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Deduction of signaling mechanisms from cellular responses to
multiple cues
Soutick Saha1, Hye-ran Moon2, Bumsoo Han2,3 and Andrew Mugler 1,3,4✉

Cell signaling networks are complex and often incompletely characterized, making it difficult to obtain a comprehensive picture of
the mechanisms they encode. Mathematical modeling of these networks provides important clues, but the models themselves are
often complex, and it is not always clear how to extract falsifiable predictions. Here we take an inverse approach, using
experimental data at the cell level to deduce the minimal signaling network. We focus on cells’ response to multiple cues,
specifically on the surprising case in which the response is antagonistic: the response to multiple cues is weaker than the response
to the individual cues. We systematically build candidate signaling networks one node at a time, using the ubiquitous ingredients of
(i) up- or down-regulation, (ii) molecular conversion, or (iii) reversible binding. In each case, our method reveals a minimal,
interpretable signaling mechanism that explains the antagonistic response. Our work provides a systematic way to deduce
molecular mechanisms from cell-level data.
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INTRODUCTION
Cell signaling networks are dauntingly complex. Increasingly
precise biochemical experiments have characterized the structure
of signaling networks in exquisite detail1,2. The availability of such
a large amount of quantitative data suggests that it should be
possible to understand the function of these networks and predict
responses at the cellular level. However, the sheer complexity of
cell signaling networks makes intuitive understanding and
unambiguous prediction elusive.
One approach to the problem of signaling network complexity

is to appeal to mathematical modeling. Deterministic dynamical
models turn experimental information about network topology
and kinetic parameters into predictive information about network
function and cell response3–5. However, models that respect the
known degree of experimental detail are as complex as the
networks themselves, by definition. Complex models are difficult
to interpret intuitively, leaving the basic functional mechanisms
underlying cell response unknown. Moreover, kinetic parameters
are rarely known for all interactions, leaving a vast parameter
space to explore theoretically6, and therefore many possible—
often conflicting—predictions for cell response. Finally, experi-
mental characterization of signaling networks is inevitably
incomplete, and it is unclear whether a detailed model informed
by current data will make robust predictions when updated with
new data.
Here we introduce an inverse approach to understanding

complex signaling networks. Instead of modeling all known
features of a signaling network to predict a cell response, we use
observed cell responses to deduce a minimally sufficient signaling
network7. Our approach is systematic: given a particular class of
biochemical interactions, we build candidate networks one piece
at a time, continually evaluating whether the observed set of cell
responses is compatible with the current candidate network (Fig.
1). Networks therefore grow in complexity in a principled way, and
we are left with the minimally complex network or a set of equally

complex minimal networks of a given class that can explain the
observed behavior. These minimal networks are not meant to
have a one-to-one correspondence with the known experimental
features of the cell signaling network. Rather, we conjecture that
they reveal the coarse-grained structure of the signaling network:
the gross topological features that are needed in order to
implement the observed cell responses. Importantly, as we will
show, working at this level provides intuition about why the
topology encodes the function, and provides predictions that are
robust to parameter changes, due to the small number of degrees
of freedom.
Iterative or exhaustive approaches have been developed in the

past to uncover the common features in networks that perform
temporal functions, such as signal adaptation8 or robust oscilla-
tions9; spatial functions, such as embryonic patterning10–12; or
information processing functions, such as noise reduction13.
Related approaches have derived simple networks via in-silico
evolution in the service of particular fitness goals7,14. Many of
these works have focused on the performance of a specific
function in response to a single input, whereas here we are
interested in deducing minimal networks that underlie a system’s
ability to multiplex, i.e., to respond to multiple inputs either
individually or together.
We focus on multi-stimulus behaviors where the cell response is

