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Peptides are promising drug development frameworks that have been hindered by intrinsic undesired
properties including hemolytic activity. We aim to get a better insight into the chemical space of
hemolytic peptides using a novel approach based on network science and data mining. Metadata
networks (METNSs) were useful to characterize and find general patterns associated with hemolytic
peptides, whereas Half-Space Proximal Networks (HSPNs), represented the hemolytic peptide space.
The best candidate HSPNs were used to extract various subsets of hemolytic peptides (scaffolds)
considering network centrality and peptide similarity. These scaffolds have been proved to be usefulin
developing robust similarity-based model classifiers. Finally, using an alignment-free approach, we
reported 47 putative hemolytic motifs, which can be used as toxic signatures when developing novel
peptide-based drugs. We provided evidence that the number of hemolytic motifs in a sequence might

be related to the likelihood of being hemolytic.

Peptides are relatively small chains of amino acids (AAs) that can be che-
mically synthesized or purified from living organisms'. Our own bodies
naturally produce peptides that carry out several critical physiological
functions including healing, defense against infections or as chemical
messengers”’. Currently, peptides are becoming highly relevant in medical
applications as they have shown to exhibit not only promising therapeutic
activities such as antimicrobial, antifungal, antiviral, antiparasitic and
anticancer but also due to their interesting pharmacological characteristics
such as high efficacy, target selectivity and good tolerability*°. Peptide drugs
were reported to have sales of more than $70 billion in 2019” and in the last
decades, they have gained more attention as potential therapeutic drugs
than antibodies and small-molecule-based drugs™’.

Diseases such as fibrosis, asthma and cancer are treated using peptide-
based therapies™. For instance, the synthetic peptide Leuprolide has been
successfully used to treat prostate and breast cancers by acting as an agonist

of the gonadotropin-releasing hormone'’. In addition to Leuprolide, the
current 6.0 version of the DrugBank database reports 46 other peptide-
based drugs (length < 100 AAs) that have been approved (accessed on May
30,2024, SM1.5)""; however, these numbers are quite low compared with the
several thousand potential therapeutic peptides that have been identified"’.
This concerning low proportion of peptide drugs on the market is partially
explained by the short half-life, lability during storage, poor oral bioavail-
ability and undesirable toxicity that peptides usually have*. Mainly,
peptide-associated hemolysis is perhaps one of the main drawbacks of these
potential therapeutic drugs’ since the products released after the lysis of red
blood cells (RBCs) can lead to systemic inflammation and widespread tissue
damage".

Currently, there are many datasets available containing information
about hemolytic peptides. The main databases include: i) Hemolytik", with
more than 2000 experimentally validated hemolytic peptides; ii) Database of
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Antimicrobial Activity and Structure of Peptides (DBAASP v3)'*, with more
than 11321 entries showing information on hemolytic and cytotoxic
activities of antimicrobial peptides (AMPs); and iii) StarPepDB' which is a
graph-based database that contains 45120 peptides with annotated activities
retrieved from multiple sources, from which 2004 are hemolytic peptides'’.
In the last decade, some efforts have been made to utilize the information
from these databases and predict the hemolytic activity of peptides using
machine learning (ML) algorithms"****"*'*, However, to our knowledge,
no effort has been made to explore the feature space of hemolytic peptides
using network science to elucidate the defining characteristics that make
certain potential therapeutic peptides hemolytic.

Network science has been previously applied to successfully model
many real-world systems'”. For instance, the “small world-model” intro-
duced by Watts and Strogatz™ has helped to understand the way different
areas of the brain communicate with each other”'; and more recently, during
the Covid-19 pandemic, network science concepts were applied to develop
strategies to lower the spread of infection®”’. Concerning therapeutic
peptides, network science has been recently used to explore the chemical
space and build prediction models for tumor-homing peptides™ and anti-
parasitic peptides”, having promising results.

Hence, following the same approach, this report aims to get insight into
the chemical space of hemolytic peptides from the StarPepDB using network
science and visual (interactive) data mining. Useful information can be
retrieved from this strategy, including identifying/delineating the structural
diversity among hemolytic peptides, most central and atypical peptides
(singletons), the relationship between hemolysis and certain therapeutic
activities, and identifying motifs related to hemolytic activity which can be
useful when designing therapeutic peptide drugs**”’. Moreover, relatively
small subsets of hemolytic peptides can be extracted for further studies.
These subsets (called “scaffolds”) have the advantage of representing the
whole chemical space of hemolytic peptides but just using a fraction of the
nodes of the complex network of hemolytic peptides™.

Here, we describe for the first time the use of Half-Space Proximal
Networks (HSPNs) to represent the chemical space of hemolytic peptides;
such networks have been previously used only to explore the antiparasitic
peptide space”. These networks possess many advantages as they generate
highly connected but sparse networks that contain the minimum spanning
tree as a sub-graph’*”’. Moreover, these networks do not strictly need a
pairwise similarity threshold (f) between peptides for the construction of
informative networks, as is the case of Chemical Space Networks (CSNs)
described in other studies”**”. Nevertheless, despite a cutoff value ¢ is not
mandatory for HSPNG, it might affect the representativeness of the scaffolds.
Hence, we compared HSPNs without a cutoff value (namely ¢ = 0.00) with
networks constructed using the same parameters but generated with their

optimal similarity cutoff value. Other comparative analyses were also con-
ducted to study the HSPN construction and visualization phase involving
the use of distance metrics and centrality measures, respectively, while for
extracting a representative subset of hemolytic peptides from the HSPNs,
different centrality measures and global and local alignments were also
evaluated.

Although, previous studies based on network science have employed
the Euclidean distance as the default similarity measure metric; it is sug-
gested that the use of different (dis)similarity measures allows the codifi-
cation of orthogonal information. Hence it should not be assumed that only
one measure is the best suited for calculating the similarity between objects,
especially in high dimensional space’ . For this reason, we evaluated five
different two-way (dis)similarity measures for constructing such HSPNs: 1)
Angular Separation, 2) Bhattacharyya, 3) Chebyshev, 4) Euclidean and 5)
Soergel. Finally, by using community information from these networks and
an alignment-free method for motif discovery, we reported new putative
motifs that hallmark hemolytic peptides along with their further enrichment
on external datasets to validate their significance.

Results

The overall workflow consists of four stages: (i) Metadata network visual
mining, (ii) HSPNs generation and analysis, (iii) scaffold extraction and
exploration, (iv) motif discovery and enrichment (Fig. 1). The first step
involves the generation of metadata networks (METNs) and exploration
of critical features related to hemolytic peptides. The second step consists
in building HSPNs that represent the chemical space of hemolytic pep-
tides retrieved from StarPepDB. Then the best HSPN candidates were
selected based on global network descriptors for further analysis. In the
third step, representative subsets (scaffolds) from the best HSPN candi-
dates, built up with the optimal ¢ value, and from their respective networks
with cutoff t=0.00 were extracted by using sequence alignment and
centrality information from each peptide in the graph. Finally, the last step
consists in proposing new putative hemolytic motifs by using an
alignment-free approach and by comparing them with reported hemolytic
motifs using benchmark datasets (enrichment analysis) to further select
the most representative ones. All the steps of this section were performed
using the StarPep toolbox, aided with in-house python scripts and the
SeqKit toolkit™.

