if they share at least one indication. The Wakita–Tsurumi
algorithm39was applied to this bipartite projection todetect clusters of spices
and herbs. For ease of visualization, we used a backbone extraction
method40,41 to identify statistically significant edges as shown in Fig. 2a. The
central role of garlic is quite evident. To delineate the clusters, we extract bar
plots of the prevalence scores of indications (see “Prevalence score” section)
in each cluster (see Fig. 2b). Notice that indications belonging to different
disease categories, such as respiratory ailments, gastrointestinal disorders,
infectious diseases,musculoskeletal conditions, and various formsof cancer,
have the highest prevalence scores across all clusters.

In Fig. 2b, cancer is found to be themost prevalent indication in cluster
2, represented by onion (Allium cepa) and opium poppy (Papaver somni-
ferum), as well as cluster 3, represented by thyme (Thymus vulgaris) and
green or black tea (Camellia sinensis), suggesting they contain phyto-
chemicals that are beneficial in cancer prevention and management.
Respiratory diseases, including asthma, mucososis, cough, and bronchitis,
are the most prevalent in cluster 7, represented by banana (Musa spp.) and
peppermint (Mentha × piperita), and cluster 8, represented by garlic
(Allium sativum) and black pepper (Piper nigrum).Most of the clusters have
a high association with at least one gastrointestinal disease. Roughly 80% of
the spices in cluster 6 (refer to Fig. 2b), including basil (Ocimum

Fig. 1 | Methodology framework for spice and herb phytochemical analysis. a The methods used to obtain phytochemical-indication associations. b To understand the
impact of culinary globalization on health indication coverage.
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tenuiflorum) and vervain (Verbena officinalis), are linked to alleviating
constipation. Cluster 4 has a strong associationwith gastrosis and hepatosis,
whereas cluster 8 is strongly associated with hepatosis and constipation. On
the level of individual indications, pain, cough, and diarrhea are covered
respectively by almost all spices within cluster 5 (represented by licorice
(Glycyrrhiza glabra) and golden seal (Hydrastis canadensis)), cluster 7
(represented by banana and peppermint), and cluster 8 (represented by
garlic and black pepper). This structured approach allows us to identify not
just individual spiceswith therapeutic potential but also groupsof spices that
collectively have a range of health indications.

A second spice-phytochemical bipartite networkbetween (i) 742 spices
and herbs and (ii) 2993 bioactive phytochemicals was obtained from the
DukePhytochemicalDatabase42 to explore relationships between spices and
their constituent phytochemicals. Figure 3 shows the projection graph on
phytochemicals clustered using the Wakita–Tsurumi algorithm. The pro-
jection graph on spices and herbs is provided as Supplementary Fig. 1 in

Supplementary Section 1. The blue cluster in Fig. 3 on the right primarily
consists of terpenes, components of essential oils derived from plants that
possess anti-bacterial and anti-inflammatory properties. The light green
cluster contains mostly antioxidants, including vanillic acid, quercetin,
p-coumaric acid, and caffeic acid. The yellow cluster comprises phytosterols
such as campesterol, stigmasterol, and campesterol, which are plant sterols
beneficial for cardiovascular health. The Food and Drug Administration
(FDA) has approved that foods containing at least 0.65 g of plant sterol
esters per serving, consumed twice dailywithmeals for a total daily intake of
at least 1.3 g, may reduce the risk of heart disease23. The bottom brown
cluster consists of major essential amino acids phenylalanine, methionine,
leucine, histidine, and lysine; the absence of these in the diet can lead to
decreased immunity, muscle loss, and even mental dysfunction. The dark
blue cluster contains a small group of polyunsaturated fatty acids (PUFAs),
including linoleic acid, palmitic acid, stearic acid, and oleic acid, commonly
found in oils. PUFAs boost immunity in low amounts, but consuming high
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Fig. 2 | Spice and herb association networkwith indication clustering. aBackbone
network visualizing connections between various spices and herbs. Each edge
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amounts of PUFAs with starch can lead to diseases, particularly heart dis-
ease and weight gain.