antagonistic. This class of experiment involves stimulating a cell
with two inputs, first one-at-a-time, then both simultaneously, and
measuring its output15–24. The inputs could be chemical
attractants or repellants, mechanical stimuli, pH, etc.; the output
could be gene expression, motility, directional migration, etc. A
synergistic response is one in which the response to both signals
is larger than to either signal individually (Fig. 2a). Conversely, an
antagonistic response is one in which the response to both signals
is smaller than to either individually (Fig. 2b). Whereas most cell
responses are synergistic15–20, some are notably antagonistic21–24,
such as the fact several cancer cell types respond more weakly to
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a combination of epidermal growth factor and transforming
growth factor β gradients than to either gradient alone24. We
focus on the antagonistic response because it is counterintuitive
and therefore more difficult, in principle, to understand a priori
how it is encoded within a signaling network.
We consider three ubiquitous mechanisms by which network

components interact: up- or down-regulation, conversion of one
species to another, and reversible binding (Fig. 1). In each case, we
uncover the minimal network or networks that explain one of two
types of antagonism: “value antagonism” (antagonism in the
output’s value, as in gene expression or motility) or “slope
antagonism” (antagonism in the output’s slope, as in directional
migration, where the cell responds to signal changes in space or
time). For each interaction class and antagonism type, a network
structure emerges that is mechanistically interpretable, exhibiting
features such as signal saturation, mutual inhibition, or sequestra-
tion of a molecular species. Moreover, we find commonalities
among interaction classes for a given antagonism type: value
antagonism generally requires mutual inhibition of network

pathways, while slope antagonism generally requires the con-
vergence of multiple pathways on a shared network component.
We discuss generalizations of our method and apply it to our
recently published data on antagonistic response in cancer cell
migration24 and to sugar utilization data in Escherichia coli
bacteria.

RESULTS
We consider three interaction types: regulation, conversion, and
binding (Fig. 3). For a given interaction type, we construct
networks with two input signals, S1 and S2, and one output
species, M. The dependence of the output on the inputs, m(s1, s2)
is given by the steady state of the deterministic rate equations
describing the network. For regulation networks (Fig. 3a), each
species undergoes zeroth-order production and first-order degra-
dation. We model up- and down-regulation by making the
production rate and degradation rate, respectively, depend
linearly on the regulator species (effectively increasing the order
of these reactions to first and second, respectively). For conversion
networks (Fig. 3b), a species catalyzes the reversible conversion of
a second species into a modified form via a second-order reaction.
The total amount of the second species is conserved. For binding
networks (Fig. 3c), two species reversibly combine into a third via a
second-order reaction.
Our choice of linear or bilinear reactions in Fig. 3 is made for

simplicity and analytic tractability. Moreover, we will see that it
facilitates a focus on network topology, which enables mapping to
real biological networks and identification of common features
among the interaction classes. Nevertheless, this choice excludes a
broad range of nonlinear effects that are relevant in regulatory
networks. For example, we will see that mutual inhibition emerges
as a key determinant of value antagonism, and only when mutual
inhibition is coupled with nonlinear interactions does it enable
bistability and therefore mutually exclusive states. Such systems
are beyond the scope of the present work.
To focus on network topology, we set all parameters (ki and a0

in Fig. 3) to 1 when computing the input–output function m(s1, s2).
We consider networks in which the presence of each stimulus
individually results in an increased output: m(s1, 0) >m(0, 0) and
m(0, s2) >m(0, 0). A network then exhibits value antagonism if
there exist value(s) of s1 and s2 for which m(s1, s2) <m(s1, 0) and
m(s1, s2) <m(0, s2). A network exhibits slope antagonism if there
exist value(s) of s1 and s2 for which the slope is positive along each
stimulus direction, ∂m(s1, 0)/∂s1 > 0 and ∂m(0, s2)/∂s2 > 0, but the

Fig. 1 Workflow of method. For each mechanism of (i) regulation,
(ii) molecular conversion, or (iii) reversible binding, we start with the
minimal possible network in terms of both nodes and edges and
evaluate whether the network can explain the cell behavior. If the
minimal network cannot explain the observed behavior we increase
the complexity of the network by increasing the number of nodes or
edges, one at a time, and we evaluate the new network. We repeat
until the minimal successful network is identified.