Metadata networks (METNSs)

METNSs are graphs that use metadata information (e.g., origin, target,
activity) from the hemolytic peptides reported in the StarPepDB (refer to the
“Materials and Methods” section for a more detailed description).
Betweenness Centrality’ was employed as a measure the relevance of the
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Fig. 1 | Workflow overview of the experimental procedure. Figure created with Inkscape’".
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Fig. 2 | Metadata networks (METNs) of Database and Function. A Database
METN describes the source databases from which hemolytic peptide from the
StarPepDB has been retrieved. Aquamarine nodes represent the databases whereas
blue-green nodes represent hemolytic peptides. The six most central databases were
numbered according to their betweenness centrality rank: 1. SATPdb, 2. Hemolytik,
3. DBAASP, 4. UniProtKB, 5. DRAMP_General, 6. CyBase. B Function METN
describes the functions associated with hemolytic peptides. Yellow nodes represent
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the functions reported for these peptides (red nodes are also metadata nodes but are
related to hemolytic activity: “toxic”, “toxic to mammals” and “hemolytic”). Blue-
green nodes represent hemolytic peptides. The nine most central peptide functions
were numbered according to their betweenness centrality rank: 1. hemolytic, 2.
antimicrobial, 3. toxic, 4. anti-Gram negative, 5. toxic to mammals, 6. anti-Gram
positive, 7. antibacterial, 8. antifungal, 9. anticancer. These networks were visualized

in Gephi”’ using Force Atlas 2 layout” and edited with Inkscape’.

nodes in the graphs. Four types of METNs were constructed: Database,
Function, Origin and Target.

Database METN. Most hemolytic peptides of the StarPepDB come from
the SATPdb"”, Hemolytik'/, DBAASP", UniProt”, DRAMP® and
CyBase” databases that are the six most central nodes in Fig. 2A. Most
peptides are shared by SATPdb, Hemolytik, DBAASP and DRAMP,
whereas CyBase contains more unique sets of peptides. It might be
because CyBase mainly focuses on collecting information about specific
types of proteins, cyclic proteins which have shown to possess important
advantages such as higher stability and binding affinity compared with
linear peptides™.

In addition, SATPdb has the highest betweenness centrality and
node degree value since it is connected to 1817 hemolytic peptides. On
the contrary, the databases having the least number of hemolytic pep-
tides are NeuroPep”, Defensins*’ and Bagel 2*' which have node degrees
of 4, 2, and 1, respectively. Overall, the Database METN can be helpful
when searching for the most important databases regarding peptide
hemolytic activity as well as the most unique and most specialized
databases.

Function METN. When designing therapeutic drugs, understanding
other activities associated with hemolytic peptides can be a good starting
point for inferring possible mechanisms of action or chemical char-
acteristics of peptides that might be related not only to certain therapeutic
activity but also with hemolysis. A Function METN can be a fast and easy
approach to tackle this question by using the StarPep toolbox. Figure 2B
shows a Function METN of the 2004 hemolytic peptides reported in the
StarPepDB. Evidently, the most central activities are “hemolytic”, “toxic”
and “toxic to mammals” since the peptides of study are hemolytic and the
metadata nodes are hierarchically related (colored red in Fig. 2B with
centrality ranks: 1, 3, and 5, respectively). However, most of these peptides
are also related to antimicrobial activity and hierarchically related meta-
data: antibacterial, anti-Gram positive, anti-Gram negative, antifungal,

etc. In fact, these metadata comprise the nine most central nodes in the
Function METN.

Since the main target of AMPs is the bacterial cell membrane which is
disrupted by several reported modes of action®, it might be feasible that
similar modes of action can also target and disrupt human cells, specifically
RBCs. Many studies have proposed that due to the positive charge of many
AMPs, they can selectively disrupt negatively charged membranes of bac-
teria while not affecting the neutral membranes of mammals***. However, it
has been demonstrated that several AMPs (some with high antimicrobial
activity) can also disrupt mammalian cells as well, causing hemolysis in
RBCs***. In fact, Function METN shows that 94.46% of the 2004 peptides
that comprise the hemolytic space, have both antimicrobial and hemolytic
activity.

Origin METN. This type of METN helps to easily identify the origin of
hemolytic peptides, whether they are synthetic or isolated from living
organisms. Figure 3A shows the complete Origin METN in the dashed
box. The central part of the METN was zoomed in and depicted in the
center of Fig. 3A. Looking at the complete Origin METN three distinctive
regions can be observed, an outer ring, a middle ring and a central net-
work. The outer ring represents peptides isolated from living organisms
but have not been chemically synthesized. For instance, the peptide
StarPep_06954"° whose metadata origin node corresponds to only Cae-
norhabditis elegans. The middle ring represents peptides with nodes of
degree zero.

On the other hand, the central network shows peptides that have only
synthetic origin (the most central blue-green nodes) and peptides isolated
from living organisms that have also been chemically synthesized (nodes
connected to the central violet metadata node and connected to radial
violet nodes). Radial violet nodes connected in a chain-like way represent
hierarchical taxonomic ranks that are related to species from which a
particular peptide was obtained. For instance, the subsequent metadata
nodes are connected in the following manner Urochordata->Ascidiacea->
Pleurogona->Stolidobranchia->Pyuridae->Halocynthia->Halocynthia
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Fig. 3 | Metadata networks (METNs) based on Origin and Target. A Origin
METN describes the origin of the hemolytic peptides (e.g., synthetic, isolated from
Halocynthia aurantium, etc.). The dashed box represents the whole Origin METN
whereas the bigger figure represents the central part of the Origin METN that was
zoomed in for a better visualization. Blue-green nodes represent peptides while
violet nodes represent the origin of the peptides. B Target METN describes the target
of the hemolytic peptides (e.g., RBCs, Gram-positive bacteria, etc.) which is useful

Staphylococcus
aureus

Without target label

information when exploring associations between therapeutic and hemolytic
activities. The dashed box represents the whole Target METN whereas the bigger
figure represents the central part of the Target METN that was zoomed in for a better
visualization. Blue-green nodes represent peptides whereas green nodes represent
the reported target of the peptides. These networks were visualized in Gephi” using
Force Atlas 2 layout®” and edited with Inkscape™.

aurantium. The H. aurantium metadata node is then connected to 6
peptide nodes isolated from that species.

Over half of the hemolytic peptides (1060) are of synthetic construct,
whereas the rest are isolated from various organisms. Of the top 20 most
central origin metadata nodes (synthetic construct not included), half of
them belong to the class Amphibia. This is expected because most of the
hemolytic peptides in the StarPepDB are antimicrobial (Fig. 2B) and a
significant part of them have been isolated from frogs and toads since it has
been known that they can produce broad-spectrum AMPs in their granular

glands in the skin as a defense strategy”’ ™.

Target METN. An outer ring and a central network can be observed in this
METN (Fig. 3B). The outer ring of peptides seen in the dashed box are
peptides that do not have a metadata node related to a target. This metadata
network works in the same fashion as the Origin METN, where chain-like
nodes represent the hierarchical taxonomic ranks, but instead of representing
the origin of the peptide, it displays the target of the peptide i.e., the species/cell
type in which a certain peptide activity has been evaluated. Evidently, the
main target is human erythrocytes (colored red in Fig. 3B) since we are
exploring the hemolytic peptide space. Other central targets include Escher-
ichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis
and Candida albicans. They are among the six most central metadata nodes in
this METN. It shows that several of the hemolytic peptides have been eval-
uated as potential AMPs in important human pathogens such as P. aerugi-
nosa which has become a real concern in hospital-acquired infections due to
drug-resistance appearance™.

GraphML files of METNSs and the descriptor information from each
node are available at SM2.

Half-space proximal networks (HSPNs)

The HSPN is a special type of network that was employed to represent
the chemical space of hemolytic peptides based on sequence-based
molecular descriptors (refer to the “Materials and Methods” section).

The properties of the HSPNs were studied based on their global net-
work parameters consisting of the number of edges, modularity,
density, average clustering coefficient (ACC), number of communities
and singletons, among others. Such statistics can provide a good
picture of the topology of the graphs and help selecting networks with
the cutoff ¢ that better projects the chemical space of hemolytic
peptides.

Our results are consistent with another study that showed that there
was little change in the global network parameters when networks are
created within the cutoff  range 0.00-0.45. This is because of the highly low
number of edges that are removed within this range. In fact, on average, the
number of removed edges at t = 0.50 correspond to the 1.9% of the initial
edges when ¢t = 0.00 (See SM3.6).

