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Can you learn better by doing something yourself (DIY) or by watching somebody else do it? We
present a new approach to examine this perennial question in research on learning and instruction. Ina
science learning task, children aged 5 to 7 years (N = 95) either generated predictions themselves
(active condition) or observed the predictions of a fictitious other child (yoked condition) before seeing
the outcome. Unlike previous yoked designs, we first emulated responses from a Bayesian learner.
Critically, these responses were then individually matched to each yoked child given their unique prior
beliefs at the start of the experiment. This novel approach allowed us to discern the effects of DIY on
conceptual learning much more clearly than before. We found that actively generating predictions led
to deeper conceptual understanding than observing another’s matched predictions, and that this
advantage of DIY was associated with an increased experience of agency.

Many foundational theories of human learning argue that learning is an active
construction process and that it is therefore beneficial to actively involve
students in constructing knowledge, most notably by letting them perform
knowledge-generating activities themselves'~. There are many arguments in
favor of this “do it yourself” (DIY) approach. In cognitive psychology terms,
DIY may lead to a more thorough evaluation of the problem structure and of
how the observed data relates to your prior knowledge, leading to more
elaborative encoding processes’. An alternative, non-mutually exclusive,
account could be that DIY leads to an experience of agency, which increases
intrinsic motivation to learn. Consistent with this explanation, giving parti-
cipants agency over decisions—even if they are sham decisions—has been
shown to upregulate the mesolimbic dopamine system, which modulates
memory formation in the hippocampus’. There are thus clear psychological
mechanisms that suggest that DIY is conducive to learning.

On the other hand, from a simple rational perspective, it makes no
difference whether you perform an action yourself or just observe someone
else—as long as the other person tests your hypotheses (or more informative
hypotheses), the informativeness of the evidence remains the same®".
Moreover, various research suggests that observing knowledgeable others,
such as teachers, can be particularly effective for learning causal structures'".
This is because knowledgeable others can point learners to just the data and
statistical relations that are most helpful for causal inference'*"”. Consistent
with these findings from basic research, classroom studies suggest that

children often benefit more from explicit instruction than from hands-on
scientific activities, such as conducting their own experiments'*'* (but see
ref. 16). However, in cases where explicit instruction outperforms self-
directed activity, this advantage may stem from learners receiving more
relevant or targeted evidence. A more rigorous test of the effect of instruc-
tional mode would require controlling the informational content across
conditions to ensure that both groups receive equivalent evidence. In sum, it
is currently unclear whether and, if so, which aspects of DIY are conducive to
learning.

How can we discern the effects of DIY on learning? We chose to focus
on a very simple experimental contrast: making predictions yourself vs.
observing the predictions of a fictitious other learner. This manipulation
builds on prior research in children’s causal learning, which often compares
a group that actively performs actions with a control group that passively
observes a real or fictitious individual . Such yoked control conditions are
ideal for investigating the effects of self-directed activity, as they ensure that
learners in both conditions are exposed to the same data for the same
amount of time’. However, our experimental manipulation is different from
previous yoking manipulations in cognitive and developmental psychology,
where participants could influence the course of events by selecting the
content or sequence of an intervention'***'. In contrast, children in our
study could only predict the outcomes of pre-determined interventions.
This design allowed us to hold the informativeness of the evidence constant
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across conditions and eliminated potential confounds related to children’s
ability to design informative experiments™. In sum, comparing active and
yoked predictions promises to reveal the most fundamental aspect of DIY:
the ability to perform a volitional action, even if this action does not alter the
course of events.

However, the comparison of active and yoked predictions can still lead
to an unfair bias in favor of the active condition. For example, consider what
happens if you are in the yoked group and the person you are yoked to
predicts something you would not predict. You will likely be confused and
preoccupied with thoughts that are not helping your learning, such as why
the other learner is predicting this. You might also become frustrated, which
further reduces your motivation to engage with the task. This is likely to
happen frequently since different individuals bring different prior knowl-
edge and beliefs to a task. To really discern whether doing something
yourself has an advantage over watching somebody else do it, this other
person needs to do the same thing that you would have done. Therefore, it
would be ideal to yoke participants to themselves, i.e., to present the same
actions that the participant in the yoked condition would have made had
they been in the active condition.

The issue of fit to the yoked learner may be particularly important.
Evidence suggests that children do not readily extend inferences from a
taught other to themselves if they do not perceive the other as similar. For
example, children who observed another child being taught later behaved as
if they themselves were being taught directly, whereas children who
observed an adult being taught did not™. This finding aligns with broader
research showing that children learn effectively from peers—through
imitation™, peer informants™, and peer interaction” . Taken together,
these results show the children are savvy peer learners, sensitive to whether
observed peer learning is relevant to them, and rationally deploy inferences
in indirect social learning contexts.

The goal of the current study was twofold. First, to provide a proof of
concept that such a personalized yoking procedure is possible-at least to a
certain extent-using a novel Bayesian yoking approach. Second, to test the
hypothesis that DIY remains beneficial for learning even under this new
yoked control condition. Unlike previous research on causal learning with
yoked controls, this design ensured that participants could not choose the
evidence they encountered, keeping the available evidence identical across
conditions. This hypothesis was based on literature suggesting that the
experience of agency that can be assumed to go along with DIY is conducive
to children’s learning'*”. In sum, this new approach would allow us to
determine the core effect of agency on causal learning much more clearly
than previous approaches.