Fig. 2 Synergy vs. antagonism. a A synergistic response to two inputs is larger than the response to either input alone. b An antagonistic
response to two inputs is smaller than the response to either input alone. Here we focus on antagonism.
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slope along the diagonal, ∂m(s1, s2)/∂s1+ ∂m(s1, s2)/∂s2, is less than
each of these slopes.
For all mechanisms discussed above, the minimal network(s)

can be found exhaustively. All calculations for the network
dynamics are performed in Mathematica (see “Code availability”).

In networks with regulation, slope antagonism is minimally
achieved by repression of a repressor
We first focus on slope antagonism because it will turn out that
slope antagonism can be achieved by simpler networks than value
antagonism. Slope antagonism occurs if the derivative of the
output with respect to each input, in the absence of the other
input, is larger than the derivative when both inputs are present.
The derivative of the output with respect to the input is a
common response measure for sensing and migration, which
require a cell to take temporal or spatial derivatives of a sensory
input to determine direction25–27.
The simplest regulation network with two inputs and one

output is a network in which each input either up- or down-
regulates the output directly (and the output potentially regulates
itself). We find that no network in this class can achieve
antagonism (Supp. Fig. 1). Therefore we add an intermediate
node A, which is regulated by each input S1 and S2, regulates the
output M, and is potentially regulated by the output and itself (Fig.
4a). Accounting for up-, down-, and potentially absent regulation,
this class contains 23 × 33= 216 candidate networks. Of these,
23= 8 candidate networks have the minimum of three regulatory
edges. Accounting for the symmetry between the input signals S1
and S2 gives 6 unique networks (Supp. Fig. 2). Of these, we find
that only one can achieve slope antagonism. This network is
shown in Fig. 4b (top), and its steady-state input–output function
(with all parameters set to one) reads

mðs1; s2Þ ¼ s1 þ s2 þ 1
s1 þ s2 þ 2

(1)

(see “Code availability”). We see in Fig. 4b (top) that each input
represses the intermediate species, which represses the output. As
a result of this double repression, Eq. (1) is an increasing function
of s1 or s2 (Fig. 4b, middle). However, the repression of
intermediate A increases with the increasing levels of inputs
(s1, s2). Owing to this effect, at large levels of inputs, the
intermediate molecule A goes to zero, leaving the output M
independent of the inputs and saturating to a constant maximum
value. This effect is stronger when both inputs are present
compared to when just one is present. Together, this means that
the output saturates as a function of the inputs (Fig. 4b, middle).
Thus, the slope is lowest when both inputs are present, i.e., the
network exhibits slope antagonism (Fig. 4b, bottom). We note that
the absolute values in Fig. 4b (middle and bottom) are an
outcome of setting all parameters to one and that in general, the
comparison between output values is meaningful in our approach
rather than the absolute output values.

In networks with conversion, slope antagonism is minimally
achieved by pathway saturation
The simplest conversion network with two inputs and one output
contains one intermediate species that can be converted between
two states, A and A* (Fig. 4c). Each input catalyzes one or both
conversion directions, and one or both states of the convertible
species can regulate the output. Accounting for these possibilities,
this class contains 26= 64 candidate networks. Of these, 23= 8
candidate networks have the minimum of three regulatory edges.
Accounting for symmetry gives three unique networks (Supp.
Fig. 3). Of these three, we find that only one can achieve slope
antagonism. This network is shown in Fig. 4d (top), and its steady-
state input–output function (with all parameters set to one) reads

mðs1; s2Þ ¼ 2s1 þ 2s2 þ 3
s1 þ s2 þ 2

(2)

Fig. 3 Mathematical modeling. For networks containing one of three possible types of interaction, a regulation, b molecular conversion, or
c reversible binding, we model the dynamics using deterministic rate equations, as shown. For each network we calculate the steady state
m(s1, s2), which determines how the output M changes with the inputs S1, S2. To focus on network topology, we set rates (the ki) and conserved
quantities (like a0) to 1 when assessing whether value antagonism or slope antagonism is achieved.
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(see “Code availability”). We see in Fig. 4d (top) that both inputs
catalyze the conversion of A to A*, and A* activates the output.
Due to conservation of the intermediate species, the presence of
both inputs can bring the conversion reaction closer to its
saturation point (with all molecules in the A* state) than either
input alone. Thus, the output saturates as a function of the inputs,
and the slope is lowest when both inputs are present (Fig. 4d,
middle), i.e., the network exhibits slope antagonism (Fig. 4d,
bottom). Although the network and mechanism are different, the
effect is the same, and indeed the mathematical expression has
the same form, as for the previous network (Fig. 4b).