Moreover, it can be observed that networks generated by different
metric measures address differently the similarity between peptides (Fig. 4).
Based on their behavior, the networks used in this study can be roughly
grouped into three classes: Class I: Angular Separation; Class II: Bhatta-
charyya, Euclidean and Soergel; and Class III: Chebyshev. The influence of
the metric measure in the global parameters of the networks is provided
below. All global network parameters calculated for each metric are pro-
vided in SM3.

Modularity. This is a measure of network connectivity which indirectly
represents how well-defined communities are in the graph and is asso-
ciated with the number of communities. Graphs generated with Angular
Separation (AS) initially possess higher modularity values compared to
the other metrics; however, the modularity keeps relatively low at higher ¢
values (0.550 at ¢ =0.95) whereas the other four metrics increase their
modularity to values near 1. On the other hand, Chebyshev (Ch) net-
works show the lowest modularity at low cutoff values, but then it
increases to high values comparable with Soergel (So), Euclidean (Eu)
and Bhattacharyya (Bh). So- and Eu-derived networks have quite similar
behavior in the whole range of t values, whereas Bh networks initially
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Fig. 4 | Global network parameters of HSPNs created with different metrics and
similarity cutoff values t. The properties of the HSPN's were analyzed based on their
global network parameters, including A modularity, B number of communities,

C density, D singletons (atypical sequences or outliers), E average clustering coef-
ficient (ACC), and F diameter. These parameters provide a comprehensive overview
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of the graph topology, aiding in the selection of networks with the optimal cutoff t
for accurately representing the chemical space of hemolytic peptides, as well as
facilitating comparisons between different metric measures. ACC average clustering
coefficient. This figure was created with ggplot2 R package’ and edited with
Inkscape’.

behave like Eu and So networks, but then diverge at ¢ = 0.70 (Fig. 4A). An
adequate selection of modularity is important since highly sparse net-
works with an elevated number of communities would not provide useful
information as several resulting communities would be just artifacts.

Density. It shows the ratio between the edges present in the network and
the maximum number of possible edges. Similarity networks have been
shown to have an inversely proportional relationship between similarity
threshold (¢) and density”**". The same pattern is observed for all metrics,
but with some notable variations. Here, we can identify three behaviors
according to the three classes of metrics. AS networks have the highest
density in the entire range of ¢, whereas Class II metrics (i.e., Bh, Eu, and
So) have the lowest density until t = 0.70. On the other hand, Ch networks
not only have an intermediate initial density but also show the biggest
variation of density along the whole range of ¢ (Fig. 4C). In order to select
adequate networks, we should choose graphs that are neither too dense
nor too sparce since the former would hamper retrieval of useful infor-
mation whereas the latter would lose information™. Density values below
0.20 are desired as they allow us to properly understand the network while
preserving high modularity. Particularly, HSPNs are suited because they
have the intrinsic characteristic of showing low densities. In fact, the
highest density value in this study corresponds to 0.020 (0.00_AS
network).

Average clustering coefficient (ACC). This measures the connectivity
of the network, and it has been previously studied on molecular simi-
larity networks varying the similarity cutoff . One study showed that
the ACC maximum peak correlates with the best clustering outcome
and is a good indicator for finding the appropriate value of t”'. In our
study, three behaviors related to the metric class can be observed again.
AS networks have the highest ACCs in the whole range of ¢ with their
local maximum at ¢ = 0.95. On the other hand, Ch networks start with
very low ACCs and get increased at ¢ = 0.65 reaching their maximum
peak at t=0.90. Finally, Class II metrics have the lowest ACCs in the

entire range of ¢ with their maximum peaks at 0.70 (Eu), 0.80 (So) and
0.85 (Bh) (Fig. 4E).

Communities and singletons. The number of communities determined
with the Louvain method, the number of singletons D0 (nodes of degree
zero) and the number of singletons GC (nodes disconnected from the
giant component) were calculated to select the networks with the most
reasonable values of these parameters. When ¢ = 0.00, HSPNs have the
minimum spanning tree as a subgraph, this implies that at this ¢ value all
nodes are connected. In other words, no singletons DO nor singletons GC
are found. Regarding the number of communities at ¢ =0.00, all metric
networks showed similar values (on average 8 communities). At higher ¢
values, the number of communities and singletons DO increase drama-
tically for all the metric networks, except for AS networks (Fig. 4B-D).
This is expected as more edges are removed, more nodes are isolated, and
now singletons are counted within the communities. Hence, an appro-
priate ¢ value should be selected that comprises an equilibrium between
singletons (atypical peptides) and communities that reflect a real che-
mical relationship.

Other global network parameters were also calculated to char-
acterize the networks, such as the diameter of the graph (Fig. 4F), the
average path length and average degree (See SM3.6). To find the best
t value for each metric network, we should look for a compromise
between the best parameter value for each descriptor i.e., networks with
low density, with neither too many clusters (<20) nor too many sin-
gletons (~15-30), retaining high ACC and high modularity. The global
descriptors of the selected networks with their best cutoff value ¢ and
their respective networks constructed with ¢ = 0.00 (10 networks in total)
are shown in Table 1.

Finally, we calculated the probability of k (also known as the degree
distribution) for each of the selected networks (Fig. 5). Overall, all networks
show a right-skewed bell-shaped distribution with high probability of
intermediate node degrees. Evidently, plots on the left (#=00) show a
probability of zero for singletons (k = 0) whereas plots on the right (best
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Table 1 | Global network parameters of HSPNs with their best t values and their corresponding network at t = 0.00
No Metrics Cutoff Edges Modularity Density ACC Clusters Singletons Diameter
® (no DO) (D0)
0.00 26471 0.490 0.020  0.183 8 0 5
Angular Separation
0.90 25065 0.499 0.018  0.205 15 17 7
0.00 10555 0.456 0.008 0.025 8 0 6
Bhattacharyya
0.75 9364 0.472 0.007 0.028 17 23 8
5 000 22431 0313 0017 0021 7 0 3
Chebyshev
0.65 16809 0.376 0.012  0.032 12 29 7
0.00 10498 0.466 0.008  0.026 9 0 7
Euclidean
0.70 8482 0.494 0.006 0.030 20 21 10
0.00 12077 0.441 0.009 0.024 8 0 6
Soergel
10 070 9521 049 0007 0028 17 27 1
Metrics
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Fig. 5 | Probability of k (degree distribution) of the HSPNs with cutoff t = 0.00
(left) and with the best cutoff f (right) presented in Table 1. The average degree is
presented next to the name of the corresponding network. A 0.00_AS: 32.15.

B 0.90_AS: 30.44. C0.00_Bh: 12.82. D 0.75_Bh: 11.37. E 0.00_Ch: 27.24. F 0.65_Ch:
20.31. G 0.00_Eu: 12.75. H 0.70_Eu: 10.30. I 0.00_So: 14.67. J 0.70_So: 11.56. This
figure was created with ggplot2 R package’ and edited with Inkscape’.

value ) tend to have a higher probability when k = 0. In addition, plots with
the best t value have smaller maximum degrees (as well as the average
degree) compared with same-metric networks at #=0.00. Thus, when
comparing networks with the same metric but varying the cutoff value
(t=0.00 vs. best cutoff £), it seems both retain a similar degree distribution.
However, when comparing networks with different metrics we can get

marked differences. AS networks tend to have a wider distribution range
and a higher average degree whereas Ch networks show intermediate values,
and networks constructed with Class II metrics show a similar distribution
shape among them and have the lowest distribution ranges and average
degrees of all metrics. Figure 6 shows the graphical representation of the 10
selected HSPNs.
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Fig. 6 | Graphical representation of HSPNs with ¢ = 0.00 (left) and networks with  Fruchterman-Reingold”. Networks were created with StarPep toolbox™, visualized
the best ¢ value for each metric (right). Node colors represent communities of in Gephi”’ and edited with Inkscape’.
peptides, and the size of the node represents the HB centrality value. Layout:

HSPNs scaffolds cutoff value s when constructing the scaffolds, several pairwise similarity
A total of 240 scaffolds were extracted from the 10 HSPNs (SM4.1). To  comparisons between scaffolds were carried out using the Jaccard similarity
better understand the effect of the centrality measure, type of alignmentand ~ coefficient (JSC)*’.
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Fig. 7 | Pairwise Jaccard similarity coefficient (JSC) between scaffolds from
networks constructed with different metrics when ¢ = 0.00. A, B HB centrality.
C, D HC centrality. A, C Global alignment. B, D Local alignment. The cutoff s
represents the similarity cutoff applied to extract the scaffolds whereas the percen-
tage in the y-axis represents the percentage of the JSC, which is the number of

common peptides between a pair of scaffolds with respect to the union of the
peptides of these scaffolds. The higher the percentage, the higher the number of
common peptides between pairs of scaffolds. This figure was created with ggplot2 R
package” and edited with Inkscape.

