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Artificial intelligence (AI) driven chatbots provide instant feedback to support learning. Yet, the impacts
of different feedback types on behavior and brain activation remain underexplored. We investigated
how metacognitive, affective, and neutral feedback from an educational chatbot affected learning
outcomes and brain activity using functional near-infrared spectroscopy. Students receiving
metacognitive feedback showed higher transfer scores, greater metacognitive sensitivity, and
increased brain activation in the frontopolar area and middle temporal gyrus compared to other
feedback types.Suchactivation correlatedwithmetacognitive sensitivity. Students receiving affective
feedback showed better retention scores than those receiving neutral feedback, along with higher
activation in the supramarginal gyrus. Students receiving neutral feedback exhibited higher activation
in the dorsolateral prefrontal cortex than other feedback types. The machine learning model identified
key brain regions that predicted transfer scores. These findings underscore the potential of diverse
feedback types in enhancing learning via human-chatbot interaction, and provide neurophysiological
signatures.

The interactive learning features and flexibility of artificial intelligence (AI)-
driven chatbots, in terms of time and location, have made their use
increasingly popular in education1. Chatbots can provide learners with
personalized content, instant feedback, and one-to-one guidance2,3. To
enhance learning through chatbots, providing adequate feedback is essen-
tial, enabling learners to engage in self-regulated learning. Feedback helps
learners reduce uncertainty in the learning process4. Feedback is a crucial
element that affects learning across various environments and serves diverse
purposes, such as assisting learning, clarifying expectations, reducing dis-
crepancies, detecting error, and increasing motivation5. Feedback draws
learners’ attention to gaps in understanding and supports them in gaining
knowledge and competencies6. Moreover, feedback aids learners in reg-
ulating their learning7.

There is growing recognition that the lack of assessments and absence
of feedback mechanisms have hindered the success of chatbots8. Advances
inAI andnatural language processing have prompted researchers to explore
the effectiveness of cognitive feedback in chatbot-based learning. For
instance, one study found that chatbot-based corrective feedback could
promote the English learning experience9, while another showed that it
enhanced retention performance10. In addition, recent researchhas revealed

that, compared to teacher-based feedback, chatbot-based cognitive feedback
can boost learning interest, perceived choice, and value, while alleviating
pressure and cognitive load and improvingmastery of applied knowledge11.
However, the role and possible differences among different types of non-
cognitive feedback in chatbot-based learning remain largely unclear. In
previous studies, feedback primarily served to evaluate students’ learning
outcomes. In this study, however, feedback is used to facilitate the learning
process itself. Previous assessments of chatbot-based feedback relied on tests
or self-reports, lacking a neuroscience perspective. By incorporating brain
measures of learning processes along with post-test outcomemeasures, this
approach can deepen our understanding of the mechanisms behind dif-
ferent types of feedback design, providing insights intowhy a specific type of
feedback may be more effective. It also provides insights for designing and
optimizing various types of feedback for different educational scenarios.

In chatbot-based learning, students are encouraged to actively parti-
cipate andmanage their own learning.However, students are often reported
to lack motivation and struggled with self-regulation, leading to poor per-
formance in online learning environments12,13. Feedback is a crucial factor in
promotingbehavioral change, as it provides informationon the gapbetween
current achievements anddesired goals5,14.Unlike cognitive feedback,which
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provides direct instructional content, metacognitive feedback supports
“learning to learn” by guiding learners to develop self-regulation skills15.
This form of feedback conveys strategies for effective learning behaviors,
such as planning, monitoring, regulating, and reflecting16. Research has
shown that metacognitive feedback can deepen understanding and support
the transfer of knowledge to new contexts17,18. However, understanding
exactly how metacognitive feedback impacts learning, particularly in
chatbot-based environments, remains limited.

Humans adapt their behavior not only by observing the consequences
of their actions but also by internally monitoring their performance, a
capacity referred to as metacognitive sensitivity19,20. Also known as meta-
cognitive accuracy, this refers to an individual’s ability to distinguish
between their correct and incorrect judgments21. Signal detection theory
analysis suggests that metacognitive sensitivity correlates with task perfor-
mance. According to meta-reasoning theory, metacognitive monitoring, as
reflected inmetacognitive sensitivity, is essential for thinking and reasoning
by influencing metacognitive control – decisions such as whether to
respond, switch strategies, or give up22. Ackerman and Thompson further
argued that meta-reasoning involved the ability to reflect on and evaluate
one’s reasoning processes22. Enhancing students’ metacognitive sensitivity
can foster autonomous learning and support long-term learning develop-
ment. In this study, we use post-answer confidence as ameasure to examine
whether different types of feedback can improve metacognitive sensitivity.

In addition, research grounded in cognitivism and social-cultural
theory highlights the importance of considering the feedback recipient’s
needs, including encouragement23–25 and attention to factors like locus of
control and self-esteem26. Affective feedback, which aims to sustain stu-
dents’ interest, attention, or motivation, addresses these needs27. Affective
feedback also helps mitigate the impact of negative experiences on
motivation28, and can stimulate student engagement by encouraging par-
ticipation and learning29,30. Many AI-driven educational tools have inte-
grated affective feedback, such as intelligent tutoring systems and chatbots,
to induce positive emotions or alleviate negative emotions, with the goal of
enhancing student motivation and engagement31. For example, various
forms of affective feedback have been incorporated into intelligent tutoring
systems to address students’ frustration through congratulatory, encoura-
ging, sympathetic, and reassuring messages32. Chatbots, by offering social
interaction and affective cues like praise and emotional sharing, have been
shown to elicit positive emotions during tasks like reading comprehension33.
These affective cues have been linked to improvedmotivation, self-regulated
learning, and academicperformance34.Despite these advances, however, the
effects of affective feedback on learning outcomes, particularly its neural
underpinnings, remain insufficiently understood. This study aims to fill this
gap by exploring the neural mechanisms associated with different types of
feedback, including affective feedback, and their effects on learning
outcomes.

Neuroimaging tools such as fNIRS (functional near-infrared spectro-
scopy), EEG (electroencephalography), and fMRI (functional magnetic
resonance imaging) can capture different aspects of brain activity. fNIRS is
an optical brain monitoring technique that uses near-infrared light to
measure changes in the concentration of oxygenated and deoxygenated
hemoglobin in the blood35,36. While fNIRS has lower spatial resolution and
cannotmeasure deep brain activity, it offers better temporal resolution than
fMRI37, Its main advantages include being relatively low-cost, portable, safe,
low in noise, and easy to operate. Unlike EEG and magnetoencephalo-
graphy, fNIRS data are also less affected by electrical noise38. For these
reasons, we designed an fNIRS experiment to study the neural mechanisms
underlying AI-driven chatbot feedback.