Tounderstand the therapeutic properties of spices,we aimed to identify
the constituent phytochemicals that contribute to their disease associations
using a third indication-phytochemical bipartite network (refer to Fig. 4).
We defined a specificity score to quantify the uniqueness of phytochemicals
and their associations with indications (see “Specificity score” section).
Notice in Fig. 4a that in endocrine diseases, high specificity was observed for
dianethole and p-anisaldehyde with andropause. These phytochemicals are
present in fennel and anise and are effective against endocrine diseases and
other types of diseases43. The efficacy of 1,2,6-tri-o-galloyl-beta-d-glucose—
found in Cornus officinalis—against protein glycation has been demon-
strated,making it effective for reducing blood pressure44. Othermolecules in
the blood disease category did not show high specificity values. Capsaicin
and its precursor, vanillylamine, are useful as analgesics and are used in
ointments for musculoskeletal pain management, which is evident in the
musculoskeletal diseases specificity plots45. Other compounds with high
specificity in this category include capsorubin and capsanthin, carotenoids
found in red bell peppers that are used for pain management46, as well as
dihydrocapsaicin, a compound from the same capsaicin family. In the
metabolic disease specificity plots in Fig. 4d, high values were observed for
vitamin K, glucosamine (found in many plants, including aloe vera and
Cannabis sativa), daidzein (found in soybean), coumestrol (found in soy-
bean, spinach, Brussels sprouts, and legumes), and imperatorin (found in
Ammimajus andAngelica archangelica). Researchers have found that these
molecules are effective against fatty liver, steatosis, and hyperuricemia47–49.

Galanthamine, found in Galanthus nivalis and other sources, showed
high specificity for myasthenia gravis and Alzheimer’s disease in the neu-
rological diseases category (refer to Fig. 4e)50. Similarly, high specificity
scores were obtained for tigloidine, periplocymarin, cymarin, cymarol,
strophanthidin, and tropine for neurological diseases like Parkinson’s and
neurodystonia51,52. The high specificity scores for vanillylamine, capsorubin,
and other capsaicin family molecules for cluster headaches and diabetic
neuropathy are noteworthy and can be observed in Fig. 4e. In the cardio-
vascular disease category (Fig. 4f), most molecules were non-specific, with
some high-scoring specific molecules such as asarinin found in sesame,
nitidine found in Zanthoxylum americanum, and periplocymarin found in
Strophanthus hispidus53,54. Some molecules, such as trans-isoasarone found
in Acorus calamus, show antifungal properties but are toxic and difficult to
use for therapeutic purposes55.

To further assess the capability of the specificity score in discovering
new associations and validating known relationships, we conduct a sys-
tematic analysis. We focus on the top-100 inferred indication-
phytochemical relationships in terms of specificity scores. For each infer-
ence, we first compared the results against the indication-chemical rela-
tionships provided by the Comparative ToxicogenomicsDatabase (CTD)56,
a reliable public database containing both curated and inferred relation-
ships. If our inferred relationships were not found in CTD, we manually
searched for supporting evidence in other literature using Google Scholar.
Out of the 100 top inferences (see Fig. 5), we can validate 60 indication-
phytochemical relations through CTD or literature. Among these 60
inferences, 20 could be inferred through gene-chemical interactions and
gene-disease associations according to CTD, but have not been experi-
mentally proven yet. The remaining 40 inferences were confirmed through
experimental literature. Thus, 20 of our top inferences are new discoveries
with high confidence that have also been predicted in CTD through alter-
native means, 40 are correct predictions backed by experimental scientific
evidence, and the remaining 40 are new hypotheses that can be tested with
molecular experiments. Indeed, a key use of our specificity score method is
to distill novel scientifichypotheses from traditional knowledge of herbs and
spices.

Understanding spice usage and their health implications
We use public Indian recipe corpora obtained from Sanjeev Kapoor57

and Tarla Dalal58 websites, comprising 18 regional cuisines, to under-
stand spice usage patterns across India and their association with dis-
ease categories.

To understand the similarity between different regional cuisines of
India, we calculated the usage frequencies of different spices in each cuisine
(see “Usage and authenticity of spices” section). The principal component
analysis (PCA) bi-plot (Fig. 6a) of Indian cuisines and spices usage fre-
quencies, with spices as factors projected on the principal components
(PCs), reveals a clear North to South geographical orientation. The plot
highlights the significant role of coconut and curry leaves in South Indian
cuisines. The dendrogram shows the splitting of South Indian cuisines into
distinct regional cuisines,withAndhra andKerala cuisines exhibitinghigher
similarity. Gujarati and Jain cuisines, characterized by extensive use of
asafoetida (Ferula assa-foetida) and the absence of onion and garlic, cluster
together and share similarities with Maharashtrian and South Indian cui-
sines in terms of spice usage.