In networks with binding, slope antagonism is minimally
achieved by complex formation
The simplest binding network with two inputs and one output
contains one binding reaction, in which two intermediate species

A and B bind reversibly to form a third species C (Fig. 4e). Each
input activates one or both of A and B, and at least one of A, B, and
C activates the output. Accounting for these possibilities, this class
contains 27= 128 candidate networks (Supp. Fig. 4). Of these,
22 × 3= 12 candidate networks have the minimum of three
regulatory edges, and we find that only one unique network can
achieve slope antagonism. This network is shown in Fig. 4f (top),
and its steady-state input–output function (with all parameters set
to one) reads

mðs1; s2Þ ¼ 1
2

s1 þ s2 þ 5�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs1 þ s2 þ 1Þ2 þ 4

q� �
(3)

(see “Code availability”). We see in Fig. 4f (top) that both inputs
activate B, which then binds with A to form a complex C, and C
activates the output. High levels of inputs lead to a large amount
of B. Because the level of intermediate C and hence output M is
dependent on both A and B, in this limit A becomes the limiting

Fig. 4 Slope antagonism. Slope antagonism occurs if the derivative of the output with respect to each input, in the absence of the other
input, is larger than the derivative when both inputs are present. The minimal a regulation network class contains b a minimal network that
achieves slope antagonism by the repression of a repressor. The minimal c conversion network class contains d a minimal network that
achieves slope antagonism by pathway saturation. The minimal e binding network class contains f a minimal network that achieves slope
antagonism by complex formation. In all cases, the output saturates as a function of the inputs (surface maps) and thereby shows slope
antagonism (bar graphs). The slopes at I1, I2, and I1,2 are calculated at Si ¼ Si;max.
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factor. Because A is present at a constant level, M thus saturates.
(Fig. 4f, middle). This saturating effect is stronger when both
inputs are present and hence the network exhibits slope
antagonism (Fig. 4f, bottom). Here both the mechanism and
mathematical expression are different than for the previous two
networks (Fig. 4b and d). Nevertheless, all three networks exhibit
saturating input–output functions.

In networks with regulation, value antagonism is minimally
achieved by mutual inhibition
We now turn to value antagonism, focusing first on regulation
networks. Value antagonism occurs if the value of the output is
smaller with both inputs present than with either input alone.

Value antagonism is pertinent to non-directional responses, such
as molecular abundance, fluorescence level, and other scalar cell
properties including speed or size.
We find that no network in the class of regulation networks with

one intermediate node (Fig. 4a) exhibits value antagonism.
Therefore we add a second intermediate node B (Fig. 5a).
Accounting for the additional ways that A and B can regulate
the output and each other, this class contains 23 × 310= 472,392
candidate networks. We systematically analyze five node regula-
tory networks with three edges (2288 possible networks), four
edges (11,440 possible networks), five edges (41,184 possible
networks) and six edges (109,824 possible networks; see “Code
availability”). None of the possible networks with three, four, or

Fig. 5 Value antagonism. Value antagonism occurs if the value of the output with either input present alone is larger than the value when
both inputs are present. The minimal a regulation network class contains b a minimal network that achieves value antagonism by mutual
inhibition. The minimal c conversion network class contains d a minimal network that achieves value antagonism by competing fluxes. The
minimal e binding network class contains f a minimal network that achieves value antagonism by sequestration. In all cases, the output is
lower with both inputs present than with either input alone (surface maps) and thereby shows value antagonism (bar graphs). The values at I1,
I2, and I1,2 are calculated at Si ¼ Si;max.
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five edges show value antagonism. Accounting for symmetry in
networks, our analysis gives five unique networks with six
regulatory edges that satisfy the value antagonism condition
(Supp. Fig. 5). Three of the five networks, a representative one of
which is shown in Fig. 5b (top), exhibit mutual inhibition (the other
two networks are less intuitive to interpret but can be analyzed in
detail in future studies). In mutual inhibition, each input signal
activates an intermediate node and, either directly or via the
intermediate node, represses the other intermediate node. In
Fig. 5b (top), one input activates A while the other activates B, and
A and B repress each other. Its steady-state input–output function
(with all parameters set to one) reads