Metric comparison

We compared the type of metric measure used to build the parental net-
works of the scaffolds. For this comparison, scaffolds (t = 0.00) built with the
same combinations of centrality, alignment, and cutoff s but with different
metrics were evaluated (SM 4.3.1). Each pair of scaffolds is represented as a
point in Fig. 7.

In all plots of Fig. 7 when s> 0.60, all scaffold pairs constructed with
Class II metrics (ie., Bh, Eu, So) show the highest similarity percentage
compared with the pairs from other combination of metrics. Moreover,
scaffold pairs in which one of them is extracted by the AS metric show the
smallest similarity percentage at almost any cutoff value s. On the contrary,
scaffolds selected with Ch metric have an intermediate similarity percentage
when compared with scaffolds extracted by other metrics.

These results agree with the previous result which showed that the
five metrics tend to have three types of behavior (three classes of metrics).
The density (Fig. 4C) and the degree distribution (Fig. 5) of the networks
with different metrics are the global descriptors most correlated with the
results from the percentage similarity among scaffolds. Thus, it is possible
to reduce the number of highly similar scaffolds by using only those
HSPNs with the metrics that mostly differ in the global network para-
meters. In this case, Class IT metrics: Bh, Eu, and So are the metric mea-
sures with the most similar behavior since they produce similar networks
and scaffolds. Therefore, it was decided to conduct the following analyses
using only one of the metrics of Class II: Euclidean. This metric was
chosen since it is the default metric used in other studies***, and it would
be advantageous to compare its performance with the other metrics not
previously used in this type of study. Overall, this step allowed us to reduce
the redundancy in the scaffold representativity from 240 to 144 scaffolds
(SM 4.2).

Cutoff comparison. A cutoff value ¢ is not mandatory when constructing
HSPNs since at ¢ = 0.00, these networks already have low densities under
0.20. However, the topology, characterized by global network features,
tends to vary when varying t as was demonstrated in the “Half-Space
Proximal Networks” section. Thus, it is important to evaluate the effect of
selecting a cutoff value (or not) when constructing representative scaf-
folds of the chemical space. The JSC was calculated between pairs of

scaffolds extracted by using the same metric but at different cutoff values
(t=0.00 vs. best ¢ value), see SM4.3.2 (Fig. 8).

A marked difference was observed when these scaffold pairs were
constructed with different types of centralities. Scaffolds constructed with
HB centrality (Fig. 8A, B) tend to have more unique peptides at low s values
and the number of common peptides between scaffold pairs tend to increase
when s increases. A similar pattern was observed in Fig. 7. However, when
the same scaffolds are constructed replacing HB centrality with HC cen-
trality all scaffold pairs tend to share more than 89.50% of peptides
regardless of the value of s (SM4.3.2.2) (Fig. 8 C, D). Furthermore, the same
patterns are preserved when any alignment type is applied. Hence, when
generating scaffolds using HC centrality, it is unnecessary to first find the
best ¢ value for the parental networks since similar scaffolds will be obtained
using networks with ¢ = 0.00.

Alignment comparison. A clear pattern can be observed when
extracting scaffold either using global or local alignment (Figs. 7, 8). In
general, local alignment tends to discriminate more strongly at low s
values than global alignments. Hence, scaffold pairs extracted with local
alignment at such low s values have a lower similarity percentage than the
analog scaffold pairs extracted using global alignment.

In addition, when comparing the similarity percentage of scaffold pairs
extracted using the same parameters but differing the alignment type, the
same behavior was observed independently of the metric, type of centrality
or the t value used, see Fig. 9. Scaffold pairs differing only in their alignment
type tend to have a low percentage of similarity at low s values, which might
indicate that these methods capture the similarity between peptides differ-
ently. However, when analyzing the proportion of unique peptides between
these scaffold pairs, scaffolds extracted using local alignment are practically a
subset of scaffolds extracted when using global alignment. In fact, the
average number of unique sequences in local scaffolds when comparing
them with their global counterparts at any cutoff s is 16.19 (SM4.3.3). An
example is provided for the scaffold pairs: 0.00_AS_HB_G_0.40 and
0.00_AS_HB_L_0.40 (Fig. 10).

Centrality comparison. Pairwise comparisons of the scaffolds con-
structed using the same parameter but changing the centrality measure
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Fig. 8 | Pairwise Jaccard similarity coefficient (JSC) between scaffolds from networks constructed with the same metric but differing their # values (¢ = 0.00 vs. best ¢
value). A, B HB centrality. C, D HC centrality. A, C Global alignment. B, D Local alignment. This figure was created with ggplot2 R package” and edited with Inkscape’.
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Fig. 9 | Pairwise Jaccard similarity coefficient (JSC) between scaffolds from
networks constructed with the same metric but differing alignment type. A, B HB
centrality. C, D HC centrality. A, C networks with ¢ = 0.00. B, D networks with best

cutoff £: AS (0.90), Ch (0.65), Eu (0.70). This figure was created with ggplot2 R
package” and edited with Inkscape™.

show a trend like the pairwise comparisons presented before (SM4.3.4).
This implies that the type of centrality used to extract the scaffold will
affect the sequences that are removed/retained, especially at low s values.

On the other hand, when comparing centrality measures, JSC between
scaffold pairs extracted from networks with best ¢ value tend to be higher
than JSC from scaffold pairs from networks with ¢t =0.00. This pattern is
clearer at low s values (Fig. 11).

All scaffolds presented in this section can be used in many applications.
For instance, they can be used as training datasets for both ML-based and
Multi-Query Similarity Searching (MQSS) prediction models of hemolytic
peptides. In fact, a recent study demonstrated that MQSS models based on
the scaffolds identified in this study outperformed state-of the art ML-based
model classifiers™. The advantage of using these scaffolds is that they store
information of central and important peptides as well as outliers or atypical
hemolytic peptides while avoiding overrepresentation of certain peptide
classes (sampling bias). Each scaffold bears a unique type and amount of
information of the hemolytic peptide space and one scaffold can be more

suitable than another depending on the scaffold’s use. Scaffolds extracted at
low cutoff s values tend to cover fewer peptides of the original space, whereas
higher s values capture more information of the space, but peptide over-
representation might be present. Figure 12 depicts an example of the scaffold
coverage when varying the cutoff s.