Fig. 3 | Phytochemical association network based on shared spices and herbs. A
unipartite backbone network visualizing connections between various phyto-
chemicals. Each edge represents an association based on common spices and herbs

between these phytochemicals. Two phytochemicals are connected if they share a
common spice/herb. The node color represents the cluster obtained from the
Wakita–Tsurumi algorithm.
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The cluster map (Fig. 6c) provides insights into evolutionary rela-
tionships among Indian cuisines based on spice usage. The divergence in
spice combinations across Indian cuisines may also be traced to early Vedic
traditions and dietary norms59. For example, Brahmin communities often
avoided onions and garlic—classified as tamasic foods—resulting in Jain,
Gujarati, and some Maharashtrian cuisines embracing asafoetida (Ferula

assa-foetida) as a substitute flavoring agent. This is reflected in their clus-
tering in our spice usage analysis (Fig. 6c). Punjabi and Sindhi cuisines
demonstrate a lineage to Kashmiri and Mughlai cuisines, as evident from
their spice usage patterns. The similarity between Kashmiri and Mughlai
cuisines can be attributed to their shared use of saffron (Crocus sativus),
cardamom (Amomum subulatum), and clove (Syzygium aromaticum) (Fig.

Fig. 4 | Heatmaps showing the specificity scores
obtained for phytochemical-indication pairs for
six disease categories. a endocrine diseases
b hematological diseases c musculoskeletal
d metabolic diseases e neurological diseases
f cardiovascular diseases.
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Fig. 5 | Validation of indication-phytochemical relationships. The string map represents the number and nature of relationships extracted from the top-100 indication-
phytochemical relationships, categorized as Inferred (IF), Experimentally Verified (EV), and New Hypotheses (NH), and sorted based on specificity scores.
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Fig. 6 | Regional cuisine analysis of spice usage and indication coverage. aPCAbi-
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6a). This lineage may be attributed to the historical spread of Mughal
culinary practices across northern India during the 16th-18th centuries. The
adoption of saffron, cardamom, and clove in these cuisines mirrors the
emphasis on aromatic richness seen in royal Mughal kitchens, as docu-
mented in historical manuscripts such as the Ni’matnama and Ain-i-
Akbari59. Similarly, Hyderabadi and Parsi cuisines show resemblance due to
their pronounced use of garlic and onion. Coastal cuisines such as Goan,
Hyderabadi, and Parsi also exhibit culinary patterns shaped by historical
trade and colonization. The introduction of ingredients like chili, tomato,
and vinegar during the Portuguese colonial era influenced dishes such as
vindaloo and xacuti, which later diffused into regional adaptations59. The
shared use of garlic and onion in Hyderabadi and Parsi cuisines further
emphasizes these connections. These historical layers have shaped ingre-
dient availability and regional taste preferences, preparation styles, and the
symbolic role of spices in culinary identity. However, it is important to note
that the similarities observed are based on spice usage data and require
further evidence to corroborate the cultural or historical aspects of these
connections.

Note that regional variation in spice usage across Indian cuisines
may align with underlying genetic differences in taste perception. For
instance, South Indian cuisines such as those from Kerala, Tamil Nadu,
andAndhra Pradeshmake extensive use of bitter-tasting ingredients like
mustard seeds (Sinapis alba) and curry leaves (Murraya koenigii) (see
Fig. 6a). This may be related to population-level variation in the CA6
gene, which affects bitter taste sensitivity through the rs2274333 poly-
morphism. The ancestral A allele is associated with higher gustatory
sensitivity (supertasters), while the derived G allele is linked to reduced
bitter perception (non-tasters). According to Prakriti et al.60, the A allele
is more prevalent in western Indian populations, whereas northern and
northeastern populations exhibit higher frequencies of the G allele.
Although allele frequency data for southern India remains sparse, the
strong presence of bitter ingredients in southern cuisines suggests a
possible role for chemosensory adaptation. Similarly, cuisines such as
Hyderabadi and Parsi, which are rich in garlic and onion, may reflect
reduced sensitivity to pungent sulfur compounds mediated by TRPV1
polymorphisms. Mughlai, Kashmiri, and Punjabi cuisines—character-
ized by aromatic spices like saffron, cardamom, and clove—may cor-
relate with population-level variation in olfactory receptor genes such as
OR7D4. A similar genetic influence is evident in cilantro preference,
where variants in the OR6A2 olfactory receptor gene (e.g., rs72921001)
are associated with heightened perception of a soapy flavor in coriander
leaf, contributing to population-level differences in its acceptance. These
findings support a tentative link between chemosensory genotypes and
regional spice practices. However, cuisine evolution is complex and
shaped by historical, ecological, and cultural factors beyond genetics61–63.