Neuroimaging studies have highlighted the critical role of the Mirror
Neuron System (MNS) in various socially relevant functions, including
observation of others’ actions, imitation learning, and social
communication39–41. The MNS comprises a complex network involving
frontal, temporal, and parietal areas40,42. Among these, activation in the
superior temporal gyrus (STG) has been linked to social interaction and
perception43–45. Feedback processing, on the other hand, is primarily

associatedwith frontoparietal brain regions, including the anterior cingulate
cortex (ACC), dorsolateral prefrontal cortex (DLPFC), and parietal
lobules46–50. In adults, the parietal cortex ismore heavily relied upon than the
ACC for processing informative and efficient feedback, aiding in perfor-
mance adjustment and error correction47,49,50.

Considerable progress has been made in understanding the neural
mechanisms of metacognition51,52. However, most research has focused on
cognitive neuroscience paradigms, such as perceptual decision-making51–54,
memory judgements55–57, or problem-solving tasks58,59. Few studies have
examined the neural associations between metacognition and learning
process within educational settings. The PFC plays an important role in
cognitive activity60, serving as the brain region responsible for working
memory, decision-making, and coping with novelty. Metacognition, as a
high-order brain function, is strongly depends on the PFC54,61. Research on
adult neural correlates of metacognitive monitoring across different tasks
indicates a consistent involvement of a frontoparietal network51,52. Fur-
thermore, emerging evidence highlights the involvement of the right ros-
trolateral PFC53,62 and the anterior PFC (aPFC)63 in metacognitive
sensitivity.

Speaking of affective processing and feedback, research has highlighted
the central roles of the amygdala and insula in the emotional perception and
processing64–66. Also, higher-order cortical structures, including the medial
prefrontal cortex and the rostral anterior cingulate cortex, support affective
information67,68.The frontal regions are widely implicated in emotional
processing69. Furthermore, the temporo-parietal junction (TPJ) has been
consistently identified as playing a key role in emotional functions70–72.

This study aims to explore how different types of feedback affect
learning processes, which in turn affect learning outcomes and metacog-
nitive sensitivity. Therefore, we designed and developed three types of
educational chatbots providingmetacognitive, affective, orneutral feedback.
This study primarily focuses on metacognitive and affective feedback types
and neutral feedback serves as a control condition. Metacognitive feedback
guides students to think and reflect on the learning process through targeted
questions while affective feedback contains praise and encouragement
statements. Neutral feedback is not judgmental and not evaluative73,74. It
does not interfere with the learning process and serves only as a break
prompt.Although it doesnot resemble typical feedback, it serves as a control
condition, helping us understand the effects of the other feedback types.
Using behavioral measures and brain imaging, the study addresses two
central questions. First, within a chatbot-based learning environment, do
metacognitive, affective, and neutral feedback have distinct effects on
learning outcomes and metacognitive sensitivity? While several behavioral
studies have demonstrated the effectiveness of cognitive feedback in
improving students’ learning performance75, self-efficacy76, and self-
regulated learning77, it remains unclear whether different feedback types,
such as metacognitive, affective, and neutral feedback, yield varying effects.
Second, howdo these feedback types affect the learningprocess? Specifically,
what are the neurocognitive mechanisms underlying students’ responses to
different feedback conditions? Previous behavioral research has not
addressed these questions, and little is known about how the brain responds
to varying feedback conditions. Adopting a neurocognitive approach to
these questionsmayprovide valuable insight into optimizing the integration
of diverse feedback types into educational chatbots for specific learn-
ing goals.

We addressed these questions by comparing the learning process
(measured by brain activity in targeted areas), learning outcomes (assessed
via retention and transfer tests), and metacognitive sensitivity of students
who interacted with educational chatbots providing metacognitive, affec-
tive, or neutral feedback. Importantly, this study aimed at providing a
neurobiological testbed for different types of feedback. Our goal was to
characterize the human-chatbot interaction from a neurophysiological
perspective, and explore whether and how different feedback types might
facilitate these neurophysiological processes. Guided by prior research on
brain activity in social, feedback-related, and metacognitive brain areas, we
placed fNIRS probes on the PFC and right temporoparietal areas of the
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brain. We expected that metacognitive feedback would enhance learning
outcomes, especially on the transfer tests, relative to other types of feedback.
This feedback was also anticipated to increase students’ brain activity,
particularly in prefrontal and parietal regions. Additionally, we hypothe-
sized that affective feedback would improve retention outcomes and
enhance brain activity in the prefrontal regions and TPJ.

Participants’ brain activity was acquired using fNIRS as they interacted
with different chatbots. These human-chatbot interactions encompassed
the delivery of biology learning content, self-assessment tasks, and feedback
provision. Behavioral results revealed the different effects of different
feedback on retention, transfer, and metacognitive sensitivity. The differ-
ences of brain activation observed during the human-chatbot interaction
was used to infer the underlying processes of different feedback types,
providing insights into their effectiveness. The results may have important
implications for optimizing chatbot-based feedback and advancing AI-
supported pedagogical applications in educational settings.

Results
Werecruited a groupof college students to investigate howdifferent typesof
feedback affect learning outcomes, metacognitive sensitivity, and brain
activity. Participants were randomly assigned to one of three groups: the
Metacognitive Feedback group (MF group), the Affective Feedback group
(AF group), or the Neutral Feedback group (NF group). Each group
underwent three sessions (Fig. 1, for more details, see Methods): (1) a pre-
test session (initial visit) to assess participants’ baseline knowledge; (2) a
human-chatbot interaction phase consisting of 15 trials, each including
learning, self-assessment, and feedback phases. In the feedback phase, the
MF group receivedmetacognitive feedback, the AF group received affective
feedback, while the NF group received neutral feedback (for detailed feed-
back descriptions, seeMethods); (3) a post-test session to evaluate the effects
of feedback on retention (using the same questions as the pre-test) and
transfer (using new questions).

Behavioral results
Retention scores. After controlling the influence of pre-test knowledge
test scores, students’ retention scores showed a significant difference in
the feedback type (F = 7.51, p = 0.001). The effect size was 0.15, and the
statistical power was 0.94. Bonferroni post-hoc comparisons revealed
that retention scores in the MF group (M = 13.03, SD = 2.28) were sig-
nificantly higher than in the NF group (M = 10.86, SD = 2.81; corrected
p = 0.001). It was found that retention scores in the AF group (M = 12.34,
SD = 2.14) were significantly higher than in the NF group (corrected
p = 0.042). However, retention scores were comparable between the MF
and AF groups (corrected p = 0.580).