We tested children aged 5-7 on a prediction—feedback task in which
they had to learn about what determines the amount of water displacement.
We focused on this age group because most children at this age have mis-
conceptions about water displacement™*, making it an ideal scenario for
investigating how they revise their intuitive causal models. Moreover,
children in this age group are generally capable of explicit belief revision
when confronted with counterevidence”, allowing us to investigate the
factors that support such change. Children in the yoked control condition
saw the predictions of a (fictitious) other child, which were in fact the
responses of an ideal Bayesian learner personalized to have that participant’s
individual prior beliefs (i.e., Bayesian yoking procedure). The Bayesian
approach is particularly suitable here because learners are faced with a
problem of inference under uncertainty when learning from testing pre-
dictions (i.e., they do not know what the true theory is). By specifying
learners’ prior theories and their degrees of belief in these theories, Bayes’
rule allows this problem to be solved optimally according to probability
theory. Recent work has shown that children’s choices, and thus their belief
revision during this task, closely resemble those of an optimal Bayesian
learner tuned to each child’s prior knowledge™. Therefore, the Bayesian
learner will mostly respond as the participants in the yoked condition would
have responded had they been in the active condition. At worst, the Bayesian
learner learns a little faster, but as research on observing knowledgeable
others shows'"*, this could also be beneficial for the participants.

Results

Accuracy of Bayesian Yoking Procedure

The yoking procedure involved “binning” children in the yoked condition to
one of six predefined profiles that best matched the individual child’s prior
beliefs. The dominant belief per profile and the number of children assigned
to each of the six profiles were as follows: Profile 1: unclear/random belief
(n=4); Profile 2: predominant mass belief (n = 8); Profile 3: predominant
material belief (n = 18); Profile 4: predominant size belief (n = 5); Profile 5:
unclear/random belief (n = 11); Profile 6: mass with predominant size belief
(n=0). This distribution confirms that, consistent with previous research,
most children began the task with misconceptions focused on material or
mass. While this binning approach was necessary for practical reasons, pilot
testing and simulations indicated that it effectively captured children’s
priors with high precision. Nonetheless, one might be concerned that in our
actual data, the cluster (and resulting observed yoked outcomes) that each
individual child was assigned would not be an ideal match. To assess the
accuracy of our Bayesian Yoking Procedure, we tested how well it
approximated each child’s optimal learning path. On average, yoked
responses matched an individualized ideal model 94.6% of the time (range:
79-100%), with 43% of children (20/46) receiving a perfect match.
Importantly, children with a perfect match and children with a slight mis-
match did not differ in performance in the posttest (79% vs. 83%,
#(44) = —048, p=0.632) or transfer test (92% vs. 88%, #(44) =047,
p=0.638). These results indicate that the yoking procedure provided a
highly accurate match to an ideal learning trajectory, with no observable
impact from slight mismatches.

While qualitatively exploring the agreement between the optimal
Bayesian responses and the children’s actual responses, we noticed that most
of the differences stem from children learning at a slightly lower rate than the
optimal Bayesian learner and/or flipping back to their previous theory
occasionally which the Bayesian learner never does. These results confirm
that the yoked profiles we employed closely matched individualized models,
and replicate our previous modeling findings. Thus, these results support
the validity of our Bayesian yoking procedure, as they indicate that children
in the yoked condition see the responses that they would have given
themselves or slightly better ones.

Learning performance

An overview of children’s performance in the pretest, posttest, and transfer
test, separately for the active and yoked condition, is provided in Fig. 1. On
the pretest, performance was below chance in both the active (M =0.45,
SD=0.20) and yoked condition (M =0.41, SD=0.23). An independent
t-test indicated no significant differences between conditions (#(93) = 0.96,
p=0.337,d=0.20). These data indicate that, as expected, most children had
misconceptions about what determines water displacement.

On the posttest, performance of both groups was close to ceiling.
Nevertheless, an independent #-test indicated that children in the active
condition performed significantly better than children in the yoked con-
dition (#(93)=2.21, one-tailed p=0.015, d=045; active: M =091,
SD=0.18; yoked: M=0.81, SD=0.24). A (non-preregistered) repeated
measures analysis of variance indicated that children in both conditions
significantly improved their performance from pretest to posttest (F(1,
93) =179.77, p < 0.001, d = 2.78). Additionally, the main effect of condition
was significant (F(1, 93) = 5.32, p = 0.023, d = 0.48). However, there was no
significant condition by time interaction (F(1, 93)=0.70, p=0.405,
d=0.17). These results suggest that the relatively small difference in posttest
performance in favor of the active (vs. yoked) condition did not hold when
looking at children’s change in performance from pretest to posttest,
potentially due to a ceiling effect.

In the transfer test, where performance in both groups was well below
ceiling, children in the active condition exhibited significantly better overall
performance than children in the yoked condition (#(93) = 1.77, one-tailed
p=0.040, d = 0.36; active: M = 0.75, SD = 0.20; yoked: M = 0.67, SD = 0.21).
These findings indicate that children in the active condition have inter-
nalized the correct concept more deeply than children in the yoked
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Fig. 1| Test performance. a Performance improved strongly from pretest to posttest
in both groups. While children in the active condition performed significantly better
on the posttest than children in the yoked condition, the interaction between
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condition and time did not reach significance. b On the transfer test, children in the
active condition performed better than children in the yoked condition. Error bars
indicate standard errors.

condition. We also explored the different transfer test tasks with separate ¢-
tests. Findings suggest that children in the active condition clearly out-
performed their counterparts in the yoked condition in the receptive transfer
task (#(93) = 1.96, one-tailed p = 0.027, d = 0.40, active: M = 4.22, SD = 1.43;
yoked: M =3.65, SD =142). Children in the active condition performed
slightly, though not significantly, better than children in the yoked condition
on the productive transfer task (#(93) = 1.15, one-tailed p = 0.127, d = 0.24,
active: M =9.27, SD =2.61; yoked: M =8.58, SD =3.13) and explicit con-
ceptual task (y*(2) =3.70, one-tailed p =0.079, Cramer’s V=0.20, active:
M =142, SD=0.82; yoked: M =1.17, SD = 0.95 A repeated measures ana-
lysis of variance indicated that there was no significant interaction between
transfer test task and condition (F(2, 93) = 0.35, p = 0.703), however, indi-
cating a similar pattern of results across the three tasks.

