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When humans encounter the same perturbation twice, they typically adapt faster the second time, a
phenomenon called savings. Studies have examined savings following adaptation to a gradually
introduced perturbation, with mixed results. These inconsistencies might be caused by differences in
how behavior returns to its baseline state during the ‘washout’ phase in between learning periods. To
test this, participants controlled a cursor that was subject to a visual rotation in its motion direction. The
rotation was applied during two learning periods, separated by a washout period where the rotation
was removed abruptly, gradually, or without error feedback. We found that the type of error
experienced during washout affected savings: abrupt washout with large errors eliminated savings,
whereas gradual or no-feedback washout preserved it. Model-based analyses indicated these effects
were driven by changes in error sensitivity, suggesting that salient, opposing errors experienced
during washout downregulate the response to error, nullifying savings.

When an unexpected perturbation to our motor system occurs, the resulting
errors in our actions and predictions'~ update our motor commands, pre-
dictively countering future disturbances. For example, when we walk on
slippery ice, a sudden fall results in an unwanted error that alters how we
traverse the icy patch in the future. Even when the icy patch (i.e., the per-
turbation) is removed and we reestablish our normal walking patterns, a
lingering memory is stored within the nervous system, whereby re-exposure
to the perturbation results in more rapid re-learning. This learning hallmark,
termed savings®, can occur on the same day, overnight’, or even a year after
the initial perturbation®, and is ubiquitous across movements executed with
our eyes (saccade adaptation”), legs (locomotion'*""), arms (visuomotor”'*"*
and force field adaptation'*"®), as well as classical conditioning paradigms"”.

Our ability to flexibly increase our learning rate is known to rely on two
parallel adaptive systems: an explicit process directed by our conscious
strategies'*’, and a subconscious implicit process that operates without our
awareness™’. The implicit and explicit contributions to savings in motor
tasks are typically studied using visuomotor rotations. In this task, subjects
control some type of cursor with their hand or arm and move it to a target
location. Following the baseline period of task familiarization, a visuomotor
perturbation is introduced that rotates the cursor’s trajectory relative to the
hand’s actual reaching direction. This is akin to altering the orientation of
your laptop so that moving your cursor up results in an unexpected diagonal
trajectory. The visual rotation thus induces an error, which individuals use
to alter their behavior over time?'. This altered behavior, or in this case, a
preemptive change in the direction you move your hand to counteract the
cursor’s rotation, is supported by intentional changes in the aiming direction

you select (ie., explicit strategy) along with an additional uncontrolled
adjustment (i.e., the implicit correction)".

In visuomotor rotation tasks, improvements in strategy use are salient
in cases where a large rotation is introduced abruptly. The abrupt intro-
duction of a large rotation causes large errors in the anticipated cursor
motion, which in turn encourages individuals to adopt an intentional re-
aiming strategy”*. If the rotation is reintroduced in the future, participants
recall their past strategy, resulting in a greatly accelerated re-learning rate
(termed “explicit savings”)”'>*. This form of explicit savings can be sup-
pressed either by limiting response time* (which causes people to respond
reflexively to the presentation of a target, thereby preventing them from
using a re-aiming strategy) or by reducing the error magnitude during initial
learning™ (which reduces awareness of the rotation). The latter is typically
done by gradually introducing the rotation. When the rotation size increases
gradually, our slow-adapting, subconscious (i.e., implicit) learning system is
better able to mitigate the cursor errors, resulting in smaller discrepancies
between intended and actual cursor movements. This can help prime the
implicit system to exhibit savings that are detectable during subsequent
encounters with the rotation***.

Intriguingly, however, studies that employed gradual rotations have
observed mixed effects on the ability of gradual learning to facilitate more
rapid, abrupt re-learning. Absence of savings following gradual learning” is
consistent with a standard memory of errors model”””, in which gradual
learning cannot improve abrupt learning due to a mismatch in error size:
errors are small in the gradual case, and thus gradual learning fails to
generalize to abrupt learning in which large errors are experienced. Thus, to
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the brain, an abrupt perturbation following gradual learning may appear to
be a novel context (even though the rotation size at the end of learning is the
same in both conditions), because it has never experienced the large errors
all at once in the past. Although this prediction is consistent with at least one
prior study”’, more recent work has exhibited opposing results where gra-
dual learning can improve abrupt learning rates’**, possibly by accel-
erating implicit learning™. This raises a key question: why does gradual
learning lead to savings in some experiments, but not in others?

Here, we consider the possibility that typical sensorimotor learning
paradigms may fail to produce savings not due to differences in how indi-
viduals learn, but rather because of how the learned behavior decays
between the learning and re-learning phases. Specifically, sensorimotor
savings are typically studied in paradigms where individuals adapt to a
perturbation during an initial learning period, their performance returns to
baseline levels during a washout period, and they are exposed to the same
perturbation during a re-learning period (in psychological terms, this
‘washout’ period is analogous to ‘extinction’). For visuomotor rotation tasks,
conditions employed for washout of initial learning vary across studies. In
some cases, a washout period consists of abrupt cessation of the perturbation
and includes the same number of trials as the initial learning period”. Other
studies use a much shorter washout phase’*” consisting of augmented
feedback that constrains the cursor motion to an exact straight line (i.e., zero
visual error, termed invariant error-clamp”) or trials where visual feedback
is removed entirely (termed no-feedback trials™). This no-feedback condi-
tion is akin to moving a hidden cursor on a screen.

Critically, these differences in washout conditions alter the size or
quality of errors that induce performance decay. Here, we propose that
larger, or more salient, errors experienced during a washout period might
reduce the nervous system’s ability to save what was learned from the initial
learning period. In the present study, thus, we examine the overlooked
possibility in motor learning, that the nature of washout plays a central role
in the expression of savings following gradual learning. Across three groups,
we manipulate the types of washout errors by (1) removing errors entirely by
eliminating visual feedback, (2) limiting the size of errors by removing a
visual rotation gradually, or (3) facilitating large errors by abruptly

disengaging the rotation. We then apply empirical and model-based
approaches to assess whether some washout conditions more easily produce
savings during abrupt learning that follows initial gradual learning.

Our current study seeks to not only clarify previous discrepancies in the
literature, but also to extend past studies by identifying sources that interfere
with the expression of savings. This has important implications for
understanding how to preserve increases in our sensitivity to errors™**
(thus resulting in greater savings), which in turn may inform new ways to
account for motor plasticity in current models of motor adaptation**"".
Over the long term, this knowledge will facilitate the design of strategies to
boost learning rates in neurorehabilitation paradigms.

Results

Adaptation to a novel visuomotor rotation is often studied in the context of
“slicing” movements, in which individuals briskly move their hand (or
cursor) through a visual target, or point-to-point movements, in which they
move their hand to a target and stop on the target. Here, we employed the
latter movements that required accurate endpoint control. Our subjects
grasped a robotic exoskeleton that controlled the motion of a cursor on a
horizontal screen (their arm was hidden from view), and executed point-to-
point movements between a start location and one of four targets (Fig.
1a).Initially, the cursor followed the hand’s position in a continuous stroke
(baseline), but during the learning periods (exposures 1 and 2), a 24° visual
rotation was applied to the cursor’s motion (Fig. 1b). A washout period was
placed in between the two learning periods in which the rotation was
removed through three different strategies (abrupt removal, gradual
removal, or completely removing visual feedback during each movement).
Our primary goal was to examine how errors experienced during the
washout phase protect or abolish visuomotor savings differently depending
on the washout conditions.