mðs1; s2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 � 2 s2 � 1ð Þs1 þ s2 þ 1ð Þ2 þ 4

q
(4)

(see “Code availability”). When either input is present alone, it
produces high output via its activated intermediate. However,
when both inputs are present together, the mutual inhibition
results in neither intermediate being strongly produced, and thus
a low output. Consequently, the value of the output is lower with
both inputs present than with either alone (Fig. 5b, middle), i.e.,
the network exhibits value antagonism (Fig. 5b, bottom). We
reiterate that our conclusions are restricted to the choice of linear

interactions and exclude nonlinear effects such as bistability that
often coincide with mutual inhibition such as that in Fig. 5b.

In networks with conversion, value antagonism is minimally
achieved by competing fluxes
We find that no network in the class of conversion networks with
one intermediate convertible species (Fig. 4c) exhibits value
antagonism. Therefore we add a second reversible conversion
reaction. The simplest way to do so (i.e., with the fewest added
nodes) is to allow the intermediate species to be converted
among three states, A, B, and C (Fig. 5c). Allowing each input to
catalyze either conversion in either direction, and ensuring that
the output is regulated by at least one intermediate state, this
class contains 211= 2048 candidate networks. Of these, we find
that only one unique network with the minimum six regulatory
edges can achieve value antagonism (Supp. Fig. 6). This network is
shown in Fig. 5d (top), and its steady-state input–output function
(with all parameters set to one) reads

mðs1; s2Þ ¼ 2s21 þ 2s22 þ s1s2 þ 5s1 þ 5s2 þ 5
s21 þ s22 þ s1s2 þ 3s1 þ 3s2 þ 3

(5)

Fig. 6 Common structural features. a The minimal networks that exhibit slope antagonism (Fig. 4b, d, and f, top) also exhibit value synergy
and have a common structure of two converging pathways. b The minimal networks that exhibit value antagonism (Fig. 5b, d, and f, top) also
exhibit slope antagonism and have a common structure of two mutually inhibitory pathways. c The network that integrates EGF and TGF-β in
cancer cells shows pathway convergence, consistent with migration experiments on cancer cell lines indicating value synergy and slope
antagonism24. Network adapted from ref. 30. d The fucR gene exhibits value antagonism in response to fucose and cAMP38. Our analysis
predicts that mutually inhibitory interactions should exist in the network downstream of fucose and cAMP and upstream of fucR.
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(see “Code availability”). We see in Fig. 5d (top) that one input
catalyzes both conversion reactions in one direction, while the
other input catalyzes both conversion reactions in the other
direction. When either input is present alone, the flux in state
space is driven to one extreme (B or C), and that state activates the
output. However, when both inputs are present together, the
fluxes compete, and the central state A attains appreciable
occupancy. Because only the extreme states activate the output,
the output production goes down. Consequently, the value of the
output is lower with both inputs present than with either alone
(Fig. 5d, middle), i.e., the network exhibits value antagonism
(Fig. 5d, bottom).