Figure 6b presents a heatmap of the authentic spices, defined by
their unique use in each regional Indian cuisine. While there is a sub-
stantial overlap in spice usage across cuisines, the analysis reveals several
interesting observations, some well-known and others less so. The
presence of asafoetida in Jain andGujarati cuisines is well-established, as
Jains and many Gujaratis exclude onion and garlic from their diet for
religious reasons, but asafoetida contains di-allyl sulfur, the same pun-
gent phytochemical as in garlic and onion, making it an ideal
substitute64. As noted earlier, curry leaves and coconut are integral to
South Indian cuisines. Mughlai and Hyderabadi cuisines also heavily
feature cardamom and clove, while Kashmiri cuisine is uniquely char-
acterized by the presence of saffron and fennel. A lesser-known fact is the
use of peanuts as an authentic spice/herb in Maharashtrian cuisine,
which is not widely recognized. These findings highlight the diversity
and complexity of Indian cuisines, showcasing the interplay of regional
preferences, religious influences, and unique spices that define the
authentic flavors of each culinary tradition. The three most frequently
used spices and the three most authentic spices across Indian cuisines,
used to generate the culinary mappings in Fig. 6a, b are detailed in
Supplementary Table 1 in Supplementary Information. Notably, chili

(Capsicum annuum) is the most frequently used spice across all regional
cuisines, reflecting its central role in Indian culinary practices.

Figure 6d presents a heatmap with hierarchical clustering of Indian
cuisines based on their indication coverage. It shows that regional cuisines
have better coverage for five disease categories: cancer, respiratory diseases,
general symptoms, gastrointestinal diseases, and infectious diseases.
Hyderabadi,Goan, Parsi, Punjabi, andMughlai cuisines showabroader and
stronger coverage of the indication spectrum than the other cuisines. The
analysis reveals that Hyderabadi and Goan cuisines exhibit the highest
scores for alleviating infectious diseases, followed closely by Parsi cuisine.

Each cuisine has a unique profile of herbs and spices, with somehaving
combinations with greater disease mitigation, as observed in Mughlai and
Hyderabadi cuisine. New fusion cuisines have emerged with increasing
globalizationas ingredients fromdifferent cultures areblended to create new
recipes. Here, we study how well combinations of spices from culinary
practice cover a spectrumof diseases, using aminimum set-cover algorithm
tofind theminimumset of spices required to cover a range of indications for
each disease category. We then compare the disease coverage capability of
recipes generated under four different settings: real settings (using recipes
from Tarla Dalal and Sanjeev Kapoor) and three random settings. The
random settings simulating culinary globalization include the uniform
copy-mutate (U-CM) model, the frequency-conserved copy-mutate (FC-
CM)model14,36, and the random uniform (RU)model (see “Random recipe
generation” section). To ensure a fair comparison against the real recipes,
each recipe in the random settings contained six spice ingredients, which
corresponds to the median number of spices per recipe in the real recipe
dataset. We generated 50 sets of 5636 recipes for each random model and
used the mean size of the minimum recipe sets for comparison. Figure 7
compares themean size of theminimumset of spices needed to cover health
indications in both the random and the actual settings (obtained from the
recipe datasets) for 12 different disease categories. For example, to com-
prehensively address gastrointestinal indications, traditional recipes fre-
quently include cumin, ginger, and fennel, spices known to aid digestion.
Conversely, under randomly generated conditions (e.g., the RU model),
fewer spices, typically dominated by garlic and turmeric, achieve similar
health coverage due to their multi-functional medicinal properties. Simi-
larly, infectious diseases are typically covered by extensive spice combina-
tions such as turmeric, garlic, and black pepper inMughlai andHyderabadi
cuisines, highlighting their comprehensive therapeutic applications within
culinary traditions. Note that the size of the minimum set of spices under
FC-CMis close to that of theoriginal recipedatasets,which canbe attributed
to the fact that it conserves the frequency of spices used. For most disease
categories, fewer spices are needed to cover the spectrum of indications for
U-CM and RU models. These randomly generated recipes require fewer
spices to cover infectious, gastrointestinal, and cancer indications than
traditional Indian cuisines. This efficiency may be due to spices like garlic
that address multiple health concerns and are used extensively in various
Indian regional cuisines. However, actual spice usage in cuisines is also
influenced by flavor, ingredient interactions, availability, and cultural fac-
tors, not just healthbenefits.Going forward, it is of interest to exploremixing
while preserving or enhancing the flavor of the recipes65.