Visuomotor adaptation during point-to-point movements is
accelerated by visuomotor savings

To confirm that our point-to-point movement design leads to savings (as we
recently reported™), we first tested a group of subjects (control group) who
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Fig. 1 | Savings in a point-to-point visuomotor rotation task. a Experiment
apparatus. Subjects were seated in a KINARM exoskeleton and executed point-to-
point reaching movements to one of four targets. b Perturbation schedule for abrupt
adaptation group. This control experiment consisted of 4 experimental periods: (1)
10-cycle baseline period, (2) 40-cycle abrupt 24° rotation (exposure 1), (3) 40-cycle
no-visual feedback washout, (4) 40-cycle re-exposure to abrupt 24° rotation
(exposure 2). ¢ Learning curves. Solid black line indicates the size of rotation during
each period. The reach angle at maximum velocity was calculated on each trial and

cycle number

averaged within each 4-trial cycle. d Savings visualization. Learning curves during
the first and second exposure to the rotation are shown. We fit a 2-parameter
exponential curve to individual participants to quantify learning rates. The empirical
model fit (empirical fit) is also shown overlaid on the measured learning curves
(exposure 1 or exposure 2). e Quantification of savings. We compared the learning
rate parameters across exposures 1 and 2, quantified via the exponential model fit in
(d). Error bars indicated mean + SE. Single points in (e) represent individual par-
ticipants. Statistics: ~p < 0.001.
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Fig. 2 | Abrupt and gradual adaptation lead to similar expression of savings in a
point-to-point reaching task. a Perturbation schedule for abrupt or gradual
adaptation group. Groups differed only based on the visuomotor rotation encoun-
tered during the initial exposure: the control group from Fig. 1 experienced a 24°
rotation that immediately reached its terminal value (labeled abrupt here); the
gradual group experienced a rotation that slowly increased in magnitude across 24
cycles to reach the same terminal value. b Learning curves. A solid brown line
indicates the size of rotation during each period. The reach angle at maximum
velocity was calculated on each trial and averaged within each 4-trial cycle. The
control group (black during exposure 1, and brown during exposure 2) behavior is
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compared to the gradual group (cyan) behavior. Perturbation schedules are overlaid
with the data. ¢ Savings visualization. Learning curves during the second exposure
period are shown; both groups adapted to an abrupt rotation during this period. We
fit a 2-parameter exponential curve to individual participants to quantify learning
rates. The empirical model fit (empirical fit) is shown overlaid on the measured
learning curves (abrupt or gradual). d Quantification of savings. We compared the
learning rate parameters during exposure 2, quantified via the exponential model fit
in (c). Error bars indicated mean + SE. Single points in (e) represent individual
participants. Statistics: n.s. indicates p > 0.05. gradual gradual adaptation group,
abrupt abrupt adaptation group.

experienced a visuomotor rotation abruptly during the initial learning
period. After a short baseline period, a 24° rotation was abruptly introduced.
Over time, subjects adapted their reach angles to partially counter the
rotation (Fig. 1¢, exposure 1). To wash out the initial learning, we removed
visual feedback, causing reach angles to gradually decay towards their
baseline state (Fig. 1c, washout period). To determine whether subsequent
learning was improved by prior experience, we abruptly introduced a 24°
rotation again, causing a rapid change in reach angle (Fig. 1¢, exposure 2).
How did learning during the second exposure period compare to naive
adaptation?

To answer this question, we isolated the two learning periods and fit an
exponential curve to each participant’s reach angles during both adaptation
phases (Fig. 1d). The exponential curve produced an excellent fit to beha-
vior, yielding a root-mean-squared-error (RMSE) within 0.57° of baseline
cycle-to-cycle variability (ie., the theoretical floor for model error: see
“Methods: Evaluating model error”; RMSE is shown in Supplementary Fig.
1). As expected, prior exposure to the rotation accelerated adaptation,
almost doubling subject learning rates (Fig. le; paired t-test, #(14) = 5.16,
P <0.0001, Cohen’s d = 1.33). A power law model for learning, commonly
applied for psychological learning™ ™, also showed an increased learning
rate during the second exposure (see Supplementary Fig. 2; Fig. 2a shows
model fits; b provides power parameter; paired ¢-test, #(14) = 4.13, p = 0.001,
Cohen’s d = 1.07; model RMSE provided in Supplementary Fig. 1). In sum,
we find that point-to-point adaptation to a 24° rotation produces savings
and is amenable to further study.

Measuring re-learning rates after initial abrupt and gradual
adaptations

Past studies have yielded conflicting evidence as to the necessary conditions
for savings. In some cases, savings appear to require the experience of
similarly sized errors during both the initial learning and re-learning
periods”. This is achieved by creating large errors in each learning period via
an abrupt perturbation. Other studies, however, have observed savings
without initial experience of large errors™”. In this case, the rotation is

introduced gradually, whereby its magnitude slowly increases during initial
exposure to the rotation.

To examine how gradual learning influences subsequent abrupt
learning, we tested a second group of participants with a gradual
adaptation paradigm (Fig. 2a). Whereas the abrupt adaptation group
(controls) in Fig. 1 experienced a 24° rotation all at once during
exposure 1, participants in this gradual adaptation group experienced a
time-varying rotation that grew 1° per cycle over 24 cycles to reach its
terminal value. Linear models fit to the learning curves of the abrupt
and gradual adaptation groups (Supplementary Fig. 3) confirmed that
gradually introducing the rotation slowed the rate of adaptation
(additional participant groups described in the following Results sec-
tion were used in this analysis; see “Methods: Comparing gradual and
abrupt learning rates”; statistics provided in Supplementary Table 1).

After the initial, gradual adaptation (exposure 1), participants in this
group experienced a no-feedback washout period, followed by abrupt
adaptation (exposure 2). To compare the gradual and abrupt adaptation
groups, we isolated the learning curves during exposure 2 (Fig. 2¢) and fit
both exponential and power law models to assess their rates of learning. We
did not detect a statistically significant difference in re-learning rate between
the groups that experienced the rotation gradually or abruptly during initial
learning (Fig. 2d shows exponential model; #(28) = 1.315, p = 0.199, Cohen’s
d =0.48; Supplementary Fig. 2d show the power law model; #28) = 0.90,
p=0.377, Cohen’s d =0.33), indicating the presence of savings following
gradual adaptation, a finding consistent with prior studies™. That being said,
this null result may reflect insufficient statistical power. The critical way to
confirm whether the initial gradual rotation led to savings is to compare re-
learning rates to a naive control condition. This is pursued in greater detail in
the following Results section.