In networks with binding, value antagonism is minimally
achieved by sequestration
We find that in the class of binding networks with one binding
reaction (Fig. 4e, also shown in Fig. 5e), no network with the
minimum three edges exhibits value antagonism. Therefore we
consider networks in the class with four edges. Of the 7-choose-
4= 7!/(3!4!)= 35 four-edge networks, we find that only one
unique network can achieve value antagonism (Supp. Fig. 4). This
network is shown in Fig. 5f (top), and its steady-state input–output
function (with all parameters set to one) reads

mðs1; s2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ s22 � s1s2 þ 2s1 þ 2s2 þ 5

q
(6)

(see “Code availability”). We see in Fig. 5f (top) that one input
activates the output through A, and the other input activates the
output through B. If only one input is present, only A or B, but not
both, is produced, and minimal binding occurs. However, if both
inputs are present, both A and B are produced, and strong binding
occurs. Strong binding removes molecules from the A and B states
and therefore reduces the production of M. Thus, the bound C
state sequesters molecules from the A and B states, reducing the
production of M. Sequestration results in the output taking a
smaller value in the presence of both inputs than in the presence
of either alone (Fig. 5f, middle), and the network exhibits value
antagonism (Fig. 5f, bottom).

Common structural features among minimal networks
The minimal networks that exhibit slope antagonism (Fig. 4b, d,
and f, top) share a common structure, despite the different
interaction types from which they are built. Specifically, each
involves both inputs converging on a common pathway (a
regulatory species, a conversion reaction, or a bound complex,
respectively), which then regulates the output. We conjecture that
this convergent pathway structure is a general minimal require-
ment for slope antagonism because two inputs converging onto a
single pathway can lead to saturation of that pathway when both
inputs are present. As a result, we predict that cell responses that
show slope antagonism will be governed by a signaling network
that exhibits some degree of pathway convergence.
Similarly, the minimal networks that exhibit value antagonism

(Fig. 5b, d, and f, top) share a second common structure.
Specifically, each involves two output-activating pathways, each
one at cross-purposes with the other. In the regulation network
(Fig. 5b, top), each pathway down-regulates the other via
intermediate nodes. In the conversion network (Fig. 5d, top),
each pathway provides a competing flux against the other. In the
binding network (Fig. 5f, top), each pathway sequesters molecules
from the other. We conjecture that this mutual inhibition structure
is a general minimal requirement for value antagonism because
two inputs at cross-purposes can lead to a reduced output when
both inputs are present. As a result, we predict that cell responses
that show value antagonism will be governed by a signaling
network that exhibits some degree of mutual inhibition.

Finally, we have found that the minimal networks that exhibit
slope antagonism do so without exhibiting value antagonism;
instead they exhibit value synergy (Fig. 4b, d, and f, middle). In
contrast, the minimal networks that exhibit value antagonism also
exhibit slope antagonism (Fig. 5b, d, and f, middle). Therefore,
taken together, our results suggest that cell responses that show
value synergy but slope antagonism will likely be governed by a
signaling network with convergent pathways (Fig. 6a), whereas
cell responses that show value antagonism and slope antagonism
will likely be governed by a signaling network with mutually
inhibitory pathways (Fig. 6b).

Applications to cancer cell migration and bacterial
metabolism
Finally, we demonstrate our method by applying it to two case
studies. Our applications are presented as proofs of principle.
Comparison of our minimal networks to biological networks is
valid under the assumption that either (i) the minimal network
represents a coarse-graining of the larger biological network, in
which each of our nodes represents multiple signaling compo-
nents; or (ii) the biological network is modular, such that the
behavior of a subnetwork can be understood separately from the
rest of the network28,29.
First, we consider our recently published data on the migratory

response of cancer cell lines to two growth factor gradients24. We
found, for both a breast cancer and pancreatic cancer cell line,
that cells migrated in the direction of an epidermal growth factor
(EGF) gradient and a transforming growth factor β (TGF-β)
gradient when each gradient was presented individually. How-
ever, cells’ directional migration accuracy was weaker when both
gradients were presented together. Because directional migration
requires detecting a derivative, this set of antagonistic responses
corresponds specifically to slope antagonism. Furthermore, we
found that each factor increased the average speed of cells
individually, and that the speed did not decrease when both
factors were presented together. Because speed is a scalar
measure, this set of responses rules out value antagonism. Our
analysis here suggests that the presence of two converging
pathways as shown in Fig. 6a is necessary to explain the
experimental results.
Indeed, using the conversion mechanism for slope antagonism