Perceived autonomy is higher in the active condition and predicts
learning
Right after the learning phase (i.e., before the posttest), we asked children
about their sense of autonomy and motivation while performing the task.
Independent t-tests indicated that the children in the active condition
reported a higher sense of autonomy than the children in the yoked condition
(#(93) =2.70,p = 0.008, d = 0.56, active: M = 4.21, SD = 0.71, yoked: M = 3.71,
SD=1.09), but no higher motivation to perform the task (#(93)=0.96,
p=0.340, d =0.20, active: M =4.05, SD = 0.67, yoked: M =3.92, SD =0.59).
Both children’s sense of autonomy (r(93) = 0.23, p = 0.028) and their
motivation (r(93) =0.26, p=0.012) were significantly related to better
posttest performance but not to better transfer test performance (autonomy:
r(93) = 0.12, p = 0.264; motivation: r(93) = 0.18, p = 0.090). When including
autonomy ratings in a model with condition predicting posttest or transfer
test performance, the effects of condition are attenuated and non-significant
(posttest: b= —0.09, p = 0.055; transfer test: b= —1.48, p = 0.100), which is
in line with the assumption that perceived autonomy mediates the effects of
self-directed activity on learning.

Discussion

Our findings suggest that actively engaging in the task oneself—doing it
yourself (DIY)—supports conceptual learning more effectively than merely
observing the actions of others. To test this, we compared children who

generated their own predictions before viewing experimental outcomes with
children who instead observed the predictions of a fictitious other child.
With the help of Bayesian computational modeling, we implemented a novel
control condition in which children were yoked to an ideal Bayesian learner
that is tuned to their individual prior beliefs. This means that in the yoked
condition, the children saw the answers of an “ideal” peer that starts with the
same prior beliefs as them. This way, the yoked condition was at least as
informative for causal inference as the active prediction condition, meaning
that learning success under the two conditions should be comparable from a
rational perspective. Children in the yoked condition also did not report
lower levels of motivation to learn than children in the active condition,
suggesting that the Bayesian Yoking Procedure did not lead to boredom or
frustration among participants in the yoking condition due to a mismatch
with their own predictions. Since physical activity was held constant as well,
we could discern the “pure” effects of DIY. These findings extend prior
research reporting benefits of self-directed activity in children'>>"* by
showing that these benefits can be detected even when children have no
control over the interventions or otherwise influence the data they observe.

One explanation for the advantage of making their own predictions
over watching a fictitious other child make the same predictions is that
children could engage in a more thorough metacognitive evaluation of the
competing hypotheses and the relation between the observed results and
their hypotheses. In contrast, children who did not have to generate the
predictions themselves may have engaged less deeply with the task. This in
turn may have led to less elaboration of their causal theories and ultimately
shallower theory revision. This interpretation aligns with Sobel and
Kushnir’s” explanation for why children benefit from active intervention in
causal learning. They proposed that choosing among multiple possible
interventions draws attention to the critical relation between actions and
outcomes. In their study, children in the yoked condition who passively
observed interventions were less able to recognize and learn from those
interventions that could differentiate between causal models than children
in the active condition. Extending this logic, our findings suggest that even a
volitional action with no impact on the observed intervention—such as
generating a prediction—can enhance causal learning.

Our findings suggest that the advantage of DIY has to do with the
experience of agency. Agency refers to an individual’s capacity to initiate and
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perform actions, thereby causing changes in the world™. More prosaically, it
captures the feeling of being in the driver’s seat with regard to our actions™.
In line with this interpretation, children in the active condition reported
feeling more autonomous than children in the yoked condition, and greater
feelings of autonomy were associated with better posttest performance.
Notably, controlling for autonomy reduced the posttest advantage of the
active condition, suggesting that autonomy may partly explain the learning
benefits of DIY. Strikingly, the sense of autonomy in the active condition
arose from a minimal manipulation—participants had no control over the
evidence they observed but merely made a prediction. This modest level of
agency may also explain why the correlation with autonomy did not extend
to transfer test performance. In fact, the situation created in our experi-
mental paradigm, in which the predictions made were almost identical in
both the active and yoked condition, is in some ways similar to “feigned
choice” paradigms in which participants are given the illusion of having a
choice but this choice likewise does not alter the course of events. Research
on feigned choice indicates that participants learn better when thinking they
have a choice™" and perceive this autonomy as inherently rewarding*. Our
findings underscore these previous findings and add that our minds weigh
the act of deliberately doing something ourselves differently from merely
observing somebody else do the same thing.

Our findings also speak to the question of whether human causal
learning can be understood as the simplest form of rational Bayesian
inference'”. We found that children’s predictions in the active condition
closely aligned with those of an optimal Bayesian learner, supporting prior
research suggesting that children’s belief revision can be understood as a
process of rational Bayesian inference’**. However, from this perspective, it
should not make a difference whether learners are making predictions
themselves or observing another learner testing their predictions—the
informativeness of the evidence is the same. Observing an ideal Bayesian
learner that is tuned to a learner’s prior beliefs and performs the
prediction—feedback task could even be advantageous, as it emulates an
optimal learning path for thatlearner. Our findings suggest that such models
must take into account other factors, such as agentic beliefs, in order to
capture the full richness of human learning.