Size of error during washout modulates the strength of visuo-
motor savings

It is unclear what causes gradual adaptation to induce savings in some
conditions>**”, but not others”. We considered the idea that savings
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Fig. 3 | Savings after gradual learning are attenuated by washout error magni-
tude. a Perturbation schedule for gradual adaptation groups in three washout
conditions (no feedback, abrupt, gradual). All groups experienced a gradual rotation
during exposure 1 and an abrupt rotation during exposure 2. Groups differed only
based on errors experienced during washout. One group deadapted in the absence of
visual feedback (cyan, no feedback). Second group deadapted in the presence of large
errors due to abrupt removal of the rotation (abrupt, green). The third group adapted
in the presence of small errors due to gradual removal of the rotation (gradual,
magenta). b Learning curves. Solid lines in different colors indicate the size of
rotation for the corresponding group during each period. The reach angle at max-
imum velocity was calculated on each trial and averaged within each 4-trial cycle.
Abrupt adaptation group (black and brown) behavior is compared to all 3 gradual
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cycle number
adaptation groups described in inset (a). The perturbation schedules are overlaid
with the data. ¢ Savings visualization. Learning curves during exposure 2 (abrupt
adaptation) are shown. Each gradual group is shown in a separate inset (left: abrupt
washout; middle: gradual washout; and right: no-feedback washout). All learning
curves are overlaid with naive performance of the control group that experienced
initial rotation. We fit a 2-parameter exponential curve to individual participants to
quantify learning rates. The empirical model fit (empirical fit) is shown overlaid on
the measured learning curves (naive, abrupt, gradual, or no feedback).
d Quantification of savings. We compared the learning rate parameters during
exposure 2 in each gradual group to the learning rate parameters in the initial abrupt
exposure of the control group. Error bars indicated mean + SE. Single points in (d)
represent individual participants. Statistics: p < 0.05.

between initial learning and re-learning phases might be shaped by the
washout period that separates the two learning phases.

As shown in Figs. 1 and 2, abrupt and gradual adaptation groups
experienced a no-feedback washout condition, preventing the experience of
any visual errors during the washout period (Fig. 3b, cyan). To assess
whether the washout condition alters the expression of savings, we tested
two additional gradual adaptation groups (Fig. 3a) that differed based on the
type of error experienced during washout. In the abrupt washout group, the
rotation immediately ended at the end of the initial learning period, creating
large, oppositely signed errors that induced a rapid decline (Fig. 3b, green).
In the gradual washout group, the rotation gradually decreased cycle-to-
cycle during the washout period. This prevented the occurrence of large
errors in the opposite direction, leading to a gradual decline in performance
(Fig. 3b, magenta).

Following that, all three washout groups were exposed to an abrupt 24°
rotation (i.e., exposure 2). To determine how washout influenced sub-
sequent learning rates, we compared reach angles during this abrupt
adaptation period to those of naive participants who had not previously
experienced a rotation (i.e., the initial learning period of the control group
shown in Fig. 1). Comparing the rates of learning to a naive control group is
a standard approach to detect acceleration in learning rates in conditions
where initial adaptation occurred in a gradual fashion'***"*****, As before,
we fit both exponential and power law curves to participant reach angles to
empirically quantify individual subject learning rates (Fig. 3¢ for the expo-
nential model; Supplementary Fig. 2e for the power law model). Both the
exponential and power models exhibited excellent matches to behavior and
possessed an average RMSE within 0.59° of the theoretical minimum error

level estimated based on intrinsic cycle-to-cycle reach variability
during non-adaptation periods (RMSE distributions are shown in
Supplementary Fig. 1; we did not detect a statistically significant difference
between the power law and exponential model errors, paired t-test,
£(59) = 0.71, p = 0.478).

Critically, both empirical model types showed that altering washout
errors had a dramatic effect on re-learning rates (Figs. 3d, 1-way ANOVA
for exponential model, F(3,56) = 5.49, p = 0.002; Supplementary Fig. 2f for
power law, F(3,56) = 5.82, p = 0.002). Namely, savings was observed only
after no-feedback washout (post-hoc Dunnett’s test, p =0.004 for expo-
nential model and p = 0.002 for power law) and gradual washout (Dunnett’s
test, p =0.04 for exponential model and p = 0.045 for power law), but not
after abrupt washout (post-hoc Dunnett test, p=0.996 for exponential
model and p = 0.985 for power law). In sum, initial gradual adaptation did
induce savings, and the ability to express savings was modulated by the
errors subjects experienced during washout. When large errors occurred in
our abrupt washout condition, savings were eliminated. When errors were
masked (either by making them small with gradual washout, or removing
them via no feedback), savings were preserved.

Improved rates of re-learning are not due to a bias in the initial
performance state

Improved re-learning in exposure 2, as shown in Fig. 3, could be driven by
two different sources: (1) a difference in the starting point for re-learning
(i.e., the adapted state each subject possesses at the end of washout; we will
refer to this as the ‘terminal washout state’) or (2) an increased rate of re-
learning irrespective of the starting point for re-learning. This distinction is
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Fig. 4 | Improved re-learning is not caused by a biased starting point. Exponential
and power law models in Fig. 3 were fit to the entire re-learning period in exposure 2.
No-feedback washout group started this period at a biased state. Inset (a) (‘unad-
justed’) provides the terminal washout state (average angle on last four washout
cycles (control shows average on last four baseline cycles). We refit the exponential
model to participant data after removing the initial cycles in the re-learning phase
required for Control, Abrupt washout, and Gradual washout groups to ‘catch up’ to
the no-feedback washout starting point. Inset (d) shows the initial reaching angle on
the adjusted starting cycle. The exponential model fits to the adjusted data are shown
in Inset (a). Learning curves in (a) are overlaid with the control group for ease of

end of washout state (deg)

comparison. The exponential model fit is shown overlaid on the measured learning
curve. Inset (b) shows the associated rate parameters for the exponential model. Inset
(e) provides a comparison between re-learning rates (or the naive learning rate in the
control group) and the adaptation starting point (i.e., the terminal washout state). x-
Axis provides the terminal washout state for each participant (the collapsed indi-
vidual points in ¢). y-Axis provides the learning rates shown in (b). Both axes were
zero-centered at the group level (i.e., the group mean was subtracted from each data
point prior to visualization and analysis). Statistics in (e) refer to a linear regression.
Error bars in all insets indicate mean + SEM. Single dots in (b-e) are individual
subjects. Statistics: p <0.05, p <0.01, and "p < 0.001.

critical given that the no-feedback washout group experienced less perfor-
mance decay during washout (Fig. 4c provides the terminal washout state;
1-way ANOVA, F(3,56) =10.86, p<0.0001) than other experimental
groups (post-hoc statistics in Supplementary Table 2), meaning that they
started their re-learning period at an advantaged (i.e., larger) learning state.

Did no-feedback washout produce faster re-learning because other
conditions needed to ‘catch up’ to their initial adapted state? To answer this
question, we conducted a control analysis where we matched the initial state
across groups to that of the no-feedback group (see “Methods: Analyzing
relationships between initial state and re-learning rates”). That is, we fit the
exponential and power law models to only a portion of the re-learning curve.
The starting point for the model fit was chosen to exclude the initial catch-up
period, where subjects in the control, abrupt, and gradual washout groups
fell below the initial state of the no-feedback group. The adjusted curves were
defined by the starting points in Fig. 4d; this process removed the initial state
bias between groups (1-way ANOVA, F(3,56) = 1.94, p = 0.134). Impor-
tantly, we obtained similar results as before; our model (exponential fit
shown in Fig. 4a; power fit shown in Supplementary Fig. 2g) suggested that
learning rates during re-learning periods differed between groups
(F(3,56) = 3.9, p=0.013 for exponential model; F(3,56) = 4.9, p = 0.004 for
power model), with no-feedback washout exhibiting faster re-learning
(post-hoc Dunnett’s test against control, p=0.022 for exponential and
p=0.007 for power), a marginal effect in the gradual washout group
(p=0.137 for exponential and p =0.079 for power), and no effect in the
abrupt washout group (p =1 for exponential and p = 0.999 for power).