Transfer scores. After controlling the influence of pre-test knowledge
test scores, students’ transfer scores showed a significant difference in the
feedback type (F = 6.75, p = 0.002). The effect size was 0.14, and the
statistical power was 0.91. Bonferroni post-hoc comparisons revealed
that transfer scores in the MF group (M = 9.38, SD = 2.88) were sig-
nificantly higher than in the NF group (M = 6.72, SD = 3.34; corrected

p = 0.002) and the AF group (M = 7.59, SD = 2.97; corrected p = 0.050).
However, transfer scores were comparable between the AF and NF
groups (corrected p = 0.739).

Metacognitive sensitivity. After controlling the influence of pre-test
metacognitive sensitivity, students’ metacognitive sensitivity showed a
significant difference in the feedback type (F = 5.48, p = 0.006). The effect
size was 0.12, and the statistical power was 0.84. Bonferroni post-hoc
comparisons revealed that metacognitive sensitivity in the MF group
(M = 0.71, SD = 0.11) was significantly higher than in the NF group
(M = 0.63, SD = 0.12; corrected p = 0.018) and the AF group (M = 0.63,
SD = 0.10; corrected p = 0.014). However, metacognitive sensitivity was
comparable between the AF and NF groups (corrected p > 0.999).

fNIRS results of learning module
Brain activationpatterns ineachgroup. One sample t-test (above zero)
with FDR corrections was applied to 20 channels of brain activation data
(△HbO) per group to investigate which channels were activated during
the human-chatbot interaction period. Heat maps of the brain area with
significant activation in the MF group are shown in Fig. 2. The corre-
sponding activated brain areas include dorsolateral prefrontal cortex
(DLPFC) (channel 07; t = 2.84, corrected p = 0.028), frontopolar area (FP)
(channel 08; t = 2.74, corrected p = 0.028), supramarginal gyrus (SMG)
(channel 12; t = 2.77, corrected p = 0.028), and middle temporal gyrus
(MTG) (channel 19; t = 3.11, corrected p = 0.028).

As shown in Fig. 3, in the AF group, the corresponding activated brain
areas include DLPFC (channel 07; t = 3.95, corrected p < 0.001), SMG
(channel 11; t = 3.30, corrected p = 0.03), and STG (channel 17; t = 2.67,
corrected p = 0.050).

As shown in Fig. 4, in the NF group, the corresponding activated brain
areas include the DLPFC (channel 01; t = 2.82, corrected p = 0.044 and
channel 04; t = 2.71, corrected p = 0.044).

Group differences in brain activation. The results showed significant
group differences in brain activation (Table 1). Brain activation was
significantly higher in the MF group than in the AF group and NF group
in channel 8 (frontopolar area) and channel 19 (middle temporal gyrus).
In addition, brain activationwas significantly higher in theAF group than
in the MF and NF groups in channel 11 (supramarginal gyrus). In con-
trast, brain activationwas significantly higher in theNF group than in the
MF and AF groups in channel 1 and channel 4 (dorsolateral prefrontal
cortex).

Neural-behavioral relationships. First, the Pearson correlation analysis
indicated that channel 8 activation during thewhole learningmodule was
positively correlated with post-learning metacognitive sensitivity in the
MF group (r = 0.42, p = 0.023), an association not seen in the other
groups. Furthermore, channel 19 activation during thewholemodulewas
positively correlated with retention scores in the MF group (r = 0.45,
p = 0.014), an effect not observed in the other groups. However, no sig-
nificant correlations were observed between activated channels and
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Fig. 1 | Visualization of experimental sessions. There are three sessions, entailing pre-test, human-chatbot interaction, and post-test.
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transfer scores. Consequently, we employedmachine learning analyses to
take a more predictive approach to understanding transfer performance.
This multivariate strategy allows us to examine how multiple factors,
including brain activity features, contribute to the neural-behavioral
relationship.

Second, for all groups, machine learning models using brain activity
from the entire learning module predicted transfer scores more accurately
than models based on individual phases of the learning process. This sug-
gests that transfer performance is influencedby the interplay of the learning,
assessment, and feedback phases, which justifies the use of complete
learning modules in our models. The Extra Trees model, an ensemble
learning method, provided the best prediction of transfer scores across all
groups, enhancing performance through multiple decision trees. It auto-
matically identifies key features within high-dimensional data, highlighting
variables most relevant to prediction through feature importance analysis.
This capability is valuable for complex neuroscience data, such as fNIRS
signals, which often contain multiple dimensions and complex temporal
dynamics. Compared to similar models such as Random Forests, Extra
Trees introduces additional randomness during training by randomly
selecting both features and segmentation thresholds. This added random-
ness helps reduce overfitting, particularly beneficial when dealing with
limited sample sizes.

For theMF group, the results revealed that the mean R2 achieved 0.88,
the mean MAE achieved 0.72, and the mean MSE achieved 0.93. Figure 5
shows the Shapley additive explanation (SHAP) summary plot, which ranks
features based on their importance in predicting transfer scores for the MF
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Fig. 3 | Brain responses to affective feedback. The affective feedback group showed significantly increased activation in (a) the dorsolateral prefrontal cortex (DLPFC), and
(b) the supramarginal gyrus (SMG) and superior temporal gyrus (STG).