A methodological contribution of our study is that it provides a proof of
concept for the feasibility of the Bayesian Yoking Procedure. We chose water
displacement as a learning domain because previous research showed that
children’s belief revision in this task approximates that of an ideal Bayesian
learner™*, thus making it feasible to implement the personalized Bayesian
Yoking Procedure. A resulting limitation, however, is that it is currently
unclear how well our findings generalize. Future research is needed to confirm
that the Bayesian Yoking Procedure is feasible in other learning scenarios as
well. Promising candidates beyond physics learning are chemistry, mathe-
matics, and medical reasoning. In addition, future research should examine
whether the Bayesian Yoking Procedure offers an advantage over traditional
yoking to another person, given the potential for a mismatch between a
participant’s own predictions and those of the yoked individual. Finally, it will
be important to investigate whether our findings from a fully computerized
task extend to hands-on experimentation. Watching a live demonstration
performed by another person may engage children in the yoked condition toa
greater degree than the computerized setup used in our study.

Another limitation pertains to inconsistent findings regarding the
transfer task, with benefits for the active condition in the receptive task but
not for the productive or conceptual tasks. One possible explanation is that
the receptive transfer task requires less generative processing and is therefore
more sensitive to subtle differences in how information is encoded during
learning. In contrast, productive and conceptual transfer likely involve
higher cognitive demands, including the ability to abstract and reorganize
knowledge. It is possible that a minimal manipulation such as ours may not
be sufficient to support these more complex forms of transfer. Future
research is needed to replicate and understand these findings.

A further limitation is that the optimal Bayesian models we employ
here only predict that children will choose the “most certain” responses (i.e.,
1, 3, and 5) for both the simulations of the active condition, and the profiles

that the yoked condition are assigned to. However, when given the
opportunity to choose, children respond with some uncertainty on close to
10% of trials. One reason may be that by-design, our Bayesian models use
“optimal” choice algorithms that are biased toward “max-probability rules”
(e.g., that we should always pick what is “most likely”). Children, in contrast,
may follow a “sampling hypothesis™* and explore less-likely options.

Understanding the role of self-direction is particularly relevant now
that machines are increasingly taking over activities from humans, including
conducting and even designing experiments. We need to know when
activities should better be left in the hands of learners and how we can help
learners develop agency over their learning. The current findings suggest
that there is a fundamental reason to leave such activities in the hands of
learners; doing them themselves helps learners figure out the causal struc-
ture of the world.

Methods

Preregistration

This study was preregistered on the Open Science Framework (OSF, https://
osf.io/2bkzy). We tested preregistered, directed hypotheses using directional
analyses. For these analyses, we therefore reported one-tailed p-values,
which are clearly indicated throughout. Since the focus of this paper is on the
Bayesian Yoking Procedure, we decided not to report analyses on the
pupillary data (see the second pre-registered hypothesis) here, but to include
the data in a separate paper®. For transparency, a short report on findings
regarding the second pre-registered hypothesis can be found on the OSF
(https://osf.io/ktxdv/).

Participants

The children were recruited and tested in a large science museum in Ger-
many, partly for reasons of convenience and partly because—in our
experience—the sample is more heterogeneous in terms of socioeconomic
and ethnic background than when recruiting children and parents for
studies carried out at our institute. An a priori power analysis using
G*Power* was performed that yielded a minimal sample size of n = 84. The
power calculation was performed with the following settings: Difference
between two independent means, effect size d = 0.65 (based on pilot results),
a=0.05, 3 = 0.90. We tested a total of 138 children to account for possible
dropouts and children who already had the correct concept (exclusion rate
based on previous studies using a similar paradigm). Based on our pre-
registered exclusion criteria, we excluded 15 participants who did not finish
the task and 27 children who correctly solved at least 5 out of 6 incongruent
trials during the pretest (active: n = 15; yoked: n = 12), which indicates that
they already had the correct concept before our learning task. In addition,
one participant was excluded due to data loss. The final sample consisted of
95 children, 46 of whom were girls (48.42%) and 49 were boys (51.57%).
Children were randomly assigned to either the explicit (1 =49) or yoked
condition (1 = 46; see description of conditions below). The children ranged
in age from 5 to 7 years (M = 6.04 + 0.81). Although our research questions
did not focus on age-related differences, we confirmed that including age as
a covariate in our models did not alter the pattern of results. Prior to the
testing, parents provided written informed consent. Additionally, children
received a small gift valued at about 5.00 € for their participation. Ethics
approval was obtained from the ethics committee at the DIPF | Leibniz
Institute for Research and Information in Education.

Design and stimuli

In the conceptual learning task, children had to learn what factors determine
how much water an object displaces. Most children in this age group have
the misconception that the material or mass of an object play a role in how
much water an object displaces when fully submerged under water™**. To
accomplish the task, children thus have to revise their misconception. The
experiment consisted of four phases: Pretest, learning phase, posttest,
transfer test (see Fig. 2). The stimuli were adapted from a previous study™.
The pretest, posttest, and learning phase were programmed in and pre-
sented with PsychoPy v202222". The learning phase had two
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Fig. 2 | Overview of experimental procedures. The study comprised the following
phases: pretest, learning phase, posttest, and transfer test. The figure shows
exemplary trials of all phases. The learning phase consisted of 34 computerized trials
presented in one of two between-subject conditions: active or yoked. In both con-
ditions, a pupil baseline phase occurred at the beginning of each trial and was only
relevant for analyzing the pupil data. In the active condition, children made a
prediction about which sphere would displace more water in the Prediction Gen-
eration Phase. Afterwards, they were shown their prediction again (see Own
Response Display). After a short Anticipatory Phase, they were presented with the

correct results in the Feedback Phase (“+” indicates that the ball displaces more
water, and “-” indicates that the ball displaces less water than the other one; two “+”
indicate that both balls displace an equal amount of water). In the yoked condition,
children first observed a fictitious child making predictions (see Yoked Response
Display Phase), then confirmed each prediction in the Prediction Confirmation
Phase. These fictitious predictions were based on the Bayesian model (see Bayesian
Yoking Procedure). After a short Anticipatory Phase, they were also presented with
the correct results in the Feedback Phase.