Hemolytic motif discovery and enrichment

Motif discovery. Peptides from each community were used as input
sequences to uncover new hemolytic motifs within the communities’
diversity by means of STREME, an alignment-free method™'. Table 2
shows a sample of the 42 new motifs discovered using clusters of HSPNs
(t=0.00) created with different metrics. 12 motifs were found from 6
clusters of the network 0.00_AS, 14 motifs were discovered from 4
clusters of the network 0.00_Ch and 16 motifs from 5 clusters were
discovered using the network 0.00_Eu. The three metrics commonly
detected only four motifs: GLP, MFTKL, ERBADE and VCTRN. It is
worth mentioning that several other motifs were similar but not identical
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such as: GLP/GLPV or VGGTCN/GGTCN. In addition, 15 motifs were
discovered without considering the community diversity by using all
1647 hemolytic peptides as input sequences. All these motifs were
grouped as HSPNs motifs. After removing duplicated motifs, 50 HSPNs
motifs were discovered (SM5.1.2).

Two previous reports on ML models for predicting hemolytic activity
of peptides have also reported hemolytic motifs, namely: HemoPI° and
HAPPENN'". HemoPI reported 21 motifs extracted using MERCI software
that were enriched in positive sequences from HemoPI-1 and HemoPI-2
datasets, whereas HAPPENN motifs resulted by looking for the 20-top
motifs found exclusively in the positive dataset of HAPPENN. No HSPN-

Global vs Local

Fig. 10 | Size comparison of scaffold pairs generated from the network 0.00_AS.
Pink area (G) represents the peptide sequences unique to the scaffold
0.00_AS_HB_G_0.40, green area (L) represents the sequences unique to the scaffold
0.00_AS_HB_L_0.40. The intersection of pink and green represents the number of
common peptides between these two scaffolds. The area-proportional Venn dia-
gram was created using DeepVenn’® and edited with Inkscape’.

derived motifs were found among the reported ones. To generate a unique
list of non-redundant hemolytic motifs, HSPNs motifs were combined with
the previously reported ones resulting in 91 putative motifs. Then similar
motifs were combined into consensus motifs resulting in 57 non-redundant
motifs (SM5.1.2 and SM5.1.3).

Motif enrichment. To identify and validate the most representative
hemolytic motifs and remove some artifacts from the 57 potential
hemolytic motifs, we conducted enrichment analyses using SEA method
on three different datasets: HemoPI-1, StarPepDB and Big-Hemo
(SM5.2). Motifs not reported as significant in at least one dataset were
removed. The resulting 47 hemolytic motifs sorted by the average
enrichment ratio of all datasets are presented below (newly discovered
motifs by HSPNs are shown in red): MFTLK, ALKAIS, GTCN,
WKSFJK, VCGETC, WKK, AKKAL, GETCV, CYCR, LKKL, CVCV,
ISWIK, REC, LHTA[KL], FLHSAK, CSW, LWKT, FLGTI, GAVLKYV,
PGC, KKILG, KITK, KHI, LGKL, KWK, VNWK, K[GT]AGK, VCT,
ALW, SWP, HIF, LLKK, [VI]LDTJ, CRR, KLL, JGKL, FKK, GAIA,
VLK, GLP, PKIF, GKEV, GTIS, AAAK, GCS, IAS, MAL (Table 3).

These motifs might be involved in the mechanisms of action of
hemolytic peptides as well as antimicrobial activity, but further studies are
needed to corroborate this assumption. Another possible use of these motifs
can be as a toxic signature, where proteins containing some of these motifs
could be attributed to a relatively high hemolytic activity in comparison with
proteins with few or nonhemolytic motifs. Table 4 shows an example of
three pairs of peptides whose hemolytic activity is related to the number of
hemolytic motifs present in their sequences.

We decided to further explore this hypothesis by comparing the rela-
tion between the number of hemolytic motifs in a peptide and its likelihood
of being hemolytic (SM5.3). To obtain the predicted hemolytic activity of a
peptide, we used the consensus of two different model classifiers that were
identified in a previous report to have a robust performance after a multiple
comparison™. This experiment was carried out using three datasets: anti-
bacterial, antiviral and FDA-approved. All three datasets have peptides with
lengths up to 100 AAs.

For the antibacterial and antiviral datasets, a general pattern can be
identified. Most peptides without any of the reported hemolytic motifs tend
to be non-hemolytic. When peptides have one or more motifs, peptides are
mostly hemolytic. The hemolytic/non-hemolytic ratio gets more pro-
nounced with the increase of the number of motifs. Interestingly, peptides
with a high number of motifs were predicted to be exclusively hemolytic
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Fig. 11 | Pairwise Jaccard similarity coefficient (JSC) between scaffolds from
networks constructed with the same metric but differing the centrality type.
A, B Global alignment. C, D Local alignment. A, C networks with t=0.00.

B, D networks with best cutoff #: AS (0.90), Ch (0.65), Eu (0.70). This figure was
created with ggplot2 R package” and edited with Inkscape’.
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peptides. Nevertheless, it is worth noting that only a few peptides actually
contained a high number of these motifs (Fig. 13).

The activity of the peptide might be another aspect to consider when
conducting this type of analysis. For example, antibacterial peptides without
any reported motif tend to be non-hemolytic, but a high number of peptides
without motifs are also predicted to be hemolytic. On the other hand,
antiviral peptides without any motifs are almost exclusively non-hemolytic.
Therefore, the absence of reported hemolytic motifs does not imply that the
peptides are not hemolytic. The same is true when peptides contain one or
more hemolytic motifs; it does not necessarily mean they are hemolytic, but
the higher the number of motifs, the higher the possibility that peptides are
hemolytic (Fig. 13).

When the same analysis was conducted in 49 FDA-approved peptides,
a major difference was observed. Only three peptides were predicted as
hemolytic*, Glatiramer acetate (Th1113/ seq_32) contained one hemolytic
motif, whereas two other peptides did not report any hemolytic motif,
namely Lucinactant (Th1146/ seq_41) and Gramicidin D (Th1024/ seq_8).
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Fig. 12 | Barplot showing the coverage of the scaffolds 0.00_AS_HB_L at different
s values. Scaffold representations are shown below their cutoff s values. This figure
was created with ggplot2 R package’ and edited with Inkscape™.

More importantly, the trend was opposed to what was found in the anti-
bacterial and antiviral datasets. The ratio between hemolytic/non-hemolytic
peptides containing more than one motif was inverted, i.e., hemolytic
peptides with one or two motifs were scarce compared to non-hemolytic
peptides containing the same number of motifs. Another important detail is
that in these sequences, in spite of having the same maximum length (100
AAs) as the antibacterial or antiviral datasets, peptides from the FDA-
approved dataset displayed at maximum two reported motifs (Fig. 13C, F).
This result agrees with the fact that approved peptides have to be safe and to
avoid being hemolytic/toxic, unless the application mode does not directly
interact with the bloodstream as is the case of Gramicidin D, a commercial
antibacterial drug that is only applied on the skin because of its high
hemolytic activity®.

Discussion

Positive endpoints are commonly evaluated in peptides to better understand
a specific therapeutic activity; however, getting insight into negative end-
points such as hemolysis should be equally important. In this study, the
exploration of the chemical space of hemolytic peptides through a synergic
combination of network science and interactive data mining resulted in an
easy and feasible way to get more insight into the features that characterize
this type of peptides. METNs helped elucidate that almost all hemolytic
peptides (94.46%) have also antimicrobial activity. The fact that most central
nodes in the Target METN are related to human pathogens further supports
the claim that antimicrobial activity and hemolytic activity might be related.
Furthermore, The Database METN shows that hemolytic peptides can be
identified in datasets specialized in hemolysis (Hemolytik) but can be also
found in datasets specialized in therapeutic peptides (SATPdb) or in anti-
microbial peptide databases (DBAASP). A high degree of hemolytic peptide
redundancy has been also found between these databases. Regarding the
origin of hemolytic peptides, over half of them come from synthetic con-
structs; however, many other peptides were isolated from living organisms,
being the class Amphibia one of the most important ones. METNs were also
useful in identifying missing metadata information regarding the origin and
target of many hemolytic peptides.