Table 1 | Group differences in brain activation

Regions-
channels

Group M SD p η2 Post hoc

DLPFC-CH 1 MF
AF
NF

−0.0004
−0.001
0.002

0.001
0.002
0.005

< 0.001 0.21 M NF >M MF

M NF >M AF

DLPFC-CH 4 MF
AF
NF

−0.0005
−0.0008
0.002

0.001
0.002
0.003

< 0.001 0.19 M NF >M MF

M NF >M AF

DLPFC-CH 7 MF
AF
NF

0.001
0.002

−0.0008

0.002
0.002
0.002

< 0.001 0.21 M MF >M NF

M AF >M NF

FP-CH 8 MF
AF
NF

0.001
−0.0007
−0.0008

0.002
0.002
0.002

< 0.001 0.18 M MF >M AF

M MF >M NF

SMG-CH 11 MF
AF
NF

−0.0003
0.001

−0.0005

0.002
0.002
0.002

< 0.001 0.17 M AF >M MF

M AF >M NF

SMG-CH 12 MF
AF
NF

0.0006
−0.0004
0.0002

0.001
0.002
0.001

0.025 0.08 M MF >M AF

STG-CH 17 MF
AF
NF

−0.001
0.001

−0.003

0.001
0.001
0.001

0.007 0.11 M AF >M NF

MTG-CH 19 MF
AF
NF

0.001
−0.001
−0.0007

0.002
0.002
0.004

0.005 0.12 M MF >M AF

M MF >M NF
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Fig. 2 | Brain responses to metacognitive feedback. The metacognitive feedback group showed significantly increased activation in (a) the dorsolateral prefrontal cortex
(DLPFC), frontopolar area (FP), and (b) supramarginal gyrus (SMG) and middle temporal gyrus (MTG).
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group. The SHAP values for each activity are displayed along the x-axis,
ranging from −1 to 1. A positive SHAP value increases the probability of
high scores,while anegative SHAPvaluedecreases this likelihood.Keybrain
regions that predicted transfer scores included the FP, SMG, DLPFC, and
fusiform gyrus (FG). Among these, the features “CH-9-HbO-max”, “CH-9-
HbO-min”, and “CH-9-HbR-min” did not demonstrate a simple linear
relationship with the prediction outcomes. That is, the values of these fea-
tures did not directly correlate with higher or lower scores. For the feature
“CH-11-HbR-kurt”, smaller values were associated with a higher likelihood
of the model predicting higher scores, suggesting that lower HbR con-
centration in the supramarginal gyrus was linked to better performance.
Conversely, for the feature “CH-7-HbO-max”, larger values were associated
with a higher likelihood of predicting higher scores, indicating that greater
activity in the dorsolateral prefrontal cortex was related to higher student
performance.

For the AF group, the results revealed that the Extra Trees model was
the best in predicting transfer scores. The mean R2 achieved 0.90, the mean
MAE achieved 0.61, and the mean MSE achieved 0.83. Figure 6 shows the
SHAP summary plot that orders features based on their importance in

predicting transfer scores within the AF group. Key brain regions that
predicted transfer scores included the SMG,DLPFC,MTG,FP, and.Among
them, greater values of features, such as “CH-13-HbO-max” and “CH-19-
HbR-max”, were associated with higher predicted scores. Conversely,
greater values of the feature “CH-3-HbO-max” were linked to lower pre-
dicted scores. This indicates that higher HbO concentration in the supra-
marginal gyrus andhigherHbR concentration in themiddle temporal gyrus
were associatedwithhigher transfer scores,while higherHbOconcentration
in the dorsolateral prefrontal cortex was linked to lower transfer scores.
However, the influence of brain activity in the frontopolar area on predic-
tion outcomes mirrored that of the metacognitive group, showing a non-
linear relationship.

For the NF group, the results revealed that the Extra Trees model was
the best in predicting transfer scores. The mean R2 achieved 0.87, the mean
MAE achieved 0.92, and the mean MSE achieved 1.42. Figure 7 shows the
SHAP summary plot that orders features based on their importance in
predicting transfer scores in the NF group. Key brain regions that predicted
transfer scores included the SMG, MTG, FP, and DLPFC. Among these,
higher values of features, such as “CH-13-HbR-max”, “CH-19-HbO-max”,
were associated with higher predicted scores. In contrast, smaller values of
the feature “CH-19-HbR-min” were linked to lower predicted scores. This
suggests that higher HbR concentration in the supramarginal gyrus or
higher HbO concentration in the middle temporal gyrus corresponded to
higher transfer scores.

fNIRS results across phases
Comparison of the brain activation between phases. For the MF
group, the learning phase, compared to the rest phase, showed sig-
nificantly greater activation in the DLPFC and MTG. Specifically,
channel 7 (corrected p = 0.0498) and channel 19 (corrected p = 0.022)
were significantly more active during learning than the rest. No sig-
nificant differences were found between the assessment and rest phases
across all channels. During the feedback phase, theDLPFC, FP, andMTG
showed significantly greater activation compared to the rest, with
channel 7 (corrected p = 0.035), channel 8 (corrected p = 0.022), and
channel 19 (corrected p = 0.039) being more active.

For theAF group, channel 7 in theDLPFC showed significantly greater
activity during the learning phase compared to the rest (corrected p < 0.001).
The assessment and feedback phases also elicited significantly larger acti-
vation in the DLPFC relative to rest, with channel 7 again showing sig-
nificant increases (corrected p < 0.001).

DLPFC

t
v
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u
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Fig. 4 | Brain responses to neutral feedback. The neutral feedback group showed
significantly increased activation in dorsolateral prefrontal cortex (DLPFC).

Fig. 5 | Identification of important features
through SHAP in the metacognitive
feedback group.The left side of the ordinate lists the
feature names, following the naming convention:
channel - channel number - biomarker (HbO or
HbR) - calculated feature value (average, maximum,
minimum, peak, slope, or kurtosis). Darker red
denotes higher activity values, while lighter blue
represents lower activity values. In the MF group,
key brain regions that predicted transfer scores
included the frontopolar area (FP), supramarginal
gyrus (SMG), dorsolateral prefrontal cortex
(DLPFC), and fusiform gyrus (FG).
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For the NF group, the learning phase also demonstrated higher acti-
vation compared to the rest, particularly in the DLPFC at channel 1 (cor-
rected p = 0.0498). During the assessment phase, channel 1 (corrected
p = 0.031) and channel 4 (corrected p = 0.022) in the DLPFC were more
active than in the rest phase. Feedback compared to rest elicited significantly
larger activation in the DLPFC at channel 1 (corrected p = 0.035).

Neural-behavioral relationships. Pearson correlation analysis indi-
cated that channel 19 activation during the learning phase was positively
correlated with retention scores in both the MF group (r = 0.45,
p = 0.015) and theNF group (r = 0.45, p = 0.013), but not in theAF group.
In the MF group, channel 8 activation during the feedback phase was
positively correlated with retention score (r = 0.44, p = 0.017), an asso-
ciation not seen in the other groups. Furthermore, channel 8 activation
during feedback was positively correlated with channel 19 activation

during learning. For the NF group, channel 1 activation during the
assessment phase was negatively correlated with retention scores
(r =−0.379, p = 0.043), an effect not observed in the other groups.

Discussion
Feedback play an important role in the human-chatbot interaction. This
study aims to elucidate the neurocognitive processes underpinning different
feedback types (mainly metacognitive and affective feedback) during
human-chatbot interactions and provide a neurophysiological explanation
for why the certain feedback is useful. This study yielded three key findings
concerning the processes involved in human-chatbot interactions: (1) it
identified differences in learning outcomes based on the type of feedback
provided, (2) it revealed the neural and psychological processes associated
with different feedback types, and (3) it pinpointed key brain regions that
predicted transfer scores across the various feedback groups.