(Fig. 4d) in our previous work24, we successfully predicted the
experimental response of the cells to different input conditions,
including combinations of graded and uniform signals. In that
work, the mathematical model was introduced ad hoc, and its
success was fortuitous: it was just one possible description among
many, in principle. Here, in contrast, we have shown that this
model corresponds to the class of unique minimal signaling
networks that can explain the experimental data.
Furthermore, turning to the known pathways by which EGF and

TGF-β are processed in cancer cells, we find that the pathway
structure resembles that of Fig. 6a. Specifically, as seen in Fig. 6c
(adapted from ref. 30), the EGF receptor activates PLCγ and PKC,
while the TGF-β receptor activates Ras; both of these pathways
then converge on the Raf-MEK-ERK cascade. While this particular
network has been identified in the context of cell cycle control in
non-small cell lung cancer30, the Raf-MEK-ERK cascade has been
shown to play a central role in cancer cell migration as well31,32.
Although the Raf-MEK-ERK cascade is known to act as a
convergence point for more than just these two pathways (e.g.,
it is also activated by FGF receptors33), other stimuli are absent in
the above experiments, suggesting that these other pathways
would not be activated. We expand on multi-input networks in the
“Discussion”.
Second, we consider known regulatory networks that exhibit

value antagonism. Although such networks are argued to be
possible in principle34,35 and are commonly constructed
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synthetically36,37, natural examples are notably rare. An exception
is the fucR gene network in E. coli bacteria. The fucR gene is
activated individually by the sugar fucose and the small molecule
cyclic adenosine monophosphate (cAMP), but when both inputs
are present together the fucR response decreases38. The fucR
network thus exhibits value antagonism. Our analysis here
suggests that the presence of mutual inhibition as shown in
Fig. 6b is expected to explain this response.
However, apart from the activation by fucose and cAMP, we are

aware of only one regulatory interaction involving fucR: it self-
activates39,40. Thus, we predict the presence of hitherto unknown
mutually inhibitory interactions downstream of fucose and cAMP
and upstream of fucR (Fig. 6d). Most biological networks are
incompletely characterized. Indeed, even in the E. coli gene
regulatory network, the regulation of approximately 65% of
promoters remains unknown41. Therefore, it is plausible that
regulatory interactions upstream of fucR are missing. Our results
provide a specific guide for the nature of these interactions.
These two examples illustrate that our formalism not only

predicts the minimal network that can explain complex cell
behavior, it also facilitates identification of key components from
pathway data and predicts minimal structures to seek when not all
interactions are known.

DISCUSSION
Biochemical networks are inherently complex. This complexity
prevents intuitive understanding and makes it difficult to generate
unique, falsifiable predictions for experiments. Here we have
turned this problem around. We have developed a method to
deduce the minimal biochemical network consistent with experi-
mental observations. We have demonstrated our method on the
counterintuitive observation of antagonism, where the response
of a cell to two signals is weaker than the response to either signal
alone. Our method has revealed six intuitive mechanisms,
corresponding to networks of three interaction types (regulation,
conversion, and binding), to explain two types of antagonism (in
the value and in the slope of the output). For each antagonism
type, we find that the minimal networks are structurally similar.
Specifically, networks exhibiting slope antagonism contain two
convergent pathways. Networks exhibiting value antagonism
contain two mutually inhibitory pathways. Applying our method
to two examples in which slope or value antagonism is observed
experimentally, we conclude that a convergent pathway structure
or mutual inhibition should be present in the underlying network,
respectively. In one case this conclusion is indeed consistent with
the known biochemical data, and in the other it serves as a
prediction for a subnetwork that is sparsely characterized.
The number of signaling molecules or pathway component

molecules are integer-valued variables. We have approximated
their concentrations as real-valued variables when testing for
synergy or antagonism in their input–output functions. Never-
theless, synergy and antagonism in continuous functions have
analogs in the reduced representation of binary logic gates.
Specifically, synergy corresponds to monotonic logic gates such as
OR or AND, where the output with both inputs present is greater
than or equal to, respectively, that with either input present alone.
Antagonism corresponds to XOR, where the output is low with
both inputs present or absent, but high with either input present
alone. Binary logic gates have been demonstrated in cell
networks, including gene regulatory networks34,38,42 or even
single molecules43, and indeed gate formation and concatenation
form the basis of much of synthetic biology36,37,44.
We perform all our analysis at the mean level of the output,