Table 2 | Motifs discovered by STREME using the community information from the HSPNs created using Angular Separation,

Chebyshev, and Euclidean metrics with t =0.00

o e v cwer O Vol don S E
1 WKSFLK 0 223 81 3 363 0023 0.120
2 SLCEZ 1 140 61 0 436 0005  0.048
L3 ’:ggt;gir(ieg GLPV 3 61 45 0 738 0017  0.140
4 CGETCV 3 61 56 0 91.8 0017  0.140
L5 WKKI 5 255 88 10 345 0025 0.120
N GILDTJ 1 304 72 0 237 0010 0.073
e MFTLK 2 246 57 0 232 0034 0310
hs Ch‘ig—‘f)hev CSW 4 59 44 0 746 0024  0.190

VCGETC 4 59 49 0 83.1  0.004  0.032

LCYCRR 6 150 41 0 273 0031 0.150

LKGAGK 0 339 74 0 218 0004  0.047
12 . VCTRN 1 101 76 0 752 0004  0.038
Bl ST WKsEK s 220 45 0 205 0015 0092

LHTAKK 5 220 54 0 245 0002 0011
. CYCRR 7 189 43 0 228 0032 0.160

aSites represents the percentage of positive peptides matching the motif.

“Sites represents the percentage of positive peptides matching the motif.

npj Systems Biology and Applications| (2024)10:115

11


www.nature.com/npjsba

https://doi.org/10.1038/s41540-024-00429-2

Article

Table 3 | Hemolytic motifs that have all their E-value ranks less than 37 sorted by their average enrichment ratio of the three

datasets: HemoPI-1, StarPepDB and Big-Hemo

HemoPI-1 StarPepDB Big-Hemo
No. Motif ER? E-value Rank’ ER? E-value Rank ER? E-value Rank’
1 ALKAIS 3.66 1.92E-09 36 40.10 3.53E-21 35 3.32 8.48E-12 9
2 WKSFJK 19.20 2.80E-40 2 5.06 3.55E-158 1 4.94 6.01E-22 3
3 AKKAL 16.10 7.19E-29 11 3.33 6.66E-101 4 1.55 6.30E-04 24
4 LKKL 12.60 1.44E-31 4 3.62 2.65E-130 2 1.68 1.37E-08 12
5 ISWIK 7.86 5.69E-19 19 6.19 3.45E-59 15 2.51 4.45E-05 22
6 LHTA[KL] 3.94 1.90E-13 25 8.25 4.73E-27 29 3.74 1.76E-11 10
7 FLHSAK 7.04 1.82E-11 29 5.69 2.10E-45 21 1.95 1.14E-03 26
8 LWKT 7.25 4.60E-31 6 2.35 5.59E-55 18 3.50 2.59E-10 11
9 FLGTI 6.94 1.41E-14 22 2.15 1.18E-21 33 3.88 5.70E-24 2
10 KKILG 6.71 1.61E-26 13 3.29 3.56E-77 11 1.85 1.36E-07 13
11 KITK 6.99 5.48E-26 15 2.48 1.22E-57 16 2.05 1.68E-01 36
12 LGKL 5.47 1.14E-29 7 2.17 5.13E-87 8 3.34 5.48E-12 8
13 KWK 4.84 2.02E-31 5 3.97 1.22E-55 17 1.98 1.79E-07 15
14 KGAGK 5.13 2.35E-27 12 2.66 2.25E-43 22 2.81 2.43E-14 4
15 SWP 4.56 5.42E-26 14 3.76 7.67E-35 26 1.98 5.44E-03 28
16 LLKK 431 1.88E-34 3 3.82 1.35E-126 3 1.60 1.18E-01 35
17 [VIILDTJ 3.02 4.39E-10 33 2.15 1.05E-40 23 4.27 1.58E-24 1
18 JGKL 4.07 1.38E-29 8 2.32 8.01E-90 7 1.71 2.12E-07 17
19 VLK 3.00 8.34E-17 20 2.06 9.64E-64 14 1.88 1.52E-07 14
20 PKIF 2.89 1.05E-14 21 2.19 3.22E-46 20 1.47 4.79E-03 27
*ER enrichment ratio.
"SEA returns motifs ranked according to their associated E-value.
For complete information about all motifs see SM5.2. Motifs highlighted in red are newly reported hemolytic motifs.
Table 4 | An example of the use of hemolytic motifs as toxic signatures
No. Hemolytic
No. Sequence Length Consensus Motifs Ref
Motifs Activity
RGLRRLGRKIAHGVKKYGPTVK Not active at 100
1 28 0 [62]
RIKRKA uM
P KWKSFLKTFKSAAKTVLHTALK )% 4 WKSFJK, LHTA[KL], 50% hemolysis at [63]
AISS KWK, ALKAIS 16 uyM
1% hemolysis at
3 MASRAARLAARLARLALRAL 20 0 [64]
92.95 uM
LLKK, VLK, AAAK, 50% hemolysis at
4 ALWMTLLKKVLKAAAKAALN 20 4 [65]
ALW 5+1uM
Not active up to
5 KRLFRRWQWRMKKY 14 0 [66]
100 uM
> 50% hemolytic
6 WCYCRRRFCVCVGR 14 3 RFC, CYCR, CRR [67]
at 44.3 uM

The table shows pairs of hemolytic peptides with similar lengths showing different hemolytic activities based on the number of hemolytic motifs. Motifs in red are newly reported hemolytic motifs.

npj Systems Biology and Applications| (2024)10:115

12


www.nature.com/npjsba

https://doi.org/10.1038/s41540-024-00429-2

Article

Antibacterial

Antiviral

FDA-approved

® ° B 1.004
= S -
°

A100-][ L i

0.754 0.754

0.50 - -

0.50 1

0.254 0.254

Predicted Hemolytic Activity
Predicted Hemolytic Activity

$$$¢++C' 0 |

e

3

a
°

Predicted Hemolytic Activity
) o
& 3

oo

°
o ———
0.004 ° 0.004 8 0.004
0 1 2 3 4 5 6 71 8 9 10 o 1 2 3 4 5 6 71 8 0 1 2
Number of Hemolytic Motifs Number of Hemolytic Motifs Number of Hemolytic Motifs
D E F
3000 : oy
Predicted Activity
l. Hemolytic
40004 J
80 Non-hemolytic

(%] 1%} 1%}
S 3000 8 2000 g
= - = =
& & &
o o o 204
ey ey oy
s} o o
= = =
8 2000 2 8
5 E 10001 E
z ‘ z Z 104

1000 - [ I

N | !E__ O_II-H__i_ o) N —
0 1 2 3 4 5 6 71 8 9 10 o 1 2 3 4 5 6 71 8 0 1 2

Number of Hemolytic Motifs

Fig. 13 | Relation between the number of hemolytic motifs and the hemolytic
activity predicted using two model classifiers: “SVM + Motif (HemoPI-1)
based™ and “MQSSM-11"**. This analysis was performed in three datasets: Anti-
bacterial, Antiviral and FDA-approved. A, B and C represent boxplots displaying
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Number of Hemolytic Motifs

the number of hemolytic motifs in a peptide and the predicted hemolytic activity
obtained using the model classifiers. D, E and F show the absolute frequency of
hemolytic and non-hemolytic peptides for each group (number of hemolytic
motifs). This figure was created with ggplot2 R package” and edited with Inkscape”.