To corroborate these group-level results, we analyzed the relationship
between terminal washout state and re-learning rates at the individual

participant level. We collapsed data across all four groups and de-trended
datasets (see “Methods: Analyzing relationships between initial state and re-
learning rates”) to prevent correlations from being caused by group-level
effects. Linearly regressing re-learning rates (Fig. 4e, y-axis) onto the
terminal washout states (Fig. 4e, x-axis) did not yield a statistically sig-
nificant correlation (R = —0.206, p = 0.114, R> = 0.043), and instead trended
toward an inverse relationship such that the subjects with greater terminal
washout states adapted more slowly (counter to the idea that better retention
of initial learning speeds re-learning).

In sum, we did not observe clear evidence for the idea that less per-
formance decay in the washout phase would lead to faster re-learning. The
improved learning rates we observed in Figs. 3 and 4 appeared to reflect an
enhanced capacity for learning as opposed to a bias in the starting point for
learning.

Savings following gradual learning is promoted by an increase in
sensitivity to error

Short-term sensorimotor adaptation is due to the combined effects of two
processes: (1) trial-to-trial error-based learning, and (2) trial-to-trial per-
formance decay (generally called ‘retention’ or ‘forgetting’ in the sensor-
imotor learning literature)'*******~*, In principle, savings could be caused by
either an increase in the amount of learning that follows the experience of an
error, an increase in the amount of learning retained after time passage, or a
combination of both sources. These two processes can be captured within a
state-space model that represents adaptation as a recursive process controlled
by two parameters: an error sensitivity (controls the amount of learning from
error) and a retention factor (controls the amount of decay)'>**>*****,
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Fig. 5 | Savings after gradual learning are mediated by an increase in error
sensitivity. a Learning curves and visualization of savings. The reach angle at
maximum velocity was calculated on each trial and averaged within each 4-trial
cycle. Each inset compares naive adaptation (control, black) to 1 of 3 gradual
adaptation groups that experienced different washout conditions (left: abrupt
washout; middle: gradual washout; right: no-feedback washout). We fit a state-space
learning model (model) to individual participant reach angles that describes learning
as a recursive trial-to-trial process of error-based adaptation and decay.
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b Comparison of retention factors. Retention factors estimated by state-space model
fits are compared across the control group during exposure 1 and the 3 gradual
adaptation groups during exposure 2. ¢ Comparison of error sensitivity. Sensitivity-
to-error parameters estimated by state-space model fits are compared across the
control group during exposure 1 and the 3 gradual adaptation groups during
exposure 2. Error bars indicated mean + SE. Single points in (b) and ¢ represent
individual participants. Statistics: n.s. indicates p > 0.05, 'p < 0.01.

To determine if the savings we observed following gradual adaptation
were due to changes in error-based learning or performance decay, we fit
state-space models to individual subject learning curves during the second
rotation period in all three gradual adaptation groups (Fig. 5a, green,
magenta, blue). To estimate learning and performance decay measures in
naive participants, we fit a state-space model to the initial abrupt adaptation
period in the control group shown in Fig. 1 (Fig. 5a, black). To ensure that
our state-space model required both a retention parameter and sensitivity to
the error term, we compared the ‘complete’ model to a simpler one where
retention was set to a value of 1 (no performance decay). A model com-
parison with Akaike’s information criterion (AIC) indicated that the
complete model was superior in 55 of 60 participants (see Supplementary
Fig. 4a to visualize fits for the reduced model; model comparison is shown in
Supplementary Fig. 4b). As such, only the complete parameter model was
used in all subsequent analyses. As with power law and exponential model
fits, the state-space model yielded a close match to individual subject
behavior, with the average error falling within 0.65° of the theoretical
minimum value estimated during periods without any adaptation (see
“Methods: Evaluating model error” and Supplementary Fig. 1).

To determine if the initial gradual adaptation and subsequent
washout period altered the stability of the motor memory during the
readaptation period, we compared retention factors across the four
groups (Fig. 5b). We did not observe a statistically significant change in
retention after exposure to the gradual rotation (one-way ANOVA,
F(3,56) = 1.43, p = 0.244).

To determine if instead, a change in error sensitivity boosted adapta-
tion rates during the second exposure period, we compared the state-space
model error sensitivity parameters across the four groups (Fig. 5¢). As in
past studies' "', prior adaptation did alter the sensitivity to error during the
second exposure (1-way ANOVA, F(3,56) = 6.99, p = 0.0004), reflecting the
accelerated re-learning rates (Fig. 3d). Interestingly, we found a statistically
significant increase in error sensitivity over naive, in the no-feedback con-
dition (post-hoc Dunnett’s test, p = 0.0011), but not in the abrupt condition
(post-hoc Dunnett’s test, p = 0.994). In the gradual washout condition, we
observed a trend towards an increase in error sensitivity over the naive
condition, though this trend did not reach statistical significance (post-hoc
Dunnett’s test, p = 0.123).

Taken together, this indicates that initial gradual adaptation elevates
sensitivity to error, leading to savings. However, errors experienced during
the washout phase can reverse this gain in error sensitivity. Enhancement in
error sensitivity is optimally preserved when visual errors are totally
removed in the washout phase via a no-feedback condition.

Discussion

The conditions required to increase sensorimotor learning rates are not
completely known. This is clearly illustrated in gradual adaptation paradigms
where participants adapt to a perturbation slowly and are then re-tested in an
abrupt context following a period of washout. Whereas some studies have
observed more rapid learning in this situation®*”’, other accounts have found
that gradual learning cannot improve abrupt learning”. We considered
whether this contradiction is due to the washout phase that separates the two
learning phases in savings paradigms. Specifically, does the salience of
oppositely signed errors during washout inhibit savings after gradual
learning?

Here, we examined this idea by altering the type of error experienced
during the washout phase after gradual learning. We examined no-feedback,
gradual, and abrupt washout conditions that differ along an error size
gradient. (1) Removing visual feedback eliminates visuomotor error com-
pletely, causing the adapted behavior to decay in performance in the absence
of overt errors”. (2) With gradual washout, errors are present, but are
reduced in magnitude because both the motor action and the perturbation
decrease in tandem. (3) Similar to abrupt learning, abrupt washout results in
the largest errors due to the immediate removal of the perturbation when
subjects still remain at a highly adapted performance level. Our findings
suggest that the savings produced by gradual adaptation are protected when
washout occurs gradually or in the absence of error, but not abruptly
(Fig. 3d).

The idea that washout impacts savings qualitatively aligns with prior
work by Kojima et al.’, which demonstrated that savings in the oculomotor
system are sensitive to the duration of washout: when the duration of the
washout phase is increased, the learning rate during the re-exposure phase
reverts to its baseline state, abolishing savings. Thus, both the duration of
error presentation and the error magnitude during washout (as shown in
our current study) seem to negatively interact with the expression of savings.
This hypothesis may explain the mixed results noted above in visuomotor
studies of gradual learning. Both Coltman et al”’ and Yin and Wei*
employed short washout periods and observed savings following gradual
learning, whereas Herzfeld et al.”” applied longer washout periods and did
not find savings after gradual learning. This possibility could easily be stu-
died in future experiments that vary the length of the washout, along with
varying types of washout conditions after an initial gradual learning period.

Along these lines, Kitago et al.” remarked that increasing the number
of washout trials appeared to dampen the magnitude of savings relative to
other studies that used much fewer washout trials***’. That being said, their
observation was made in the context of an abrupt-then-abrupt savings
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protocol, instead of the gradual-then-abrupt design we used. The savings
that follow abrupt or gradual learning may have critical differences. For
example, we observed that removing errors in the washout phase after
gradual learning protected savings, but the same washout condition abol-
ished savings after abrupt learning in Kitago et al.” (see Bao et al.** for the
case of interlimb transfer).