Fig. 6 | Identification of important features
through SHAP in the affective feedback group.
The left side of the ordinate lists the feature names,
following and naming convention: channel—chan-
nel number - biomarker (HbO or HbR)—calculated
feature value (average, maximum, minimum, peak,
slope, and kurtosis). Darker red denotes higher
activity values, while lighter blue represents lower
activity values. In the AF group, key brain regions
that predicted transfer scores included the supra-
marginal gyrus (SMG), dorsolateral prefrontal cor-
tex (DLPFC), middle temporal gyrus (MTG), and
frontopolar area (FP).

Fig. 7 | Identification of important features
through SHAP in the neutral feedback group. The
left side of the ordinate lists the feature names, fol-
lowing the naming convention: channel - channel
number - biomarker (HbO or HbR) - calculated
feature value (average, maximum, minimum, peak,
slope, or kurtosis). Darker red denotes higher
activity values, while lighter blue represents lower
activity values. In the NF group, key brain regions
that predicted transfer scores included the supra-
marginal gyrus (SMG), middle temporal gyrus
(MTG), frontopolar area (FP), dorsolateral pre-
frontal cortex (DLPFC).
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Behavioral findings indicated that students who received metacogni-
tive or affective feedback achieved better retention scores compared to those
who received neutral feedback. Feedback that informs learners about their
actions helps them reevaluate their abilities and to adapt their learning
strategies, consequently increasing their chances of success78. As expected,
metacognitive feedback resulted in better transfer scores, suggesting that it
may encourage learners to engage more actively in the learning process,
monitor their progress, and assess their understanding. This sense of
autonomy and the ability to monitor their own learning enhances learners’
capacity to grasp and apply the knowledge effectively. In biology education,
students with higher self-awareness and stronger skills in monitoring, reg-
ulating, and controlling their learning process are more likely to develop a
meaningful understanding of key biology concepts79,80. In addition, students
in the MF group exhibited higher metacognitive sensitivity than the other
groups. Metacognitive feedback enhances students’ self-awareness and
reflective thinking, helping them to reduce biases by guiding them to
monitor and reflect on the learning process81. This enables students to
quickly identify their mistakes and make corrective action more effectively.
In contrast, affective and neutral feedback did not yield similar results, as
they lacked the metacognitive cues needed for such reflection.

In terms of brain activation pattern, all groups showed activation in the
dorsolateral prefrontal cortex (DLPFC), a region critical for working
memory and attention82–84. Given the nature of the learning task, which
involves conceptual knowledge requiring continuous memorization and
comprehension, the DLPFC activation is likely due to these task demands.
Furthermore, the MF group additionally activated the frontopolar area,
supramarginal gyrus, and middle temporal gyrus. The frontopolar area is
associated with metacognition85,86, the supramarginal gyrus is related to
theory of mind87,88 and emotion recognition89, and the middle temporal
gyrus to semantic processing90,91. The greater activation of the frontopolar
area and middle temporal gyrus in the MF group suggests that metacog-
nitive feedback may foster deeper semantic processing and enhance
understanding of complex concepts, which aligns with better learning
outcomes. Incontrast, theAFgroup showed activation in the supramarginal
gyrus and superior temporal gyrus, with the former region linked to theory
of mind87,88 and emotion recognition89, and the latter to social interaction
and perception43–45. This pattern indicates that students in the AF group
likely focused more on processing emotional information. However, due to
equipment limitations (i.e., limited number of recording channels), it
remains unclear whether these activations reflect emotional experiences or
regulation, which could involve regions such as the anterior cingulate cortex
and orbital cortex92,93. Future studies employing MRI could help address
these questions. By contrast, we found that NF elicited greater DLPFC
activation compared to the other feedback types, suggesting that students in
the NF group may have been less influenced by external feedback or
emotional states. While this finding was unexpected, it highlights the
complex nature of brain responses to different feedback types. NF did not
elicit the same activation patterns in other brain regions as seen in theMFor
AFgroups,whichmay suggest a different cognitive processing strategy, such
as increased focus on task-related demands rather than emotional or
metacognitive reflection.

In addition, in the MF group, higher metacognitive sensitivity was
linked to higher activity in the frontopolar area, a relationship not observed
in the other groups. This finding aligns with research suggesting that the
frontopolar cortex plays a critical role in reflecting on what is known versus
unknown and inmonitoring and regulating cognitive processes. Our results
further substantiate the role of the frontopolar cortex in metacognition,
particularly in the context of explicit metacognitive judgments63,94. While
previous studies have linked dorsolateral and medial PFC activation with
self-awareness and metacognitive accuracy95–97, our findings emphasize the
frontopolar cortex in this process. This suggests thatmetacognitive feedback
encourages students to reflect on, monitor, and regulate their learning,
enhancing their ability to judge what they know and do not know, and
thereby promotingmetacognitive sensitivity. Furthermore, activation of the
middle temporal gyrus in the MF group was significantly correlated with

retention scores, a relationship not observed in the other two groups.
Although retention scores did not differ significantly between the MF and
AF groups, theMFgroup showed highermean scores, indicating a potential
advantage for metacognitive feedback in promoting knowledge retention.
Based on the association between brain activity and behavior, the effec-
tiveness of metacognitive feedback may stem from its ability to enhance
students’ accuracy in judging their learning performance. This improve-
ment allows students to adjust their learning strategies in real time, pro-
moting better learning outcomes. As students continue to reflect, monitor,
and regulate their learning process, their performance judgments become
increasingly precise. Additionally, metacognitive feedback may encourage
deeper processing of knowledge, which can help consolidate memory.

Furthermore, we observed thatMTG activity wasmore intense during
concept learning compared to resting in the MF group, and MTG activity
during the learning phase was positively correlated with retention scores in
both the MF and NF groups. This suggests that students in the MF group
were not engaging in rote memorization but were instead working to
understand the relationships among concepts, contributing to improved
retention. Furthermore, FP activity was heightened when receiving meta-
cognitive feedback than rest. Results showed that brain activation in the FP
was specifically associated with the metacognitive feedback phase, as
observed in theMF group, whereas neither the learning nor self-assessment
significantly enhanced FP activity. Furthermore, FP activity during the
feedback phase was positively correlated with both retention scores and
MTG activity during the learning phase in theMF group. This suggests that
students enhanced their comprehension monitoring while receiving
metacognitive feedback and subsequently adjusted their learning strategies
during the learning phase, thereby reinforcing memory. These findings
imply that metacognitive feedback not only affects the feedback phase, but
also influences the entire learning process.

