Table 1 A brief overview of available methodologies to construct network models
From: Decoding the principle of cell-fate determination for its reverse control
Methods | Possible input data types | Type of network interactions | Analysis of regulation dynamics | Default motif database | Implementation | URL | ||
---|---|---|---|---|---|---|---|---|
scRNA -seq | scATAC -seq | Signed | Weighted | |||||
GENIE332/ GRNBoost233 | O | X | X | O | X | X | Python and R | |
SINCERETIES79 | O | X | O | X | X | X | R and MATLAB | |
PIDC34 | O | X | X | X | X | X | Julia | |
LEAP35 | O | X | O | O | X | X | R | R package LEAP available on CRAN |
SCENIC36 | O | X | O | O | X | cisTarget | Python and R | |
SCENIC+37 | O | O | O | O | X | cisTarget | Python and R | |
scMTNI80 | O | O | X | O | X | CIS-BP | C++ | |
Pando38 | O | O | O | X | X | CIS-BP | R | |
CellOracle40 | O | O | O | O | X | CIS-BP | Python | |
FigR81 | O | O | O | X | X | CIS-BP | R | |
Dictys39 | O | O | O | O | X | HOCOMOCO | Python | |
scTenifoldKnk46 | O | X | O | O | X | X | R and MATLAB | |
BTR41 | O | X | O | X | O | X | R | |
SCNS42 | O | X | O | X | O | X | F# and Javascript | |
SCODE44 | O | X | O | O | O | X | R and Julia | |
SCOUP45 | O | X | O | X | O | X | C++ |