This discrepancy may be due to variations in the utilization of implicit
and explicit learning processes. Gradual perturbations reduce the error size,
in turn limiting one’s cognitive awareness of the perturbation. In visuomotor
rotation tasks, reducing the awareness impairs cognitive strategies that can
be used to counter the rotation, allowing subconscious learning (i.e., implicit)
systems to increase their contribution to the adaptation process™***. Thus,
during the initial gradual learning period, we expect greater reliance on
implicit adaptation, and reduced engagement of explicit strategies in our
tasks, relative to the tasks employed by Kitago et al.”’. Further, both Kitago
et al. and Bao et al. used a single reaching target, whereas our current study
incorporated four targets. Increasing the target count enhances task com-
plexity, reducing explicit strategy use and boosting implicit learning (as
measured via procedural aftereffect trials”**). Thus, washout may influence
savings differently in our study, where the initial learning that is being
washed out is largely implicit, as compared to the studies by Kitago et al. and
Bao et al., where learning may have relied more heavily on explicit strategies.
This idea matches the observation that savings in gradual-then-abrupt
learning paradigms like ours have been linked to an enhancement in implicit
learning rates”*”’, whereas savings in abrupt-then-abrupt protocols are due
to accelerated explicit responses”™'”. Thus, we hypothesize that washout has
divergent effects on the ability of implicit and explicit systems to save:
removing feedback during washout protects savings in the implicit system,
but impairs explicit savings.

That being said, it is critical to note that implicit and explicit processes
were not measured in our study, and thus, our hypothesis remains both
speculative and limited. To examine implicit and explicit contributions to
savings in our paradigm, future experiments could assay each system at
regular intervals during learning, washout, and re-learning. One approach
would be to include implicit probe trials (trials where participants are
instructed to abandon any explicit strategy that they are using) to measure
the subconscious contribution to their adapted state. Without studies like
this, we cannot definitively attribute the observed savings effect to either the
implicit or explicit process.

To understand what learning property links washout to the capacity to
save, we applied a state-space model that casts short-term adaptation as a
cumulative process of trial-to-trial, error-based learning and decay. This
model showed that savings relied on an upregulation in error sensitivity,
which was reversed by large errors in the washout phase (Fig. 5c). This
outcome comports with past work, suggesting that increases in error sen-
sitivity are the primary source of accelerated re-learning after abrupt, gra-
dual, or random perturbations”, and the adaptation of disparate motor
systems including reaching'****’ and walking'. Intriguingly, our results
suggest that increases in error sensitivity are undermined by opposite errors
experienced in between learning periods.

We found that error sensitivity was higher in the subjects who washed
out without feedback, suggesting that improvements in error sensitivity are
protected in the absence of error. We found a trend towards an increase in
error sensitivity in the gradual washout group as well (Fig. 4¢), but this did
not reach statistical significance. Because our exponential model (Fig. 3d)
and power law model (Supplementary Fig. 3f) suggested the presence of
savings in the gradual washout group, we suspect that our study lacked
sufficient power to detect an enhancement in error sensitivity in the gradual
washout condition (power was analyzed using learning rates, see “Methods:
Power analysis”). Thus, it remains to be determined whether error sensi-
tivity is reduced by the experience of any opposing error, or whether the size
of the opposing error amplifies the decline in error sensitivity.

Our findings have critical implications for an influential error sensitivity
model defined by a memory of errors'***. The memory of errors model that
was initially proposed by Herzfeld et al”” describes changes in error

sensitivity based on the statistical properties of errors. Namely, when two
errors have consistent signs, the nervous system could have adapted more to
the initial error. A critical model property is locality: consistently small errors
or large errors modulate error sensitivity specific to errors of that magnitude.
Thus, contrary to our findings, a memory of errors model predicts that a
gradual perturbation will not lead to savings during an abrupt perturbation,
because abrupt errors are larger than those experienced during a gradual
perturbation. Thus, our results add to a growing body of evidence™*’ sug-
gesting a need to revisit properties of the error sensitivity landscape; it may be
that the experience of consistent errors generalizes more broadly to unex-
perienced errors of disparate sizes than previously appreciated.

The possibility that changes in error sensitivity extend beyond similarly
sized errors could also help to understand declines in learning rate in
anterograde interference paradigms™****~". That is, whereas increases in
error sensitivity have been linked to improvements in learning when two
similar perturbations occur in sequence, a decline in error sensitivity
appears to slow learning when transitioning between two opposing per-
turbations (e.g., clockwise and counterclockwise (CCW) rotations)*. The
memory of errors model has not been altered to describe this interference
effect. The limited application of the memory of errors model to interference
paradigms arises, because learning in response to “positively signed” errors
during the first exposure does not produce error sensitivity changes that
generalize to “negatively signed” errors during the second exposure. Our
findings, that large, oppositely signed errors during washout reverse prior
enhancements in error sensitivity (Fig. 5¢), suggest that experience of a
sensorimotor error produces two distinct effects: (1) an increase in sensi-
tivity to similar errors, and (2) a suppression in error sensitivity to opposite
errors. This second suppressive learning property may be a critical process
missing from current memory error models that would aid in interpreting
both the dissolution of savings following certain types of washout, as well as
interference effects.

We speculate that antagonistic interaction between the response to
positive and negative errors may arise within cerebellar learning circuits that
mediate error-based learning, a structure known to encode error direc-
tionality based on anatomical connections with the inferior olive™**, That
is, an error of a given direction (i.e., sign) leads to complex spiking in certain
Purkinje-cell (P-cell) subpopulations in the cerebellar cortex, and sup-
pression in others. Complex spike events in turn lead to long-term poten-
tiation or depression at P-cell synapses with parallel fibers™. While it is
unknown how error sensitivity is encoded by P-cells, our findings suggest
the possibility that prolonged absence of complex spikes (when errors are
opposite the neuron’s preferred direction) during washout periods may
produce synaptic changes that reduce the plastic learning potential of these
cells in the future (i.e., during re-exposure). This idea, and the source of
cerebellar error sensitivity more generally, remain to be examined.

Note that the state-space model posits that a memory is created during
the initial learning period and then decays during washout. Savings reflect
the rate at which the original memory can be reacquired. This idea, that
savings is related more to a memory of how to respond to errors than to a
memory of past actions, is supported by various motor learning studies'****.
However, the psychology of cognitive decision making, as well as sub-
conscious classical conditioning mechanisms, points towards a more
nuanced view of learning, namely, as a composition of multiple memories
that compete with one another to be expressed™. In this view, savings
depend on inferring the correct memory to draw upon in the current
context.

In general, learning involves predictions. Adaptation is achieved by
predicting an outcome and updating one’s actions and beliefs based on
errors in this prediction. Broadly speaking, errors encoded in the
cerebellum®*™ are also represented within dopaminergic systems**” and
can be modeled via reinforcement learning algorithms***". This process is
distilled to its fundamental elements in conditioning paradigms, where a
stimulus is provided that precedes an appetitive or aversive outcome with
some probability. Such experiments have been used extensively to study
savings: cases where an initial response is acquired, extinguished, and
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reacquired within different systems such as eyeblink conditioning, nicti-
tating membrane responses, and salivation in various species, including
rabbits, mice, and dogs***. In Pavlovian tasks, faster reacquisition depends
on two variables: (1) how strongly the memory created during initial
exposure generalizes to the re-exposure period, and (2) how deeply the
memory created in extinction (ie., washout) interferes with the recall
process™”. That is, memories created during the initial conditioning period
are not abolished by extinction, but instead remain latent and require the
appropriate contexts and cues to promote their re-expression®”’.