On the other hand, HSPNs resulted in a valuable representation of the
chemical space of hemolytic peptides. The use of five different (dis)similarity
measures to construct different HSPNs gave rise to in the identification of
three different classes of measures that interpreted differently peptide
relatedness (Class I: AS; Class II: Bh, Eu, So; Class III: Ch). In fact, measures
within class II tend to produce similar behaviors in the network topology
when varying the cutoff ¢, similar degree distributions in the best HSPNs,
and they also produce similar subsets in the scaffold extraction process.
Scaffolds extracted from the ten different HSPNs were further compared
using the JSC. We found that the use of a cutoff ¢ in the construction of
HSPN is not mandatory, especially when using HC centrality to score node
relevance within the networks. The use of either global or local alignment, on
the other hand, might result in different scaffold representations, especially
using local alignment at low cutoff s values. It is worth noting that scaffolds
extracted using the same parameters but only varying the alignment type
resulted in global scaffolds with more peptides than local scaffolds, and most
peptides from the local scaffold were already included in the global scaffold.
Additionally, a general trend was found regarding the similarity between
scaffolds while varying the cutoff s: the higher the cutoff value, the higher the
similarity between scaffolds. This exploration process was essential because
it helps understand the effect of varying each parameter in the scaffold
extraction process which can then be used to generate only scaffolds with
unique representations. Scaffolds are indeed useful in many applications
including the study of a simplified representation of the hemolytic peptide
space that retains as much information as possible. Nevertheless, one of the
most useful applications is the use of scaffolds as queries to construct MQSS
model classifiers™.

The use of HSPNs using a diverse set of (dis)similarity measures
also contributed to the discovery of new motifs highly associated with
hemolytic activity using an alignment-free approach. Form the 47

motifs identified more than half of them (53.19%) were not previously
reported. More importantly, we provided a statistical approach to assess
the enrichment ratio of motifs in three different datasets containing
positive (hemolytic) and negative (non-hemolytic) peptides, which was
not available to the previously reported motifs. Finally, we found a
positive association between the number of hemolytic motifs that can be
found in a sequence and the likelihood of a peptide being hemolytic.
Although the probability of finding a peptide with more than one motif
is reduced as the number of motifs increases, it is shown here that
hemolytic peptides are the dominant peptides that contain at least one
hemolytic motif compared to their non-hemolytic counterparts. This
trend, however, was not observed in the FDA-approved dataset because
it contains peptides that have been selected and approved for having a
low toxic profile.

Overall, this method provides a new alternative to the discovery,
study and repurposing of promising peptides with therapeutic activity and
low toxicity. However, as a new method, there are still some processes that
need further explored and enhanced. The topology of the peptide space
highly depends on the number of peptides, type of network and the (dis)
similarity metric used. Here we only explored HSPNs along with five
metrics, but it would be interesting to test using different networks like
CSNs and see if the information retrieved from these networks resembles
each other or not. Moreover, the addition of newly reported hemolytic
peptides will positively enrich the peptide space. It would be also
recommended to use in the future networks that consider the potency of
hemolysis to discover properties and motifs that might be exclusive to
highly hemolytic peptides which are more concerning when designing
therapeutic peptides. However, this approach can be hampered by the lack
of a clear consensus about the criteria to classify peptides with high vs low
hemolytic activity.
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Finally, the comparison between the number of reported hemolytic
motifs and the likelihood of a peptide being hemolytic is limited by the fact
that predictions of peptide hemolytic activity were employed instead of
experimentally validated results. It was conducted this way as most peptides
in the datasets used in this experiment did not report experimental data
about hemolytic activity, but we wanted to study the overall patterns in the
entire antibacterial, antiviral and FDA-approved datasets. However, this
was still a good approximation as the model classifiers used here were
reported to be reliable™.

Materials and methods

Datasets

The datasets used in this study to construct METNs, HSPNs, generate
hemolytic motifs, and subsequently conduct motif enrichment analyses are
described in Supplementary Material (file SM1). The usage of each dataset in
this report is detailed below.

o StarPepDB.1Itis a graph database embedded in the StarPep toolbox that
consists of 45,120 peptides with annotated activities retrieved from 40
bioactive databases and other sources'®. A sub-dataset consisting of
2004 hemolytic peptides was extracted from this database to generate
HSPNs, METNs and discover new hemolytic motifs. The complete
StarPepDB was also used in the motif enrichment process to help find
the most representative hemolytic motifs. Furthermore, two additional
datasets were obtained from the StarPepDB, namely antibacterial
(13,399 sequences) and antiviral (4345 sequences). In these two
datasets, peptides with non-standard A As and with length greater than
100 AAs were removed. Antibacterial and antiviral datasets were used
to study the relation between the number of hemolytic peptides and the
likelihood of being hemolytic (SM1.1).

* HemoPI-1. It encompasses 552 experimentally validated highly
hemolytic peptides (positive) and 552 random peptides extracted from
Swiss-Prot (negative)®. This dataset was only used in motif enrichment
analysis (SM1.2).

* Big-Hemo.Itis a non-redundant combination of several datasets that
contain either hemolytic or highly hemolytic peptides as positive
samples and non-hemolytic or low hemolytic peptides as negative
samples. The datasets used to generate the Big-Hemo dataset are
HemoPI-2 Main and Validation®, HemoPI-3 Main and Validation®,
HAPPENN', HLPred-Fuse Layer 2 Training and Independent
datasets* and HemoNet’. To construct Big-Hemo, only positive
samples labeled as “highly hemolytic” were retrieved from these
datasets to handle the problem of lack of agreement and
standardization at considering when a peptide is hemolytic or not,
and the way of measuring this property, respectively"*’. Although
HAPPENN dataset contains positive samples not labeled as highly
hemolytic, its positive samples were also included in Big-Hemo to
gain more diversity and a better representation of hemolytic peptides.
Thus, this dataset was addressed to evaluate whether our novel motifs
are enriched in highly hemolytic peptides, which are more
concerning when designing therapeutic peptides. In addition to
redundancy removal, peptides containing X’ several times in a
sequence and Nphe or Nleu in their sequences were also discarded.
The resulting Big-Hemo dataset contains 2196 highly hemolytic
peptides. Like HemoPI-1 dataset, Big-Hemo was also used for motif
enrichment analysis (SM1.3).

* FDA-approved. This dataset contains 47 FDA-approved peptide-based
drugs retrieved from ref. 63. Peptides with non-standard AAs and with
length greater than 100 AAs were removed. Two FDA-approved drugs
consisted of two peptide sequences each (Th1027: seq_9 and seq_10;
and Th1041: seq_13 and seq_14); hence 49 peptides were retrieved
(SM1.4). This dataset was used to study the relation between the
number of hemolytic motifs and the likelihood of being hemolytic in
approved peptides. The FDA-approved dataset was used instead of the
information reported on DrugBank 6.0" because many peptide
sequences were not available on there.

Network generation and analysis
Metadata Networks (METNs). A Metadata Network (METNs) is an
unweighted pseudo-bipartite graph defined as F = (V, E), where E(F) is
the set of edges of the graph and V/(F) is the set of nodes or vertices which
comprises two classes: hemolytic peptides and metadata information
(e.g., origin and function of peptides). In these networks, peptide nodes
are adjacent to their corresponding metadata nodes. For instance, if a
peptide is hemolytic, an edge will connect this peptide node to the
hemolytic metadata node. However, METNs are not fully bipartite
graphs since in the last ones the nodes belonging to the same class cannot
be adjacent®, whereas METNs can set edges within the metadata class as
long as one node is hierarchically related to another. For instance, for the
“Function” metadata, “Toxic to mammals” is hierarchically connected to
“Hemolytic”, thus an edge connects these two metadata nodes.

StarPep toolbox allows the easy construction of METNs, which helps to
get insight into the related data associated with the hemolytic peptides. A
Database METN, for instance, shows the databases where each hemolytic
peptide has been reported by connecting each peptide node to its corre-
sponding database nodes. This information is useful to get an overview of
the most populated databases with hemolytic peptides, to analyze peptide
redundancy in different databases and to detect what peptides are uniquely
reported dataset, etc. Hence, we created four METNs based on different
metadata information: database, function, origin, and target. The peptide
class of V(F) was the set of 2004 hemolytic peptides from StarPepDB.