Discussion
Wetook anetwork-drivenapproach todiscoverknowledge regarding spices
and herbs, their constituent phytochemicals, health indications, and their
culinary usage. While spices and herbs cover many disease categories,
general symptoms, respiratory disease, gastrointestinal disease, infectious
disease, musculoskeletal disease, and cancer are the most widely covered.
From the spice-indication and spice-phytochemical bipartite networks, a
third bipartite network between phytochemicals and indications was con-
structed. We then probed deeper into the indication-phytochemical
bipartite network by defining specificity scores, which indicated the
degree of association between the indications and phytochemicals.

Various indication-phytochemical associations emerged out of our
analysis, such as dianethole, p-anisaldehyde found in fennel, and anise,
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which are useful for treating endocrine diseases. For better understanding,
we performed a systematic analysis of indication-phytochemical associa-
tions by ranking them based on specificity scores. The analysis of the top-
100 inferences showed that we achieved a high confidence score within 60
associations, and some of the inferred relationships are yet unknown. This
may prove to be a newmethod for the identification of new phytochemical-
disease associations. The known relationships were verified against com-
mon gene-chemical and gene-disease associations and thus are biologically
relevant. The remaining 40 associations of the top inferences labeled ‘NH’
are the new predicted associations that could be tested experimentally.
Compared to SpiceRx30, our study provides deeper insights by analyzing
1094 herbs and spices to generate 34,113 spice-disease relationships. While
the past work does use existing databases like PhenolExplorer66 and CTD56

to find phytochemical-diseases, we introduced a normalized specificity
score to quantify the strength of phytochemical-disease associations, pro-
viding higher granularity in assessing unique spice-phytochemical-diseases
relationships.Ourmethods thus address these limitations, providing amore
comprehensive and quantitative analysis of spice-disease interactions.

The analysis of Indian cuisines provides insights into the spice usage
and geographyof the country. There is a trend in the spiceusage fromNorth
to South. We also found authentic spices in the cuisines and found that
spices like asafoetida, curry leaves, cardamom, and clove are important
ingredients in the Jain, South Indian,Hyderabadi, andMughlai cuisines.We
further looked into the spice usage in Indian cuisines and their disease
associations. One important observation coming out of this analysis is that
the spices/herbs used do not cover all disease categories, and it would be
beneficial to add other kinds of spices/herbs to the diet. This analysis also
indicated that some cuisines, like Hyderabadi, Goan, Punjabi, andMughlai,
provide better coverage of indications than the other cuisines. It points out
that mixing some cuisines could further help in indicating coverage, as the
minimumnumber of spices needed to cover the different kinds of diseases is
quite small for randomly generated recipes, as compared to the real recipes.
This highlights that the fusion of cuisines may allow for a diverse diet and
enhance the health benefits of our diet. However, the cultural significance of
spices and herbs cannot be understated. Globalizationmay break traditions,

but it might have positive impacts too. For example, AI-generated recipes
can be quite compelling.

Our analysis does not consider the impact of cooking on the stability or
transformation of phytochemicals. Recent studies suggest that heat treat-
ment can both degrade and enhance phytochemicals. For example, anti-
oxidant activity has been shown to increase in some spices like cardamom
and clove after cooking, possibly due to the release of bound phenolic
compounds or formation of new antioxidant molecules during heating67.
Moreover, compounds in aromatic spices like thyme and rosemary have
shown enhanced bioavailability post-cooking and digestion, suggesting that
processing can sometimes improve the health benefits of herbs and spices
rather than diminish them68. Since spices are typically consumed in com-
binations, their bioactivity may be modulated by synergistic or antagonistic
interactions. Future work could explore these interactions more explicitly,
potentially modeling combinatorial effects within the spice-indication
bipartite network to assess whether certain spice pairings amplify or inhibit
specific health benefits. Additionally, note that our generative models for
recipe generation are randomized and may not adequately mimic food
globalization.