Many factors determine how well-conditioned memories can be
recalled, such as similarity between the contexts surrounding the initial
acquisition and re-acquisition periods’”, biological significance of the
initial learning events™’*, and the ability to couple the initial context and the
associated memory””. Such conditioning rules may help to understand why
savings in the abrupt and gradual contexts explored here can be differen-
tially expressed. The large errors experienced during an abrupt perturbation
are salient, increasing their biological significance. Further, in tasks with an
abrupt-washout-abrupt design, the similarity between the initial learning
and re-learning phases is clearly high, promoting savings. This may be why
savings in the abrupt-washout-abrupt design can withstand an abrupt
washout period with large opposing errors””*>”’, while less salient gradual
errors that are less similar to abrupt errors create memories with increased
susceptibility to disruption during an abrupt washout period, as we observed
in our study (Fig. 3d).

This same framework can be applied to interpret why washing out
without error feedback best facilitates savings from the gradual adaptation
phase to the subsequent abrupt adaptation phase. That is, washout creates a
new pairing between the stimulus (i.e., target presentation in our study) and
the appropriate response’*”* (e.g., predicting the presence of a visual rota-
tion). When the washout phase is experienced in a similar context to the
initial exposure, interference occurs. For example, Bouton” observed that
when extinction persists longer than the initial acquisition, savings are
completely abolished; with even longer washout durations, reacquisition
can further slow and produce a type of retrograde interference'******".
Intriguingly, altering the context of the learner during the extinction phase
in ABA paradigms’®*allowed renewal of the initial memory, because the
extinction context formed a separate memory that did not exert inter-
ference. For our study, the no-feedback condition (in which no cursor or
outcome is present on the screen) was the most dissimilar context from the
initial learning and re-learning periods (in which full feedback was pro-
vided). For this reason, the washout phase creates a memory in a separable
context, protecting the initial conditioned response from potential
interference.

A related, yet distinct, viewpoint suggests that creating a new context
during the washout period is triggered by the salience of prediction errors.
When errors are high during washout, this may be a trigger to create a new
memory state instead of updating the original state. For example, in
Gershman et al.’s study™, subjects in a fear conditioning paradigm more
fully extinguished their fear memory, when the extinction (i.e., washout)
phase was executed gradually by reducing the probability of the aversive
stimulus in a slow, continuous manner, as opposed to all at once. The critical
idea was that this gradual extinction would encourage the animal to
associate the shock with their initial memory, as opposed to an extinction-
specific memory. This hypothesis comports with our findings, namely, that
when the learned behavior decays gradually or in the absence of feedback, no
washout-specific memory state is formed to interfere with the initially
obtained memory. This would promote more rapid expression of the initial
memory, hence savings.

Multiple memories and statistical inference are used in Bayesian
models of sensorimotor learning. These models incorporate both error-
based learning and state inference across multiple sensorimotor contexts***.
In single-context memory of errors models, the same adaptive states apply
uniformly across different experimental periods, such that any change in
learning rate must be due to variation in constitutive learning parameters:
sensitivity to error or memory retention. But with multiple contexts, as in

the COIN model described by Heald et al.*, the apparent learning rate is
influenced by inferring which context is most likely given sensory infor-
mation. For the COIN model, visuomotor adaptation involves two contexts:
a baseline context and a rotation context. Faster learning during the second
exposure is caused not by a change in the response to error, but by a greater
propensity to expect the rotation given prior training. Our findings have
important implications for this inference step, namely, that the errors (i.e.,
sensory information) experienced during washout alter the inference pro-
cess: with large opposing errors during the washout period, the nervous
system decreases its expectation that the initial rotation state (with its
positively-signed errors) will occur again in the future. A broader com-
parison between memory of errors models and Bayesian frameworks on the
effects of washout on future learning remains to be conducted.

Methods

Participants

Initially, ten healthy young adults per group were tested. We then conducted
a power analysis to determine the necessary group size to achieve statistical
significance with 80% power. The data from these 40 participants (10 per
group) were used to estimate effect sizes for this analysis. Our power analysis
indicated that a minimum of 13 participants per group was required to
achieve 80% power (see “Power analysis” below for details). Based on this,
we collected an additional 5 participants per group, resulting in n = 15 per
group (60 participants in total). All subjects were right-handed as assessed
by the Edinburgh Handedness Inventory (Oldfield 1971). The subjects were
randomly assigned to the following groups: one abrupt adaptation (ie.,
control) group and three gradual adaptation groups. All experimental
protocols were approved by the University of Wisconsin-Milwaukee
(UWM) Institutional Review Board (IRB). Subjects gave written informed
consent prior to participation, which was approved by the UWM IRB in
accordance with the Declaration of Helsinki (IRB #16.163).

Apparatus

Participants were situated in a robotic exoskeleton (KIMARM, BKIN
Technologies Ltd, Kingston, ON, Canada) that provided gravitational
support to the right arm (all subjects used this arm in the present study). The
exoskeleton was positioned so that the arm was hidden underneath a hor-
izontal display (Fig. 1a). To track the hand’s position, a small cursor was
projected onto the display, over the subject’s index fingertip. During each
trial, the KINARM projected visual stimuli onto the display, so that they
appeared in the same plane as the arm. The visual stimuli consisted of a
centrally located start circle (2 cm in diameter) and one of four target circles
(2 cm in diameter) located 10 cm away from the start target (Fig. 1a). We
sampled the hand’s position in the x—y plane at 1000 Hz. Position data were
low-pass filtered at 15 Hz, and then differentiated to calculate velocity. Post-
processing, analysis, and modeling were conducted in MATLAB R2018a
(The MathWorks Inc., Natick, MA).

Experimental design

All subjects experienced four experiment phases: (1) a baseline period, (2) an
initial learning period (exposure 1), (3) a washout period, and (4) a re-
learning period (exposure 2) (Fig. 1b). In the baseline period (Fig. 1b,
baseline), participants moved their arm to each of the four targets over a 10-
cycle period (all four targets were presented once in a cycle). On each trial,
continuous visual feedback was provided via a cursor indicating the location
of the index fingertip. Participants were instructed to move rapidly and
accurately to the target location. The trial ended 1.5 s after the target pre-
sentation. To begin the next trial, the participants brought their hands back
to the central start position. Throughout the entire experiment, the four
targets were presented in a pseudorandom order in 4-trial cycles.

During the initial learning period (exposure 1), a 24° rotation was
introduced abruptly for the abrupt adaptation (control) group (see Fig. 1),
and gradually for three gradual adaptation groups (see Figs. 2-5). More
specifically, the visual display of the cursor in the control group was rotated
24° CCW about the start circle from trial 1 and remained constant
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throughout the entire exposure period. In the gradual adaptation groups, the
rotation size started at 0° for the first 9 cycles, then increased by 1° (CCW
about the start circle) per cycle for the next 23 cycles, and remained at 24° for
the last 8 cycles. During the re-learning period (exposure 2), all participants
experienced the same abrupt 24° rotation condition as that experienced by
the control group in the initial learning period. All participants performed
reaching movements over 40 cycles (i.e., 160 trials) in each of the two
exposure periods.

