Table 1 A brief overview of available methodologies to construct network models

From: Decoding the principle of cell-fate determination for its reverse control

Methods

Possible input data types

Type of network interactions

Analysis of regulation dynamics

Default motif database

Implementation

URL

scRNA -seq

scATAC -seq

Signed

Weighted

GENIE332/

GRNBoost233

O

X

X

O

X

X

Python

and R

https://github.com/aertslab

SINCERETIES79

O

X

O

X

X

X

R and

MATLAB

https://github.com/CABSEL/SINCERITIES

PIDC34

O

X

X

X

X

X

Julia

https://github.com/Tchanders/NetworkInference.jl

LEAP35

O

X

O

O

X

X

R

R package LEAP available on CRAN

SCENIC36

O

X

O

O

X

cisTarget

Python

and R

https://scenic.aertslab.org/

SCENIC+37

O

O

O

O

X

cisTarget

Python

and R

https://github.com/aertslab/scenicplus

scMTNI80

O

O

X

O

X

CIS-BP

C++

https://github.com/Roy-lab/scMTNI

Pando38

O

O

O

X

X

CIS-BP

R

https://github.com/quadbio/Pando

CellOracle40

O

O

O

O

X

CIS-BP

Python

https://github.com/morris-lab/CellOracle

FigR81

O

O

O

X

X

CIS-BP

R

https://github.com/buenrostrolab/FigR

Dictys39

O

O

O

O

X

HOCOMOCO

Python

https://github.com/pinellolab/dictys

scTenifoldKnk46

O

X

O

O

X

X

R and

MATLAB

https://github.com/cailab-tamu/scTenifoldKnk

BTR41

O

X

O

X

O

X

R

https://github.com/cheeyeelim/btr

SCNS42

O

X

O

X

O

X

F# and

Javascript

https://github.com/swoodhouse/SCNS-GUI

SCODE44

O

X

O

O

O

X

R and

Julia

https://github.com/hmatsu1226/SCODE

SCOUP45

O

X

O

X

O

X

C++

https://github.com/hmatsu1226/SCOUP