To summarize, the contributions of this paper are twofold. Firstly, we
used a network-based approach to develop a method for the generation of
scientific phytochemical-health hypotheses by distilling the traditional
knowledge of herbs and spices. Then we systematically analyzed the health
impacts of culinary traditions and how the global evolution of food may
cover more health indications.

Methods
Data, preprocessing, and categorization
We collected the medicinal indications of herbs and spices from the
Handbook of Medicinal Spices38 and Handbook of Medicinal Herbs37.
These handbooks provide medicinal information for a large collection of
essential spices/herbs, along with their cultivation and chemistry. Each
spice/herb is associatedwitha list of indications. There are 1094 spices/herbs
and 1597 indications associated with them. We have also collected 2993
constituent phytochemicals of these herbs and spices from the Duke

Fig. 7 | Minimum spice set distribution across disease categories via different
generativemodels.Each plot represents the distribution of theminimumnumber of
spices obtained using the minimum set-cover algorithm for the three copy-mutate

models (FC-CM, U-CM, RU) for 12 disease categories. The red line represents the
size of the minimum set of spices obtained for the recipe dataset.
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Phytochemical Database42. The indications were labeled into 24 categories
using the International Classification of Diseases (ICD-11)69 and
Malacards70. These categories include gastrointestinal, respiratory, cancer,
infectious,mental, reproductive, and cardiovascular diseases, amongothers.
In cases where an indication was not found in either database, we searched
for its synonyms using web searches and repeated the categorization pro-
cess. Note that some indications may belong to multiple categories.

To investigate the role of spices in Indian cuisine, we collected recipe
data from two popular culinarywebsites in India by TarlaDalal and Sanjeev
Kapoor. These websites feature a diverse collection of recipes from various
Indian and international cuisines. Our combined dataset comprises 13,212
recipes in total, with 3876 recipes sourced from Tarla Dalal58 and 9336
recipes fromSanjeevKapoor57. Each recipe entry includes details such as the
ingredients used, their quantities, preparation methods, and the associated
cuisine or geographical region.

For our analysis, we focused specifically on recipes belonging to Indian
cuisines, such as Punjabi, Bengali, and others. We filtered the dataset to
include only Indian cuisine recipes containing spices and herbs, resulting in
a final dataset of 5636 recipes, with 3595 recipes from Tarla Dalal and 2041
recipes from Sanjeev Kapoor.

For systematic analysis to understand the phytochemical-indication
association,weused theComparativeToxicogenomicsDatabase (CTD)56 and
published literature.CTD is a reliablepublic database containingboth curated
and inferred relationships. The curated relationships are extracted from
published literature by CTD curators, while inferred relationships are estab-
lished through CTD-curated chemical-gene interactions. In the latter case,
chemical A is “inferred" to be associated with disease C via gene B if chemical
A directly interacts with gene B, and gene B is associated with disease C. We
classified the results as Inferred if we found a chemical-gene interaction in
CTD. If not, thenwe looked into the literature.Unlesswe found an associated
phytochemical-disease relationship,weclassified it asExperimentallyVerified.
If it was not found in either, we classified it as a New Hypotheses.

Network construction and visualization
We created three bipartite networks to understand the relationships
between spices/herbs, indications, and phytochemicals: spice-indication,
spice-phytochemical, and indication-phytochemical. For each bipartite
network G = (U, V, E) on two disjoint sets of nodes U and V, projection
graphs on both U and V are generated. In a projection graph on set U, two
nodes are connected if they are both connected to at least one node inV. The
bipartite networks can alsobe representedby a bi-adjacencymatrixB, where
the rows represent the nodes ofU, and the columns represent the vertices of
V. In this matrix, Bij = 1 if there is an edge between vertex i ofU and vertex j
ofV, and0otherwise.Wecanproject this bi-adjacencymatrix toaunipartite
projection by calculating BBT.

The spice-indication and spice-phytochemical bipartite networks were
derived directly from theHandbooks ofMedicinal Spices andHerbs37,38 and
the Duke Phytochemical Database42, respectively. Indication-
phytochemical associations were inferred through an integration of the
spice-phytochemical and spice-indication bipartite networks. The
indication-phytochemical bipartite network was constructed by linking
each constituent phytochemical of a spice directly to all the indications the
spice is associated with, and weak links were filtered out.