In the washout period, the control group performed reaching move-
ments without visual feedback. The three gradual adaptation groups
experienced one of three washout conditions: (1) abrupt washout, in which
the rotation was completely removed from trial 1 (ie., the same as the
baseline period); (2) gradual washout, in which the rotation size was
decreased gradually from 24° down to 0°); and (3) no-feedback washout, in
which subjects performed reaching movements without visual feedback. All
participants performed reaching movements over a 40-cycle period. In sum,
all groups re-learned in an abrupt context. Thus, the four groups were
separated by their initial learning and washout conditions. The abrupt
adaptation group (controls) is the group that initially learned abruptly and
washed out without feedback. The gradual adaptation/gradual washout
group is the group that initially learned gradually and then washed out
gradually. The gradual adaptation/abrupt washout group is the group that
initially learned gradually and washed out abruptly. The gradual adaptation/
no-feedback washout group is the group that initially learned gradually and
washed out without feedback.

Behavioral data processing

Data analysis was conducted in MATLAB (MathWorks, Natick, MA). To
quantify performance, we calculated the reaching movement angle at peak
velocity (cf, direction error”). This angle was computed as the hand’s
angular position relative to a line segment connecting the start and target
positions. Outlying reach angles were detected and removed as detailed in
“Outlier detection” prior to additional analysis. Next, data were averaged
within each 4-trial cycle.

Comparing gradual and abrupt learning rates

To compare learning rates between gradual and abrupt adaptations, we
analyzed learning curves in the exposure 1 period with a linear model. For
gradual learning, the linear model incorporated a delay parameter that
allowed the starting point at which learning begins to vary between each
participant (the parameter was allowed to vary between 9 and 20 cycles: note
that 9 cycles were chosen because the rotation was held at 0° for 9 cycles).
The model was fit to individual subject behavior, and the delay parameter
that minimized squared error was selected. Because abrupt learning is not
well-captured by a linear model (see Fig. 1c), only the initial 8 cycles were
used to quantify an ‘early’ learning rate to compare to the gradual condition.
No delay was allowed in the linear fit. Model fits are shown in Supple-
mentary Fig. 3a, and learning rates (i.e., linear slope) are provided in Sup-
plementary Fig. 3b. Abrupt exposure to the rotation more than doubled
learning rates (1-way ANOVA, F(3,56)=17.54, p< le™’; all post-hoc
comparisons between abrupt group and each of the three gradual learning
groups via Tukey’s test yielded p < 0.0001; other comparisons p > 0.97). See
Supplementary Table 1 for post-hoc t-test statistics.

Exponential and power law models

To empirically compare adaptation between groups, we assessed the
learning rate during each abrupt rotation period via an exponential func-
tion. We focused on rate measures, to prevent our evaluation from being
biased by the initial state of the learner (i.e., subjects may demonstrate
greater total adaptation not because they learn more rapidly, but because
their initial reach angle is greater during the second abrupt rotation due to
incomplete washout from the initial rotation). Thus, we fitted an expo-
nential curve to participant hand angles, and used the rate parameter as our
measure of learning rate. For this, we employed a 2-parameter exponential
function designed to enforce that each curve begins at the initial pre-rotation

reach angle. For the initial rotation in the control group, this hand angle was
computed as the average angle over the last four baseline cycles. For the
abrupt rotations during the second exposure period (across all groups), this
angle was computed as the average angle over the last four washout cycles.
The exponential function took the mathematical form:

y(t)=a—(a—y)e ™ )

Here, a is parameter that encodes the exponential curve’s asymptote, y, is
the initial reach angle described above, {3 is the rate parameter of interest, y(f)
is the reach angle on cycle ¢ (starting at ¢ =0). The function was fit to 41
cycles of data at a time (40 cycles of the abrupt rotation plus the initial reach
angle cycle on t=0) using a bounded least-squares approach (MATLAB
fmincon). The parameter search was repeated 100 times, each time varying
the initial parameter estimate that seeds the algorithm. The o parameter was
bounded between —45° and 45°. The  parameter was bounded between 0
cycle " and 0.5 cycle™". The model parameters that minimized squared error
across all 100 repetitions were selected.

Exponential models are commonly used in sensorimotor learning
studies to assess adaptation rates. For learning in the psychological domain,
models with a positive hazard, such as a power law, are more common®".
Thus, to corroborate our exponential model, we repeated our primary
analyses using a 2-parameter power law given by:

y() =a—(a—y)t" @

Similar to our exponential model, the power function was constrained
to begin at the terminal washout state (y,) by starting with t = 1. In this way,
a set of asymptotic learning and b is the power parameter that we used to
quantify and compare learning rates. As with the exponential model,
fmincon was used to fit the model to individual participant data in a space
where a was bounded between 0 and 45° and b was bounded
between 0 and 5.

Analyzing relationships between the initial state and re-
learning rates

We conducted a set of control analyses (results shown in Fig. 4) to determine
how the initial state at the start of the re-exposure period altered learning
rate. Note that this initial state at the start of exposure 2 is synonymous with
the terminal washout state (as the washout directly precedes exposure 2).
Two analyses were conducted: one at the group level and one at the
subject level.

For our group-level analyses, we repeated our exponential model fit toa
smaller segment of the re-exposure period (or the initial exposure period in
the control group). We selected this period based on the no-feedback group.
This group exhibited greater lingering adaptation at the end of the washout
phase (see Fig. 4c), meaning that they would begin adaptation at the start of
exposure 2 at a higher level than the other groups. To control for this, we
identified new starting points for exponential model fits that more closely
matched the mean starting point exhibited in the no-feedback group
(6.203°). To do this, we used a 2-step approach. First, we used exponential
model fits to the entire exposure period (as described in “Exponential and
power law models”) and identified when these models crossed the threshold
value of 6.203° for each participant. We then trimmed the data to remove all
data points prior to this threshold value, such that the beginning of the
adjusted learning curves corresponded to the cycle just prior to the threshold
crossing (the resulting initial states are shown in Fig. 4d). We then refit the
exponential model to the truncated data, using the exact same process as
described in “Exponential and power law models”. Resulting learning rate
parameters are reported in Fig. 4b). This process was repeated (using the
same start points) for the power law model, and results are shown in Sup-
plementary Fig. 2g, h.

Finally, we compared learning rates during the re-exposure period (or
naive exposure for the control group) to their terminal reach angle at the end
of washout (or the end of the baseline period for the naive control group).

npj Science of Learning| (2025)10:57


www.nature.com/npjscilearn

https://doi.org/10.1038/s41539-025-00352-z

Article

This was done to test the hypothesis that the subjects who had an initial bias
towards the adapted state might exhibit an unfair advantage in their learning
rate. For this analysis, the exponential rate parameters were compared to the
average reach angle at the end of washout (the 4-cycle period described in
“Exponential and power law models”). For this, data were collapsed across
the four groups (n = 60 participants in total). Data were de-trended at the
group level by zero-centering; the group mean was subtracted within each
group prior to analysis. The resulting data (Fig. 4e) were then compared
across participants via linear regression.