between-subjects conditions: active and yoked. For the learning phase,
children were randomly assigned to one of the two conditions. In the active
condition, children were tasked with predicting which of two spheres would
displace more water. In the yoked condition, children observed the
responses of a fictitious other child who had completed the task beforehand.
Here, the participating children were required to press the same button as

the fictitious child to confirm that they had seen what the fictitious child
answered. In both conditions, children saw the correct outcome afterwards.

Procedure
Children were tested individually in a quiet, adjoining room of the
museum. Before the experiment began, the experimenter introduced
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and demonstrated water displacement by pressing and holding a
Styrofoam sphere under water. To ensure that the concept of water
displacement was understood, the children were asked to explain what
happened to the water when the sphere was held underwater, with the
experimenter emphasizing that the sphere was fully submerged. This
was done to avoid confusion between water displacement and
buoyancy.

The computerized pretest was used to assess children’s conceptual
understanding of water displacement. In each trial, the children were pre-
sented with pairs of spheres that varied in size (small, medium, large) and
material (styrofoam, wood, lead). The pretest consisted of 8 trials, which
were designed in such a way as to capture each child’s prior beliefs (see
Yoking Procedure below). Six out of the 8 pretest trials were designed to be
‘incongruent’, meaning that the misconception that mass or material would
play a role for water displacement would lead to an incorrect answer. For
each trial, the children indicated whether they thought the left or the right
sphere would displace more water, or whether both spheres would displace
the same amount of water. Responses were given on a 5-point scale using a
button box (1 = surely the left sphere; 2 = probably the left sphere; 3 = both
spheres displace the same amount of water; 4 = probably the right sphere; 5=
surely the right sphere).

For the learning phase, children were randomly assigned to the active
or yoked condition and performed a computerized prediction—feedback
task. The task was akin to the pretest, but here feedback on the predictions
was presented. In addition, eye-movements and pupil dilation were recor-
ded with a camera that was placed below the computer screen and recorded
at a frequency of 500 Hz. A fixation cross was presented throughout the
learning phase to direct children’s gaze to the center of the screen. Children
could only continue with the next trial if they looked at the fixation cross
placed in the center of the screen, ensuring that they paid attention to
the task.

The learning phase began with 8 practice trials that were constructed
in such a way that they could be answered correctly regardless of the child’s
prior theory. This was done to familiarize children with the task while
minimizing learning. The children then saw 26 learning trials, in 16 of
which the mass or material misconception led to an incorrect prediction as
the heavier sphere was either smaller or as large as the lighter comparison
sphere. All children completed the same trial sequence. Depending on the
experimental condition (see Fig. 2), children either made their own pre-
dictions before seeing the correct answer (active condition), or observed
and confirmed the predictions of a fictitious other child before seeing the
correct answer (yoked condition). The fictitious predictions in the yoked
condition were generated using a Bayesian model (see Bayesian Yoking
Procedure). This procedure ensured that children in the yoked condition
were exposed to the same stimuli for the same amount of time as children
in the active condition. Additionally, since children in the yoked condition
were required to confirm the fictitious child’s responses by pressing a
button, their level of physical activity was comparable. Regardless of the
predictions generated (or observed), all children saw the correct outcome
of each trial. A “+” sign indicates that the ball displaces more water than the
other; a “-” sign indicates that the ball displaces less water; and two “+”
signs indicate that both balls displace an equal amount of water. The only
difference between the two conditions is whether children were asked to
make their own prediction or see another “matched” child’s prediction
prior to seeing the evidence. Immediately following the learning phase,
children completed a short questionnaire assessing their intrinsic moti-
vation and perceived autonomy while performing the learning task (8
items, w, = 0.71). Two questions related to autonomy (e.g., “I had the say in
the tasks.”) and six related to motivation (e.g., “The tasks were fun.”). The
autonomy questions were selected to capture children’s experience of
agency, as the experience of agency can be understood as the result of
actions that are perceived as autonomous". The answers were given on a
5-point Likert scale ranging from “do not agree” to “agree”. The ques-
tionnaire can be found on the OSF.

After the learning phase, children completed the posttest (8 trials). The
posttest was identical to the pretest, except the position of the spheres (left/
right) was reversed.

Next, a paper-pencil transfer test was administered. The transfer test
was designed to test whether children could transfer their newly acquired
knowledge of water displacement to different tasks, indicating deeper
conceptual understanding. The transfer test consisted of a receptive and
productive transfer test as well as answering an explicit conceptual question.
For the receptive transfer (first six trials), children were asked to determine
which of two objects other than spheres (e.g., large plastic crystal vs. medium
sized glass crystal; stone vs. beach ball) displaced more water. One point was
awarded for each correctly solved trial, for a total of six points.

For the productive transfer, children saw four glasses containing
objects of different sizes and materials and were asked to determine how
high the water level would rise when the objects were fully submerged in
water. Children were presented with two sets, each containing four dif-
ferent objects. In each set, the water level for the first object was already
shown and served as a baseline. Children marked how high the water level
would rise relative to the baseline water level. The possible pairwise
comparisons within each item were scored for accuracy (dummy coded).
There were six possible comparisons for each set, for a total of 12 points for
productive transfer.