For visualizationpurposes, we used a backbone extraction algorithm to
abstract the network while preserving the statistically significant links and
nodes40,41. The weight of each link was calculated as the total number of
shared nodes, and the size of each node was proportional to the number of
its connections within the backbone graph. The Wakita–Tsurumi
algorithm39 was applied to the full unipartite network to identify groups of
nodes that are close in the network topology. NodeXL was used for the
visualization of networks.

Prevalence score
TheWakita–Tsurumi algorithm is applied to the spice-indicationand spice-
phytochemical bipartite networks to identify spice clusters with similar

therapeutic properties and chemical compositions, respectively. To char-
acterize each cluster,we introduce the prevalence score,whichquantifies the
importance of each indication or phytochemical within a cluster. For a spice
cluster Ki, the prevalence score of an indication or phytochemical is calcu-
lated by counting the number of spice links associated with it within the
cluster in the respectivebipartitenetworkand thennormalizing the countby
dividing it by the total number of spices in the cluster (∣Ki∣). This normal-
ization ensures fair comparisons across clusters of different sizes.

A higher prevalence score indicates a stronger association between an
indication or phytochemical and the spices in the cluster, suggesting its
importance within that group. Examining prevalence scores within each
cluster helps identify key therapeutic properties or chemical compounds
characterizing the spices.

Specificity score
To quantify the uniqueness of phytochemicals in their association with a
certain disease, we measured a specificity score for each indication-
phytochemical pair (ui, vj). The specificity score is computed as the number
of links between them, normalized by the product of the count of ui’s spice
associations and the count of vj’s spice associations:

Sij ¼
eij
ei:ej

ð1Þ

where eij is the number of edges betweennodesui and vj, and ei and ej are the
total number of edges connected with nodes ui and vj, respectively.

Usage and authenticity of spices
The authenticity score10 measures how unique or representative a spice or
herb is to a specific cuisine compared to its usage in other cuisines.

The usage frequency Fc
i captures the proportion of recipes within a

cuisine c that include the spice or herb i, and it is defined as:

Fc
i ¼

nci
Nc

ð2Þ

where nci represents the number of recipes in cuisine c that contain spice or
herb i, and Nc represents the total number of recipes in cuisine c. A higher
value of Fc

i indicates that the spice or herb i is more commonly used in
cuisine c. Next, we calculate the average usage frequency of spice or herb i
across all other cuisines except c:

hFc0
i ic0≠c ¼

P
c0≠c F

c0
i

jCj � 1
ð3Þ

where c0 represents all cuisines other than c, and ∣C∣ represents the total
number of cuisines. The term hFc0

i ic0≠c represents the average usage fre-
quency of spice or herb i in all cuisines other than c. It provides a baseline for
comparing the usage of spice or herb i in cuisine c to its usage in other
cuisines. Finally, the authenticity score of spice or herb i in cuisine c is
defined as:

Ac
i ¼ Fc

i � hFc0
i ic0≠c ð4Þ

The authenticity score Ac
i measures the relative usage frequency of

spice or herb i in cuisine c compared to its average usage frequency in all
other cuisines. A positive value of Ac

i indicates that spice or herb i is used
more frequently in cuisine c than in other cuisines, suggesting that it ismore
authentic or representative of cuisine c. Conversely, a negative value of Ac

i
indicates that spice or herb i is used less frequently in cuisine c compared to
other cuisines, suggesting that it is less authentic or representative of cui-
sine c.
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Indication coverage in cuisines
The spice-indication matrix,MSI, capturing the association between spices
and their indications, is defined as:

MSI½s; i� ¼
1 if spice s is associatedwith indication i

0 otherwise

�
ð5Þ

The cuisine-spicematrixMCS represents the usage of spices in different
cuisines as defined in equation (2). The cuisine-indication matrix MCI

representing the indication coverage of cuisines is calculated as:

MCI ¼ MCS ×MSI ð6Þ

Each element of MCI represents the strength of association between
cuisine c and indication i.