In this study, we focused on learning transfer, a core competency in
modern education. In today’s world, students are expected not only to
memorize information but to apply and transfer knowledge across different
contexts98. Transfer is considered an essential skill for success in the 21st
century, as it demonstrates a student’s ability to adapt and apply learned
knowledge beyond immediate tasks99. Understanding the neural mechan-
isms behind transfer can inform how different types of feedback can be
tailored to support this critical learning outcome. Although our initial
correlation analyses did not reveal significant relationships between brain
activity and transfer scores, ourmachine learningmodels demonstrated that
brain activity features (e.g., average, maximum, minimum, peak, slope, and
kurtosis) effectively predicted transfer scores across different feedback
groups. These results highlight the complementary role ofmachine learning
as a multivariate approach, enabling the identification of complex patterns
in brain data that traditional analysis methods, such as general linear
models, may not capture. First, key brain regions identified as predictors
varied by feedback group and included the frontopolar area (associatedwith
metacognition), the supramarginal gyrus area (related to theoryofmindand
emotion recognition), and the dorsolateral prefrontal (associated with
memory and attention). Second, group-specific predictors were also
observed. In theMF group, the fusiform gyrus known for its role in reading
efficiency, emerged as a significant predictor. For theAF andNF groups, the
middle temporal gyrus, associated with semantic processing, was high-
lighted as a key region. These findings of prediction models highlight dis-
tinct brain regions of interest associated with different types of feedback.
Specifically, for the MF group, the key brain regions identified through
prediction were consistent with those revealed by the activation analysis.
Notably, while the frontopolar area was not significantly activated in the
other two groups, its activity still emerged as a reliable predictor of transfer
scores across all feedback types. This finding suggests that the frontopolar
area plays a critical role in knowledge transfer regardless of the feedback
type. In the future, monitoring the activity of these key brain regions in real
time could enable adaptive feedback strategies to optimize learning and
facilitate knowledge transfer more effectively. In addition, the association
between neural activity and transfer performance suggests that
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metacognitive feedback may enhance transfer performance by facilitating
the integration of cognition, emotion, and metacognition.

In the current study, several limitations deserve noting. First, some
external factors that may affect the effectiveness of the feedback types, such
as students’motivation or learning style, were not included. Future studies
should carefully address participant selection in this regard. Second, the
feedback provided was not personalized, which could influence the effec-
tiveness of different feedback types. Notwithstanding, we standardized the
delivery of feedback to control for potential variations: each feedback type
was given at the same frequency (15 times), consistently delivered after the
self-assessment phase, and contained a uniform number of Chinese char-
acters. Third, due to the limited number of channels and detection depth of
fNIRS, our optode probe set only covered the frontal cortex and right
temporoparietal regions, leaving other regions, particularly deeper brain
areas, unexplored. Future studies should consider using whole-brain cov-
erage or integrating other imaging technologies, such as fMRI, to con-
solidate these findings. Finally, the limited sample size and the gender
composition of students can lead to bias, thereby affecting the general-
izability of our conclusions. Future studies should include larger and more
diverse samples to enhance the applicability of these findings.

Furthermore, this study focuses solely on comparing brain activity
elicited by different types of feedback during human-chatbot interactions,
without examining the feedback effects in human-human interactions.
Previous research on human-human interactions has shown that cognitive
feedback (e.g., yes-no verification or correct answers) engages frontoparietal
brain regions, including the anterior cingulate cortex (ACC), the dorso-
lateral prefrontal cortex (DLPFC), and parietal lobules47,49,100. The ACC is
involved in error detection and expectation violation48, while the DLPFC
and superior parietal lobule support more complex processes such as error
correction and performance adjustment47,49,50. In our study, metacognitive
feedback during human-chatbot interaction also activated the DLPFC,
consistent with findings from human-human feedback studies. However,
unlike human-human interactions, metacognitive feedback in this context
did not activate the superior parietal lobule but instead engaged the fron-
topolar area. This suggests thatmetacognitive feedback inhuman-computer
interactions can, under certain conditions, substitute for teacher-provided
feedback, particularly in promoting cognitive control. Future research
should compare the effects ofmetacognitive and affective feedback on brain
activity across human-human and human-chatbot interactions. Such
comparisons could inform thedesignof human-machine interactionsbetter
suited for real-world educational applications.

This study advances our understanding of the effectiveness and neural
basis of different types of feedback in human-chatbot interactions. In the
chatbot-based learning environments, educators can tailor feedback to
achieve various instructional goals. For example, metacognitive feedback
canbe developed to promote learning outcomes and enhancemetacognitive
sensitivity. Educators should consider integrating metacognitive feedback
into human-chatbot interaction to guide students in continuously mon-
itoring and reflecting on their learning processes, thereby promoting
metacognitive sensitivity. In addition,metacognitive feedbackmay facilitate
deeper semantic understanding during the learning phase, aiding in the
internalization and retention of material. Furthermore, our results suggest
that affective feedback may increase emotional processing, which in turn
could promote positive emotions andmemory retention. Positive emotions
are essential components of learningmotivation101 and are closely related to
academic performance, influencing subsequent learning behaviors102. Pre-
vious studies have consistently demonstrated that teacher-provided positive
feedback, such as praise and encouragement, fosters positive emotions102.
However, it remainsunclearwhether chatbot-based affective feedbackelicits
similar emotional benefits. Additionally, emotional response is not obvious
in the single stages of the learningmodule, future research could enhance the
anthropomorphic qualities of chatbots and diversify the forms of affective
feedback to reduce social distance in human-computer interactions, thereby
increasing the perceived authenticity of emotional responses. Finally, real-
time monitoring of students’ brain activity using functional neuroimaging

technologies during human-chatbot interactions could provide insights for
adaptive feedback strategies, especially for promoting advanced skills like
knowledge transfer. Machine learning analysis has shown that knowledge
transfer is influenced by cognition, emotion, and metacognition. Future
studies could focus on brain regions such as the frontopolar area, supra-
marginal gyrus area, and dorsolateral prefrontal cortex to predict transfer
scores dynamically and deliver tailored feedback to optimize learning out-
comes. In sum, this study underscores the importance of integrating diverse
feedback types, including metacognitive and emotional feedback, into
chatbot systems to foster deeper learning and improve student outcomes.
While we acknowledge that translating neuroscience into educational
practice is still a long-termgoal, we believe these fNIRS findings are valuable
for informing future research directions.