Next, children were tasked with explicitly stating what they thought
determined water displacement under the guise of helping a fictional child
with doing homework (2 points, conceptual question). We coded whether
children correctly argued that it is the size of the object that determines water
displacement. Children received 0 points for an incorrect answer, 1 point of
partially correct responses that included size (i.e., the size and weight of the
object determines water displacement), and 2 points for correct answers.
Children could earn a total of 20 points for the transfer test.

After the transfer test, children performed executive functions tasks (i..,
Hearts and Flowers Task, Digit Span Task). These results are not reported
here as they were included as a potential moderator to elucidate possible
interindividual differences in belief revision, which are not the focus of the
current manuscript. The experiment took approximately 35 min to complete.

Bayesian Yoking Procedure

The Bayesian Yoking Procedure consists of three steps (Fig. 3): (1) creating
profiles of the children’s prior belief distributions, (2) determining the cor-
responding responses during the learning phase for each of the profiles, and
(3) assigning new learners to the profiles and present responses accordingly.

First, the profiles were created using the pretest data from a previous
study”. To determine children’s prior belief models, we considered a
hypothesis space distribution of four different, competing theories: a size
theory, a material theory, a mass theory, as well as a random guessing model.
We included the random guessing model to capture children who may have
no intuition about what determines water displacement and thus respond
randomly. We simulated the responses that hypothetical participants
holding each of the four theories would make on each of the eight pretest
trials using a generative probabilistic modeling approach (for details, see
ref. 36). Given each child’s actual responses during the pretest trials, we
could use Bayesian modeling to reverse infer children’s prior models using
the distribution of weights on these models for each individual child. This
yielded a prior probability distribution of relative weights for each of the four
competing theories per individual participant. Then, a k-means algorithm®
was used to cluster similar prior distributions across participants into dis-
tinct groups. We used the elbow method™ to determine the number of
clusters, resulting in six clusters. For each of these clusters, the center was
determined and selected as the prototypical child.

Second, we determined the responses that a child in the yoked con-
dition observed during the learning phase. To determine the corresponding
responses, the prior belief distribution for each of the six prototypical
“children” was used to determine how an optimal Bayesian learner that has
the same prior theory as that child would respond during the learning phase

npj Science of Learning| (2025)10:70


www.nature.com/npjscilearn

https://doi.org/10.1038/s41539-025-00364-9

Article

g a
1
£ )
J 1 ® )
E 2
£ 75 ob— B . m, |
= Size Material Mass Random
00000 § 5 Prio theorics 90009
@ i — — @
0 } f f
0oo0o0e Size Material Mass Random €.0.000
Prior theories ‘.‘ ‘.&
C ) C )
Assess child‘s Calculate prior Compare prior distribution Show yoked res-
pretest responses distribution with those of predefined ponses according
profiles. Assign to closest. to profile

Fig. 3 | The Bayesian Yoking Procedure. Children are matched with “their”
Bayesian learner by (1) using the pretest responses of each child in the yoked con-
dition to approximate individualized prior belief distributions, (2) matching each

distribution to one of six predefined profiles and assigning to the best fitting profile
such that (3) during the learning phase, children in the yoked condition see the
responses associated with their assigned profile.

at that particular trial, given the data they had already observed up until that
trial. Thus, starting with the prior probability distributions as revealed in the
pretest, we performed trial-by-trial Bayesian posterior updating for each of
the 34 trials of the learning phase. We calculated an updated posterior
probability at a given trial as in Eq. (1) for each of the four competing
theories (h;) after observing the data (d), given a prior probability of said
theory given the prior data p(h;|d):

p(d|h)p(h;)

ol =5

¢y

In other words, the model of each child’s performance was then
updated trial-by-trial using Bayes’ rule, starting from the initial priors found
in the pretest. This updating took into account both the influence of chil-
dren’s specific prior theories and the dynamics of active trial-by-trial
learning in response to evidence.

Since this procedure was performed for each of the six prototypical
children, this resulted in six response profiles—one for each cluster.
According to previous findings’®”", these response profiles thus reflect the
responses that the prototypical child would most likely choose in the 34
learning phase trials. We tested whether our model replicated the previous
findings by evaluating whether the responses of children in the active
condition aligned with those of an optimal Bayesian learner. Since children
in the yoked condition did not make predictions, we could not compute
correlations between their responses and the model. Comparing responses
in the active condition to the model (ignoring confidence level), we found a
strong correspondence: the optimal Bayesian model accurately predicted
80.4% of the responses during the learning phase. To account for the
hierarchical nature of the data (responses nested within participants), we
ran a linear mixed-effects regression model to examine the relations
between the Bayesian model’s predictions and the predictions made by
children in the active condition. Results indicated that the Bayesian model
was a strong predictor of children’s choices in the active prediction con-
dition (b=0.67, SE=0.017, z=38.91, p <0.001). The random intercept
was non-significant (b = 0.04; ()?(1) = 1.52, p = 0.217 via Likelihood Ratio
Test for random effects), suggesting little heterogeneity in accuracy across
participants.