State-space learning model

To interpret our empirical results using an error-based learning framework,
we employed a state-space model **********, The model describes adapta-
tion as a trial-by-trial learning process whereby the adapted state of the
individual is updated by (1) learning from the error experienced on each trial
and (2) a small amount of decay that reflects the temporal instability of
short-term adaptation’"**". In the model, the total update in the motor
memory due to error is controlled by one’s sensitivity to error (b), and the
strength of memory retention between trials is encoded by a retention factor
(). Together, learning and performance decay (this is termed ‘forgetting’ or
‘retention’ in the sensorimotor adaptation literature) collectively determine
how the subject’s internal state (x) evolves in response to error (e) experi-
enced on trial t in the presence of Gaussian state noise (g, normally dis-
tributed with zero mean, and standard deviation of oy) according to:

£ = ax® 4 beld 4 ) (3)

Equation (3) allows us to ascribe performance differences during the
adaptation period to interpretable quantities: retention () and error sen-
sitivity (b).

Note, however, that the internal state (x) is not observable. Instead, on
each cycle, the motor output (reach angle) is measured. The reach angle (y)
directly reflects the subject’s internal state, but is altered by execution noise
(g5 normal with zero mean, std. dev. = oy) according to:

O = x4 &0 4)

Together, Egs. (3) and (4) represent a single module state-space model.
We fit this model to each participant’s reach angles during the adaptation
period using the Expectation-Maximization (EM) algorithm™. For each
adaptation period, all 40 abrupt rotation cycles and 3 preceding baseline or
washout cycles were included. EM is an algorithm that conducts maximum
likelihood estimation in an iterative process. We used EM to identify the
parameters {a, b, x;, 0y, 0y, 0;} that maximized the likelihood of observing
the data (x; and o; represent the subject’s initial state and variance,
respectively). We conducted 100 iterations, each time modifying the initial
parameter guess that seeded the algorithm. The retention factor (a) was
bounded between 0.85 and 1. The initial state (x;) was bounded between
—10° and 20°. Error sensitivity (b) was bounded between 0 and 1. Lastly, all
three variance parameters were bounded between 1.0e and 100. We
selected the parameter set that maximized the likelihood function across all
100 iterations.

Last, we conducted a control analysis to assess if a reduced model
without performance decay (i.e., complete memory retention; a = 1) was
sufficient to explain behavior. The same fitting procedure described above
was used to fit the state-space model, but the retention parameter was
constrained to a value of 1, thereby reducing model complexity by one
parameter. The resulting model fits are provided in Supplementary Fig. 4a.
Akaike’s Information Criterion (AIC) was used to compare the complete
model to the reduced model in Supplementary Fig. 4b.

Outlier detection

As noted above in “Behavioral data processing”, outlier reach angles were
removed prior to model fits, empirical analyses, and statistical testing. To
remove outliers, we used a 2-step process, which started by eliminating trials

where the absolute reach angle exceeded 60° (0.567% of trials). Then, in the
second pass, we removed additional outlier trials in each cycle. For this, we
collapsed reach angles across all subjects and 4 trials in each cycle, and
removed trials that deviated by more than 5 median absolute deviations
from the cycle median (1.798% of trials). This was done separately within
each experimental group, such that each cycle removal process used 60 trials
(4 trials in a cycle, multiplied by 15 participants in the group).

In a control analysis, we employed an alternative way to detect outliers
within individual participants without considering other subjects in the
group. For this, we binned reach angles in consecutive 10-trial bins. In each
bin, we calculated the median reach angle. Outliers were taken as trials that
deviated from the median by more than a threshold level. We varied this
threshold to explore more liberal and conservative outlier detection; 4 levels
were used (from most to least aggressive: 15°, 20°, 25°, and 30°), leading to
the removal of 0.68-2.6% of trials. The resulting analysis was done based on
our exponential model learning rates (Supplementary Fig. 5). We found that
all thresholds produced the same qualitative result (statistics are given in
Supplementary Tables 3 and 4), which also matched the conclusions
reported in our Results section.

Evaluating model error

The goodness-of-fit for each model (exponential, power, and state-space
model) was quantified by calculating the root-mean-squared-error (RMSE)
for each individual participant's learning curve during the abrupt learning
period (exposure 2 was used for the initial gradual learning groups, but
exposure 1 was used for the control group). All RMSE measures are shown
in Supplementary Fig. 1. For comparison, we also calculated the intrinsic
variability in cycle-to-cycle reach angle (shown as a horizontal line in
Supplementary Fig. 1). This intrinsic variability provides a theoretical lower
bound for the RMSE that could be achieved by any model, as it represents
the inherent random movement noise that corrupts movement angles
during baseline periods without any adaptation. To calculate this value, we
calculated the standard deviation in angle during the baseline period, as well
as the last ten cycles of the washout period, and averaged these two values
together (note that in the no-feedback group, we used only the baseline
standard deviation because during the washout period the rotation had not
been removed long enough to achieve a stable steady-state at which to assess
motor noise in the absence of learning).

Statistical analysis

For statistical comparisons between two groups or conditions, paired or
independent two-sample t-tests were employed. When more than two
groups were compared, we applied one-way ANOV As. In post-hoc tests on
savings-related measures (see “Measuring savings” below), we used Dun-
nett’s test to measure differences between each experimental group and the
control. For cases where initial learning rates and terminal washout states
were compared across groups, Tukey’s test was used to evaluate all possible
pair-wise comparisons.

Measuring savings
Our principal analyses concern whether experiencing a perturbation gra-
dually during initial learning produces a benefit for re-learning in the future.
For sensorimotor adaptation, savings refer to an increase in the rate or
extent of re-learning. However, in many cases, including our current study,
initial learning rates during gradual learning cannot be observed due to a
mismatch between perturbation types in exposure 1 and 2. In exposure 1,
participants adapt to a gradual rotation. In exposure 2, the rotation is abrupt.
The gradual and abrupt learning rates are not comparable: by design, gra-
dual learning is necessarily slower than abrupt learning due to the presence
of smaller errors”™*** throughout the learning process, which are known to
drive smaller trial-to-trial updates in reach angle**®. In our case, abrupt
learning was more than twice as rapid as gradual learning (see “Comparing
gradual and abrupt learning rates” and Supplementary Fig. 3).

In cases such as ours, where initial learning is gradual and re-learning is
abrupt, savings is assessed by comparing learning rates during the abrupt re-
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learning period to those of a separate control group that only experiences an
abrupt rotation (this control condition allows us to obtain a proxy estimate
for the naive abrupt learning rate)'********** This is the approach we uti-
lized herein, and it informed our choice of statistical tests described in the
previous section.

Power analysis

To determine our group size, we conducted a power analysis. As noted
before, we recruited ten participants in each group and used these pre-
liminary results in our analysis (n = 40 subjects total). For our analysis, we
selected our principal investigation in Fig. 3. Exponential models were fit for
exposure 2 in three experimental groups (groups that experienced gradual
adaptation during exposure 1) and exposure 1 in the naive control condi-
tion. The fitting procedure is described above in “Exponential and power
law models”. We then extracted the learning rate for each participant and
calculated the mean and variance for each group. For each group, we drew
simulated learning rates from a normal distribution, and then conducted a
1-way ANOVA. Power was measured based on the finding that p < 0.05 for
a given simulated experiment. The resulting power is reported in Supple-
mentary Fig. 6 as a function of group size. Note that 13 subjects were
required in our simulations to reach 80% power.

Data availability
The datasets used and/or analyzed during the current study are available
upon request by contacting the corresponding author.

Code availability

The MATLAB scripts used for empirical analyses, model fitting, model
comparison, and statistical testing will be made available upon request by
contacting the corresponding author.
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