Methods
Participants
Ninety-three college students (63 females) with no history of neurological
disorders were recruited from a university in Shanghai, China. All partici-
pants had normal or corrected-to-normal vision and were right-handed.
None of them majored in biology science. Six participants were excluded
from the data analysis because of the unsuccessful recording of their fNIRS
data and missing screen recording files. Consequently, the behavioral and
fNIRS results were based on the data from 87 participants. Each group
consisted of 29 students. Our experimental procedures were conducted
according to the Declaration of Helsinki and the research protocol was
approved by the University Committee on Human Research Protection,
East China Normal University (HR2-0068-2023). Written informed con-
sent was obtained from all participants prior to the study.

Materials
The learning materials focused on the human cardiovascular system, spe-
cifically the functions and structures of the human heart and blood, which
were adapted from previous studies103,104. The content covered 15 key
concepts, comprising approximately 1846 Chinese characters. To create a
more engaging and realistic interactive experience, we adopted personali-
zation design principles. First, the learningmaterials were presented using a
combination of images, texts, and interactive buttons to capture students’
interest. Second, the content was adapted to a conversational style105,
including the following changes: (1) theword “the”was replacedwith “your”
in each statement. For example, “Your blood flows through the veins
throughout your body”; (2) Interactive leading sentences were added before
introducing each concept, such as “Now, let’s look at the structure of blood”;
(3) The students’nameswere used to create amore personalized experience,
for example, “Yin, do you understand heart tissue now?”.

Experimental procedure
Pre-test. All students first completed a knowledge test to determine their
initial understanding of thematerial. The test included 16multiple-choice
questions, adapted from a previous study104, with two questions modified
to increase difficulty. Each question offered four options, with only one
correct answer. Students received one point for each correct response.

Human-chatbot interaction. In the interaction session, the chatbot
began by greeting the students, introducing itself, and asking for their
names. A screenshot of this greeting phase is shown in Fig. 8. Then,
students studied 15 learning modules. Each module, or trial, consists of
three phases: learning, self-assessment, and feedback. At the end of each
trial, students entered the rest phase and took a break. The flow for each
trial is as follows: (i) Learning phase. The chatbot presented concepts in
dialog boxes, allowing students to learn at their own pace. Once they have
completed a concept, they could click the “go on learning” button to
proceed. (ii) Self-assessment phase. After studying each concept, students
assessed their understanding by selecting either the “understand” or
“don’t understand” button. (iii) Feedback phase. Based on the group to
which students are assigned, the chatbot provides feedback tailored to
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their self-assessment response. Specifically, in the MF group, the chatbot
would first present ametacognitive question. The questions were adapted
from previous studies106–108. If students pressed the “understand” button,
the chatbot would ask questions to instruct students to evaluate, reflect,
monitor, or regulate the learning process and plan learning strategies.
The questions adopted were as follows: (1) are you satisfied with your
current learning performance? (2) are you confident in mastering the
above content? (3) can you explain the above concepts to others? (4) how
do you better complete subsequent learning? Conversely, if students
pressed the “don’t understand” button, the chatbot would ask some
questions to prompt students to monitor the learning process from
knowledge understanding, effort, and concentration. Additionally, it
would guide students in evaluating and reflecting on their learning
progress to identify any comprehension challenges promptly. The
questions adopted were as follows: (1) Are there any concepts you don’t
understand? (2) Are you making an effort to understand the content? (3)
How focused are you on learning? (4)What is the most challenging part?
Each learning module was paired with a metacognitive question. To
prevent fatigue from repeated questioning, the four metacognitive
questions are presented in rotation, with each question appearing up to 4
times. Afterward, students paused for 10 seconds and without input.
Then, the chatbot provided a sentence about the students’ possible
metacognitive performance (e.g., I am satisfied with my current learning
performance), and students responded on a five-point Likert-type scale
ranging from 1 (strongly disagree) to 5 (strongly agree). This step further
encouraged students to engage thoughtfully with the metacognitive
questions.

In contrast to metacognitive feedback, the chatbots in the affective
feedback group provided students with encouragement and praise. For
example,when students pressed the “understand”button, the chatbotwould
offer positive reinforcement with statements such as: (1) “Great! I believe
you will do better in the future learning.” (2) “Great! It looks like you’ve
grasped this part of the contentwell.” (3) “That’s great. Youdid a great job in
the learning process.” (4) “You’re doing great! Keep up the good work with
the upcoming learning materials.” On the other hand, when students
pressed the “don’t understand” button, the chatbot would provide moti-
vational encouragement with statements like: (1) “Don’t be discouraged; it’s
normal to have difficulty understanding when you’re just starting to learn.”
(2) “Don’t worry. It’s not easy for others to understand, either.” (3) “Don’t
worry. This is a challenging concept for others as well.” (4) “Don’t be
discouraged; you can try to understand this part of the content again.”After
receiving the feedback, students paused for 10 seconds without input, and
then the chatbots prompted students to rate their emotional response (e.g., I
am in a happy mood right now) on a five-point Likert-type scale, ranging
from 1 (strongly disagree) to 5 (strongly agree), based on how well they felt
the feedback matched their emotional state. In the NF group, regardless of
the students’ self-assessment, the chatbot simply instructed, “Let’s take a
break first and then continue with our learning.” After a 10-second break,
students were then asked to randomly click one of the numbers between 1
and 5. The screenshots of the feedback phase for all three groups are shown
in Fig. 9.

Post-test. Students completed the retention and transfer tests, which
took approximately 10 min. The retention test was identical to the
initial knowledge test, but the questions were presented in a different
order. The transfer test consisted of four questions designed to assess
how well students applied the basic concepts and principles they had
just learned to solve novel problems. Students’ textual responses were
scored by comparing them to standard answers, with a maximum total
score of 15 points for the four questions. After each multiple-choice
question, students were asked to rate their confidence in their answers.
This confidence rating was used to measure students’ metacognitive
sensitivity by calculating the alignment between their accuracy and
their self-assessed confidence level21. Metacognitive sensitivity reflects
the ability to introspect and accurately assess one’s own knowledge and
performance.

fNIRS data acquisition and preprocessing
Aportable continuous-wave near-infrared optical imaging systemwas used
(LIGHTNIRS, Shimadzu, Kyoto, Japan), with a sampling rate of 13 Hz and
wavelengths of 730 and 850 nm. The system included eight sources and
eight detectors, generating 20differentmeasurement channels. Thedistance
between a source and adetector is 3 cm.Theprobeswere strategically placed
to cover each student’s prefrontal cortex (see Fig. 10a) and right tempor-
oparietal areas (see Fig. 10b). The center of the probe matrix was placed at
the FPZposition according to the international 10-20 system.A3Ddigitizer
was used to determine spatial registration of fNIRS channels to MNI
space109. Detailed information about coordinates and anatomical prob-
abilities is provided in the supplementary material (see Supplementary
Table 1).