Third, we assigned the new learners we tested for this study to the best
fitting of the 6 yoked profiles. The pretest responses of the children in the
yoking condition were used to calculate their prior distribution (as was done
in step 1), and this distribution was compared to the prior distributions of
the six profiles. The children were then assigned to the best matching profile,

that is, the profile whose distribution of prior beliefs most closely resembled
that of the children (i.e., lowest Wasserstein distance)*. During the learning
phase, the children saw the responses of the assigned yoked profile.
Assignment to matched profiles was for methodological ease as it required
pre-coding only 6 different experimental conditions, as opposed to one for
each and every child, which would have been required had we matched on
an individual basis. A potential concern of assigning to predefined profiles is
that perhaps these profiles do not closely align with the actual children, thus
leading to children seeing different predictions than if we had used a truly
individualized procedure. Inaccuracies could arise due to an insufficient
number of clusters or errors in the assignment of participants to the six
clusters, which had to be made on the fly during the experiment. To test the
accuracy of our Bayesian Yoking Procedure, we tested whether the pre-
dictions generated trial-by-trial for our profile-based approach were a rea-
sonable approximation for the observations that an individually matched
modeling approach would have made (see “Results”).

Data availability
All data, study materials, and the script to run the Bayesian Yoking Pro-
cedure are publicly available (https://osf.io/ktxdv/).

Code availability
Data were analyzed with R (version 4.4.1). All analysis scripts are publicly
available (https://osf.io/ktxdv/).

Received: 14 March 2025; Accepted: 15 September 2025;
Published online: 29 September 2025

References

1. Bruner, J. S. The Process of Education (Harvard University Press, 1960).

2. Lombardi, D. et al. The curious construct of active learning. Psychol.
Sci. Public Interest 22, 8-43 (2021).

3. Montessori, M. The Montessori Method (Schocken, 1964).

4. Piaget, J. The Child’s Conception of Physical Causality (Transaction
Publishers, 1972).

5.  Xu, F. In Core Knowledge and Conceptual Change (eds Barner, D. &
Baron, D. S.) 11-28 (Oxford University Press, 2016).

6. Gureckis, T. M. & Markant, D. B. Self-directed learning: a cognitive and
computational perspective. Perspect. Psychol. Sci. 7, 464-481
(2012).

7. Murty, V. P., DuBrow, S. & Davachi, L. The simple act of choosing
influences declarative memory. J. Neurosci. 35, 6255-6264 (2015).

npj Science of Learning| (2025)10:70


https://osf.io/ktxdv/
https://osf.io/ktxdv/
www.nature.com/npjscilearn

https://doi.org/10.1038/s41539-025-00364-9

Article

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Cook, C., Goodman, N. D. & Schulz, L. E. Where science starts:
spontaneous experiments in preschoolers’ exploratory play.
Cognition 120, 341-349 (2011).

Eberhardt, F. & Scheines, R. Interventions and causal inference.
Philos. Sci. 74, 981-995 (2007).

Pearl, J. Causality: Models, Reasoning, and Inference (Cambridge
University Press, 2000).

Gweon, H. Inferential social learning: cognitive foundations of human
social learning and teaching. Trends Cogn. Sci. 25, 896-910 (2021).
Gopnik, A. & Wellman, H. M. Reconstructing constructivism: causal
models, Bayesian learning mechanisms, and the theory theory.
Psychol. Bull. 138, 1085-1108 (2012).

Bonawitz, E. & Shafto, P. Computational models of development,
social influences. Curr. Opin. Behav. Sci. 7, 95-100 (2016).

Furtak, E. M., Seidel, T., lverson, H. & Briggs, D. C. Experimental and
quasi-experimental studies of inquiry-based science teaching: a
meta-analysis. Rev. Educ. Res. 82, 300-329 (2012).

Kirschner, P. A., Sweller, J. & Clark, R. E. Why minimal guidance during
instruction does not work: an analysis of the failure of constructivist,
discovery, problem-based, experiential, and inquiry-based teaching.
Educ. Psychol. 41, 75-86 (2006).

de Jong, T. et al. Let’s talk evidence —the case for combining inquiry-
based and direct instruction. Educ. Res. Rev. 39, 100536 (2023).
Lagnado, D. A. & Sloman, S. The advantage of timely intervention. J.
Exp. Psychol. Learn. Mem. Cogn. 30, 856-876 (2004).

Markant, D. B. & Gureckis, T. M. Is it better to select or to receive?
Learning via active and passive hypothesis testing. J. Exp. Psychol.
Gen. 143, 94-122 (2014).

Ruggeri, A., Markant, D. B., Gureckis, T. M., Bretzke, M. & Xu, F.
Memory enhancements from active control of learning emerge across
development. Cognition 186, 82-94 (2019).

Sobel, D. M. & Kushnir, T. The importance of decision making in causal
learning from interventions. Mem. Cogn. 34, 411-419 (2006).
Yuniarto, L. S., Gerson, S. A. &Seed, A. M. Better all by myself: gaining
personal experience, not watching others, improves 3-year-olds’
performance in a causal trap task. J. Exp. Child Psychol. 194, 104792
(2020).

Chen, Z. & Klahr, D. All other things being equal: acquisition and transfer
of the control of variables strategy. Child Dev. 70, 1098-1120 (1999).
Bonawitz, E. et al. The double-edged sword of pedagogy: instruction
limits spontaneous exploration and discovery. Cognition 120,
322-330 (2011).

Brody, G. H. & Stoneman, Z. Selective imitation of same-age, older,
and younger peer models. Child Dev. 52, 717-720 (1981).

Hanna, E. & Meltzoff, A. N. Peer imitation by toddlers in laboratory,
home, and day-care contexts: implications for social learning and
memory. Dev. Psychol. 29, 701-710 (1993).

Tomasello, M., Carpenter, M., Call, J., Behne, T. & Moll, H.
Understanding and sharing intentions: the origins of cultural
cognition. Behav. Brain Sci. 28, 675-691 (2005).

Zmyj, N. & Seehagen, S. The role of amodel’s age for young children’s
imitation: a research review. Infant Child Dev. 22, 622-641 (2013).
VanderBorght, M. & Jaswal, V. K. Who knows best? Preschoolers
sometimes prefer child informants over adult informants. Infant Child
Dev. 18, 61-71 (2009).

