Table 1 Top ranked cluster-specific features detected by the analysis of the latent space using COMET software.

From: Sparsely-connected autoencoder (SCA) for single cell RNAseq data mining

Latent space

Cluster

Feature 1

Feature 2

Feature 3

Feature 4

COMETsc statistics

TP

TN

SCA TF

1

PAX5

NFAT5

RFXANK

CHD4

1.45E–49

0.589

0.997

SCA TF

2

CEBPA

KHSRP negation

CEBPB

CREBBP

1.19E–46

0.561

0.997

SCA IS

4

NK signature

–

–

–

5.75E–54

1.0

0.81

SCA IS

5

ASTHMA KEGG negation

–

–

–

5.35E–84

0.970

0.972

SCA miRNA CLR

3

miR-191

–

–

–

1.01E–49

0.714

0.98

SCA miRNA RLE

3

miR-191

–

–

–

1.01E–49

0.714

0.98

SCA miRNA TMM

3

miR-132-3p

–

–

–

1.08E–49

0.714

0.98

SCA miRNA FQ

2

miR-187-3p Rank 1

–

–

–

2.85E–60

0.67

0.953

SCA miRNA SUM

2

miR-187-3p Rank 4

–

–

–

3.45E–58

0.925

0.918

SSCA

3

miR-129-2-3P

–

–

–

1.18E–49

0.742

0.98

SSCA

4

NK signature

–

–

–

6.49E–103

1.0

0.99

SSCA

5

POU2F2 negation

–

–

–

4.50E–41

0.851

0.832

vSCA TF

1

CHD4

–

–

–

9.35E–76

0.775

0.989

vSCA TF

2

CEBPA

–

–

–

6.63E–62

0.829

0.977