Minimum set-cover algorithm
To find the minimum subset of spices that can cover a specific set of
indications, we use theminimum set-cover problemon a bipartite network.
This approach helps in understanding the efficiency and optimization of
spice usage in regional cuisines for potential health benefits. Given a
bipartite networkG = (U,V,E), whereU andV are twodisjoint sets of nodes
representing spices and diseases, respectively, and E is the set of edges
connecting them, our goal is to identify the smallest subset of nodes inU that
covers all the nodes in a specified subset of V.

Minimize cTX ð7Þ

Subject to : 0≤Xj ≤ 1 for j ¼ 1; 2; :::; jV jP
j
BijXj ≥ 1 for i ¼ 1; 2; :::; jUj

We approach this problem by formulating it as an integer linear pro-
gramming problem. Let ∣U∣ and ∣V∣ denote the number of nodes in sets U
and V, respectively. The problem was formulated with the constraints
expressed as:

GX ≤ h ð8Þ

where,

G ¼ ½B; IjVj;�IjVj�T ð9Þ

h ¼ ½�1jU j; 1jVj; 0jVj�T ð10Þ
B is the adjacency matrix of the bipartite network with dimension

∣V∣× ∣U∣, where ∣U∣ and ∣V∣ are the total number of nodes in sets U and V,
respectively. Each entry of B is either 1 or 0, indicating whether or not there
exists at least one link between each node pair betweenU andV. Here,X is a
vector of size ∣V∣ to be solved, and each entry ofX is either 1 or 0, indicating
whether or not the node from set U should be included in the minimum set
cover.Weobtain a fractional solution forX,which is then rounded toobtain a
feasible solution to the original minimum set-cover problem. The rounded
solution represents theminimum subset of spices (nodes fromU) that covers
all the diseases (nodes in the specified subset ofV) in the bipartite networkG.

Random recipe generation
We constructed three random recipe datasets using different models:
frequency-conserved copy-mutate (FC-CM), uniform copy-mutate (U-
CM), and random uniform (RU)14,36. These models aim to simulate the
process of recipe creation and evolution over time. The FC-CM algorithm
begins by creating an initial random pool I0 of 10 spice ingredients and a
seed pool R0 of 20 recipes. Each recipe in R0 is generated by randomly
selecting S = 6 spice ingredients from I0. The value of S is chosen based on
themedian number of spice ingredients per recipe in the real recipe dataset.

Each spice ingredient in I0 is assigned a fitness value based on its empirical
frequency in the real data, reflectinghow frequently it is used across different
cuisines. Spice ingredients with higher frequencies in real-world recipes are
considered more fit and versatile, and thus have a higher chance of being
selected for a recipe.

At each time step, a mother recipe is randomly selected from the recipe
pool R0. A copy of this mother recipe is made, and the copy undergoes a
mutation process. During mutation, an ingredient with fitness fi is randomly
chosen from the copied recipe and compared with another ingredient with
fitness fj, which is randomly selected from the ingredient pool I0. If fj > fi, the
old ingredient i is replacedwith the new ingredient j. Thismutation process is
repeatedM= 6 times, afterwhich themutated copy recipe is addedback to the
recipepoolR0, becoming apotential candidate for selection as amother recipe
in thenext timestep.Tomaintainadiverse ingredientpool, the ratio rbetween
the size of the ingredient pool I0 and the size of the recipe poolR0 is checked at
the beginning of each time step. If r falls below a threshold of 0.2, new spice
ingredients are introduced to I0 by randomly selecting from the list of all
available spice ingredients. These new ingredients are added to the existing
pool, expanding the variety of spices available for recipe creation. The FC-CM
process continues until the desired number of recipes is reached,which in this
case is 5636, matching the number of recipes in the real recipe dataset.

TheU-CMmodel follows a similar copy-mutate process as the FC-CM
model, with the key difference being that no fitness value is assigned to each
spice ingredient. In the U-CMmodel, each spice has an equal probability of
being selected for a recipe, and the mutation process involves replacing a
randomly chosen ingredient with another randomly selected ingredient
from the pool.

In the RU model, recipes are constructed by randomly choosing
ingredientswith uniformprobability, without considering anyfitness values
or mutation processes.

Data availability
The data used in this study was obtained from public sources and has been
referenced in the manuscript. Extended results that further support the
findings of the study are provided as Supplementary Information. The top-
100 indication-phytochemical relationship results are also given in Sup-
plementary Data 1.

Code availability
Code is publicly available in the GitHub repository: https://github.com/
rishemjit/Spices_Herbs_ML.
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