Perlmutter, M., Behrend, S. D., Kuo, F. & Muller, A. Social
influences on children’s problem solving. Dev. Psychol. 25,
744-754 (1989).

Perret-Clermont, A.-N. & Brossard, A. In Social Relationships and
Cognitive Development 309-327 (Clarendon Press, 1985).

Schwarz, B. B., Neuman, Y. & Biezuner, S. Two wrongs may make a
right ... if they argue together!. Cogn. Instr. 18, 461-494 (2000).
Kushnir, T., Wellman, H. M. & Gelman, S. A. A self-agency bias in
preschoolers’ causal inferences. Dev. Psychol. 45, 597-603
(2009).

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

Burbules, N. & Linn, M. C. Response to contradiction: Scientific
reasoning during adolescence. J. Educ. Psychol. 80, 67-75 (1988).
Theobald, M. & Brod, G. Tackling scientific misconceptions: the
element of surprise. Child Dev. 92, 2128-2141 (2021).

Macris, D. M. & Sobel, D. M. The role of evidence diversity and
explanation in 4- and 5-year-olds’ resolution of counterevidence. J.
Cogn. Dev. 18, 358-374 (2017).

Colantonio, J. A., Bascandziev, |., Theobald, M., Brod, G. &
Bonawitz, E. Priors, progressions, and predictions in science
learning: theory-based Bayesian models of children’s revising
beliefs of water displacement. IEEE Trans. Cogn. Dev. Syst. 15,
1487-1500 (2022).

Sim, Z. L., Tanner, M., Alpert, N. Y. & Xu, F. Children learn better when
they select their own data. In Proc. 34th Annu. Conf. Cogn. Sci. Soc.
2194-2199 (2015).

Sobel, D. & Sommerville, J. The importance of discovery in children’s
causal learning from interventions. Front. Psychol. 1 (2010).
Chambon, V., Filevich, E. & Haggard, P. In The Cognitive Neuroscience of
Metacognition (eds Fleming, S. M. & Frith, C. D.) 321-342 (Springer, 2014).
Moore, J. W. What is the sense of agency and why does it matter?.
Front. Psychol. 7,1272 (2016).

Schneider, S., Nebel, S., Beege, M. & Rey, G. D. The autonomy-
enhancing effects of choice on cognitive load, motivation and learning
with digital media. Learn. Instr. 58, 161-172 (2018).

Leotti, L. A. & Delgado, M. R. The inherent reward of choice. Psychol.
Sci. 22, 1310-1318 (2011).

Kimura, K. & Gopnik, A. Rational higher-order belief revision in young
children. Child Dev. 90, 91-97 (2019).

Bonawitz, E., Denison, S., Griffiths, T. L. & Gopnik, A. Probabilistic
models, learning algorithms, and response variability: sampling in
cognitive development. Trends Cogn. Sci. 18, 497-500 (2014).
Holstein, E. R., Theobald, M., Weindorf, L. S. & Brod, G. Developing
conflict monitoring abilities predict children’s revision of an intuitive
theory. Child Dev. 96, 1207-1219 (2025).

Faul, F., Erdfelder, E., Buchner, A. & Lang, A.-G. Statistical power
analyses using G * Power 3. 1: tests for correlation and regression
analyses. Behav. Res. Methods 41, 1149-1160 (2009).

Peirce, J. et al. PsychoPy2: Experiments in behavior made easy.
Behav. Res. Methods 51, 195-203 (2019).

Deci, E. L. & Ryan, R. M. In Efficacy, Agency, and Self-Esteem (ed.
Kernis, M. H.) 31-49 (Springer US, 1995).

Jain, A. K. Data clustering: 50 years beyond K-means. Pattern
Recognit. Lett. 31, 651-666 (2010).

Thorndike, R. L. Who belongs in the family?. Psychometrika 18,
267-276 (1953).

Colantonio, J. A., Bascandziev, I., Theobald, M., Brod, G. & Bonawitz,
E. Predicting learning: understanding the role of executive functions in
children’s belief revision using Bayesian models. Top. Cogn. Sci.
https://doi.org/10.1111/tops.12749 (2024).

Kantorovich, L. V. Mathematical methods of organizing and planning
production. Manag. Sci. 6, 366-422 (1960).

Acknowledgements

This research was supported by a grant of the German Research Foundation
(DFG, BR 5736/2-1) to the first author. DeepL was used to improve the
language, as the first author is not a native English speaker. We thank our
research assistants for their help with data collection, and the Senckenberg
Naturmuseum for the collaboration.

Author contributions

G.B. and L.W. designed the study. Testing and data collection were
overseen by G.B., LW., E.H., and M.T. E.H. and J.C. performed the data
analysis under the supervision of G.B., E.B., and M.T. G.B. drafted the paper,
all other authors provided critical revisions. All authors approved the final
version of the paper for submission.

npj Science of Learning| (2025)10:70


https://doi.org/10.1111/tops.12749
https://doi.org/10.1111/tops.12749
www.nature.com/npjscilearn

https://doi.org/10.1038/s41539-025-00364-9

Article

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to
Garvin Brod.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

npj Science of Learning| (2025)10:70


http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/npjscilearn

	Do it yourself: discerning the effects of self-directed activity on conceptual learning
	Results
	Accuracy of Bayesian Yoking Procedure
	Learning performance
	Perceived autonomy is higher in the active condition and predicts learning

	Discussion
	Methods
	Preregistration
	Participants
	Design and stimuli
	Procedure
	Bayesian Yoking Procedure

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