The raw fNIRSdatawere processed usingMatlab 2013b software. First,
we registered the MNI coordinates using the NIRS_SPM toolbox. Second,
we applied a wavelet-based method to remove global physiological noise110.
Third, we used a general linear model (GLM) to analyze the pre-processed
HbO data. Due to variations in the learning pace among students, their
“onset” and “duration” differed. These values weremanually extracted from
the screen recording files for each student. In addition, the data were pro-
cessed with a low-pass filter based on hemodynamic response function
(HRF) and wavelet-MDL detrending method. Finally, we estimated Beta
values for each of the twenty channels for each student in each condition,
which reflected the degree of channel activation. The beta values were then
exported to SPSS software for further analysis.

Greeting

Learning phase

(Lung)

(Heart)

Fig. 8 | Screenshot of the greeting phase. The chatbot introduced itself and
requested the student’s name. Once the student enters their name, the chatbot
remembers it and begins the learning phase.
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Data analysis
For the behavioral data, we first conducted ANCOVAs to compare reten-
tion and transfer scores across the three groups. Next, we used a type 2ROC
function in MATLAB software to calculate the metacognitive sensitivity of
the students21.

For the fNIRS data, we first examined brain activation patterns asso-
ciated with the entire learning module. In the analysis, “onset” refers to the
time point corresponding to the start of the learning phase,while “duration”
refers to the time from the beginning of the learning phase to the end of the
feedback phase. We conducted a one-sample t-test on the beta values of all
students in each group to investigate task-related brain activation regions
resulting from different feedback types. We then performed an ANOVA to
investigate group differences in brain activation.

To gain further insights into brain-behavior relationships during
learning, assessment, and feedback, we then compared brain activation
across phases using the rest phase as a baseline. This phase comparison
analysis allowed us to examine how activation levels varied between dif-
ferent stages of the learning process and how these variations related to

learning outcomes. By focusing on the timing and role of brain activity
during each phase, wewere able to identify which phasesmight have amore
significant impact on learning outcomes. Each learningmodule was further
divided into three phases (i.e., learning, self-assessment, and feedback). The
GLMmethodwasused to computebeta values for eachof the 20 channels in
each phase (learning, self-assessment, feedback, and rest). In this context,
“onset” refers to the time point marking the start of each phase, and
“duration” refers to the length of each phase. A paired t-test on the beta
values was conducted to assess the mean differences in the levels of activity
for each channel across phases. The Benjamini-Hochberg procedure was
applied to control for false discovery rate (FDR), with corrected significance
levels presented in the results section.

To investigate the relationship between enhanced brain activity and
behavior outcomes, Pearson correlations were calculated between neural
activity and scores for retention, transfer, and metacognitive sensitivity.

Furthermore, to keep important signal features and more accurately
capture task-related changes in brain activity, we developed different
machine learning-based transfer score prediction models for the three

Metacognitive feedback Affective feedback

Neutral feedback

a   MF group bb   AF group cc   AF group

Fig. 9 | Screenshots of the feedback phase for all three groups. Following students’
self-assessments, each group received different feedback content. a The metacognitive
feedback group (MF group) received a metacognitive question, and then rated possible

metacognitive performance. b The affective feedback group (AF group) received
encouragement or praise, and then rated emotional response. c The neutral feedback
group (NF group) received a break prompt, and then click one button randomly.

Fig. 10 | Layout of optode emitters (red), detectors
(blue), and channels (white). a The left panel
represents the prefrontal region, including the dor-
solateral prefrontal cortex (CH 1, 2, 3, 4, 5, 6, 7), and
frontopolar area (CH 8, 9, 10). b The right panel
represents the right temporoparietal areas, includ-
ing the supramarginal gyrus (CH11, 12, 13, 14),
primary somatosensory cortex (CH16), superior
temporal gyrus (CH15, 17), fusiform gyrus (CH18),
middle temporal gyrus (CH19), and inferior tem-
poral gyrus (CH20).
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groups using python programming language in PyCharm. First, we per-
formed data preprocessing, which included data augmentation, features
extraction, and dataset generation. Each student underwent 15 trials
(learning, assessment, feedback). For data augmentation, we divided each
student’s fNIRS data into 15 independent samples based on the total trial
duration or the duration of individual phases111. In each sample, we
extracted six statistical features (e.g., average, maximum, minimum, peak,
slope, and kurtosis) from two biomarkers: oxyhemoglobin (HbO) and
deoxyhemoglobin (HbR) concentrations in each channel38. These features
can comprehensively capture individual signal characteristics andhave been
applied in various predictive model studies112. Specifically, Average reflects
the overall blood oxygen level throughout the task, indicating changes in
brain activation.Minimum and Maximum reflect the fluctuation range of
blood oxygen levels, representing the highest and lowest active states at
different time points, and may be associated with peak or trough cognitive
performance. Slope indicates the rate of change in blood oxygen con-
centration, revealing the brain’s response speed and trend,which reflects the
timeliness of brain responses to cognitive demands. Kurtosis describes the
sharpness of the signal distribution, helping identify abnormal brain activity
at certain moments and uncovering more precise brain functional
responses. Then, we generated four datasets for each group: one for the
entire learning module, and separate datasets for the learning phase,
assessment phase, and feedback phase. Using 5-fold cross-validation, we
split the data into training and testing datasets for each of these four sets.

Finally, each dataset comprises 435 (i.e., 29 participants, with 15 trials
or phasesper participant: 29×15 = 435) and 240 featuresper sample (i.e., 20
channels with six features each for HbO and HbR signals). We selected
severalmachine learningmodels for comparison, includingRandomForest,
XGBoost,Gradient Boosting, ExtraTrees,AdaboostRegressor, andBagging
Regressor. To further optimize model parameters and evaluate general-
ization performance, we used 5-fold cross-validation, which minimizes the
risk of overfitting to the training set. Model effectiveness was assessed using
R-squared (R2), Mean Absolute Error (MAE), and Mean Squared Error
(MSE). R² evaluates how much variance in the dependent variable is
explained by the independent variables. MAE represents the average
absolute difference between predicted and actual values, andMSE calculates
the average of the squared differences between predicted and actual values.

Then, we selected the best model and employed the SHAP model to
identify the most important predictors of transfer scores113 for each group.
The results are visualized using summary plots, which list the features
according to their significance, where the darker color red denotes higher
activity value, and a lighter color blue denotes lower activity values.

Data availability
The data supporting this study’s findings are available from the corre-
sponding author on reasonable request.

Code availability
The data were performed in MATLAB with standard functions and tool-
boxes and PyCharm. Custom codes are available from the corresponding
author upon reasonable request.
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