ignoring noise. Noise is ubiquitous in biochemical signaling
networks45,46, raising the question of how noise may affect our
results. The presence of noise would introduce an additional
burden on distinguishing high from low values, or high from low

slopes, in our analysis. However, we suspect that accounting for
noise would simply imply a stricter condition on the parameter
regime associated with value or slope antagonism for a given
topology, rather than changing the deduction of the minimal
topology itself. On the other hand, the consideration of noise
opens the possibility for new objective measures, beyond the
value or the slope of the output variable as used here. For
example, it has been shown that the precision with which a slope
can be estimated decreases with the background concentration if
the slope is held fixed26. Therefore, this precision may exhibit
saturation with two inputs without the network itself inducing
saturation in the mean output. We leave the investigation of
noise-based output measures to future work.
We have developed our method in the context of a cell

responding to two chemical signals. However, cells respond to a
variety of signal types, including chemical signals, temperature,
fluid flow, stiffness, and more. Because each of these environ-
mental cues ultimately triggers an internal signaling network in
the cell, our formalism of deducing minimal networks is equally
applicable to any kind of external signal that induces a cellular
response. Furthermore, our method is generalizable to more than
two signals. Investigating more than two inputs will lead to a
much larger number of possible networks, but it might also give
rise to richer and novel functional responses. Alternatively, it
might identify common motifs that apply regardless of the
number of inputs; for example, pathway convergence ought to
lead to saturation and thus slope antagonism regardless of the
number of pathways. Investigating the effect of multiple cues will
be important for understanding cells’ integrated responses to
complex environments in vivo.
Our work focuses on amplitude information (input and output

levels) and neglects spatial effects. Other studies have investi-
gated the basic networks10–12 or decoders47–50 required to form
spatial patterns in embryonic development, particularly in the fruit
fly Drosophila. In Drosophila, a possible connection to value
antagonism may be the mutual repression often accompanying
stripe formation51–54. As a concrete example, the Krüppel (Kr)
gene is unexpressed in the presence of either the Bicoid (Bcd)
morphogen in the anterior or the Caudal (Cad) morphogen in the
posterior but expressed in the presence of both morphogens in
the middle54 (this is the XNOR version of antagonism’s XOR logic).
Indeed, Bcd and Cad respectively regulate Kr via the intermediate
genes Hunchback (Hb) and Knirps (Kni), among others, and Hb
and Kni repress each other54, consistent with our predicted picture
of value antagonism (Fig. 6b). It is important to point out,
however, that this mutual inhibition may serve alternative
functions in a spatial context, such as sharpening the spatial
boundaries55. Equally important is that these interactions are just
part of the Drosophila gap gene network, which is highly
interconnected54, and therefore it may be misleading to isolate
these interactions from the whole.
As illustrated by the presented examples, our method can be

used to elucidate the coarse structure of well-characterized
networks that is likely responsible for observed cellular behaviors.
On the other hand, for less well-characterized networks, our
method can generate predictions for these basic structures, given
observed cellular behaviors. These predictions can complement
biochemical studies, providing clues for what types of interactions
may be missing. In this way, our work serves as a top-down guide
for more detailed bottom-up network construction.

METHODS
As described in the Results section, all parameters (ki and a0 in
Fig. 3) were set to 1 and the steady-state input–output function
m(s1, s2) was computed according the mathematical rules in Fig. 3.
For all network classes in this study, the minimal network(s) that
satisfy value or slope antagonism (see “Results”) are found
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exhaustively. All calculations of m(s1, s2) are performed in
Mathematica (see “Code availability”).

CODE AVAILABILITY
All calculations for the network dynamics are performed in Mathematica. All code,
including pdfs of the Mathematica files, can be found at https://github.com/
souticksaha21/Inference-of-signaling-mechanism-from-cellular-responses-to-
multiple-cues-Version-2.
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