Half-Space Proximal Networks (HSPNs). HSPNG, are weighted graphs
defined as G = (V, E) where V(G) represents the set of nodes (hemolytic
peptides) and E(G) represents the set of edges. The nodes are char-
acterized by vectors whose components are values of sequence-based
molecular descriptors (MDs), whereas the edges link nodes in a pairwise
manner following the subsequent steps:
¢ A (dis)similarity measure is calculated for each pair of nodes using the
vectors of peptide features. Then these values are normalized (min-
max normalization). This forms a symmetric similarity matrix M of
size n X n where n represents the number of hemolytic peptides and
M;; represents the similarity score between the nodes V;(G) and
V(G), being 1 the highest similarity value and 0 the lowest. Then a rule
called Half-Space Proximal (HSP) test” is applied to construct the
HSPN, which is a strongly connected but sparse network™, that
preserves the number of nodes while containing a relatively low
number of edges compared to the counterparts, CSNs™.

* Finally, a threshold or cutoff value t can be applied to the weighted
edges to further reduce the density of the graph by removing edges
whose similarity values are lower than ¢. This helps to study the
topology of the resulting graphs and subsequently find the best
representative network of the chemical space occupied by hemolytic
peptides. It is worth mentioning that for the construction of HSPNs,
using a ¢ value is not mandatory.

HSPNs were constructed as follows. From the 45120 peptides found in
StarPepDB'®, 2004 peptides with known hemolytic activity were retrieved
using the query option of StarPep toolbox™. Redundancy in the peptide
sequences was removed using Smith-Waterman local alignment® and
BLOSUM-62 substitution matrix® considering at least 98% sequence
identity, resulting in 1647 peptides (SM1.1.3). Then MDs were calculated for
each peptide sequence and an unsupervised feature selection was per-
formed, removing near constant peptide features using Shannon entropy
(threshold 10%), whereas redundant features were removed using Spear-
man correlation coefficient (threshold 0.8%). Then all the remaining peptide
features were selected for generating the networks. See reference’ for a
detailed description of the peptide feature extraction method.

Regarding the (dis)similarity measures, HSPNs were constructed using
Angular Separation (AS), Bhattacharyya (Bh), Chebyshev (Ch), Euclidean
(Eu), and Soergel (So) measures. Their formulae and properties are stated in
Table 5. We tested several measures since previous studies demonstrated
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Table 5 | (Dis)Similarity Measures used to Construct HSPNs

Measure Formula® Range® Average Range
Angular Separation/ dyy =1 —Cosyy [0,2]
[1-Cosine (Ochiai)] (AS) where,
S
Cosyy = iy = —F—— '2 0 -
VT
Bhattacharyya (Bh) 2 [0, 00) d =% [0, o0)
dhy = /S (v - 7)) Z
Chebyshev/ ey e s = [0, c0) d =% [0, 00)
Lagrange (Ch) XY {‘ d y,\} e
Euclidean (Eu) 2\%
A = (Sftby =)’
— - d 1
Soergel (So) dyy =1 2;1:1 mla)z{x},/;‘/,} [0,1] d=% [0,1]

“The variables x; and y; are the values of the molecular descriptor j of the peptides m and n, respectively. Peptides m and n are represented by the feature vectors X and Y. The h value is the number of

peptide’s features. The p value in the Euclidean metric is 2, whereas for Chebyshev p — oo.
*“Range” refers to “range” and not to “rank” and is defined as Range = max{x;} - min {x;}.

that different distance measures can codify orthogonal information; thus,
not necessarily the Euclidean distance might be the best suited for a specific
application™".

In addition, to explore the behavior of HSPNs when varying the
value of ¢, 11 different cutoffs were applied for each metric: 0.00 and from
0.50 to 0.95 in steps of 0.50, resulting in a total of 55 HSPNs available at
SM3 (i.e., 11 networks for each metric). We applied these cutoffs, since a
previous study showed that when constructing HSPNs, most of the
global parameters barely changed when the similarity cutoff ¢ ranges
between 0.00 and 0.45”.

Finally, since several combinations will be generated in the following
steps, we will use the following notation when referring to a specific network:
“cutoff (#)_metric”. For instance, for a network generated with a t = 0.00 using
the metric Angular Separation, its corresponding name will be: 0.00_AS.

Network visualization. For METNs, Betweenness Centrality™* was cal-
culated and the size of metadata nodes was proportionally projected
according to the corresponding centrality value. Database, Function,
Origin and Target METNs were visualized by coloring their metadata
nodes: aquamarine, yellow, light violet and green, respectively. Metadata
nodes related to hemolytic activity (ie., toxic, toxic to mammals,
hemolytic, Red Blood Cells) were colored red. On the other hand, all
peptide nodes had the same size and were colored blue green for all the
METNs. Database and Function METNs displayed their most central
metadata nodes numbered. Finally, Force Atlas 2 layout algorithm was
always used to visualize METNs".

For HSPNs, the nodes were clustered using the Louvain method®, and
the Hub-Bridge centrality (HB) measure was calculated for each node.
Finally, to better visualize the networks, we colored the nodes according to
the cluster they belong to, and the node size was set to be proportional to its
HB centrality value using the Bezier interpolator. Finally, we applied the
Fruchterman Reingold layout algorithm®. The resulting METNs and HSPNs
were exported as GraphML files and further visualized with Gephi 0.9.7”.

Selection of the best HSPNs. Using Gephi 0.9.7, the following global
network parameters were retrieved for each HSPN: number of edges,
modularity, density, average clustering coefficient (ACC), number of
clusters/communities, singletons GC (nodes disconnected from the giant
component), singletons DO (nodes of degree zero), diameter, average
path length, average degree and the probability of k (degree distribution).
These features were used to study the behavior of the networks and select
the best representations for each (dis)similarity measure (five networks in
total). The best networks with their optimal cutoff value t were then used
for scaffold extraction.

HSPNs scaffold extraction and analysis
This step aims to retrieve representative subsets of the hemolytic peptide
space. The five best networks and the five networks with ¢ = 0.00 (one for
each similarity measure) were used to build the scaffolds. The following
steps were applied for each of these networks:

The selected HSPNs were generated again, but now only the cor-
responding cutoff value ¢ for each network was applied. We also cal-
culated the Harmonic centrality (HC) for each node. After that, we
applied the scaffold extraction method (integrated into the StarPep
toolbox), which retrieves the most central and unique hemolytic pep-
tides by ranking each peptide in decreasing order regarding their cen-
trality and then redundant sequences were removed as follows: if a pair
of sequences have a percentage identity higher than a certain cutoff value
s, the least central peptide of the pair will be removed (please, do not
confuse cutoff value ¢ with cutoff value s. The former was used to con-
struct networks whereas the latter was used for scaffold extraction).
Finally, the resulting scaffolds of peptide sequences were exported as
fasta files. This method generally assures extraction of the most repre-
sentative peptides from all the centrality ranges but removes sequence
redundancy.

Following the same notation for HSPNs, for naming the scaffolds,
we inherit the name of the parent network followed by the centrality
measure, alignment type, and cutoff s value: “cutoff t_metric_cen-
trality_alignment_cutoff s”. For instance, a scaffold extracted from the
network 0.00_AS using harmonic centrality, local alignment, and a
cutoff s = 0.80 would be named as: 0.00_AS_HC_L_0.80.

In this experiment, we varied the type of centrality measure, the
sequence alignment type and the cutoff value of percentage identity s. We
used Hub-Bridge (HB) or Harmonic centrality (HC), and Needleman-
Waunsch global alignment (G)”' or Smith-Waterman local alignment (L)*
were used for sequence comparison, both with BLOSUM-62 substitution
matrix. Moreover, we tested various cutoff values s ranging from 0.40 to 0.90
in steps of 0.10. As a result, for each of the ten selected networks, we
generated 24 different scaffolds using the combinations described above. In
total 240 scaffolds were obtained (see SM4).

Scaffold comparison by metric. For all the scaffolds generated from
networks where the cutoff ¢t = 0.00, the JSC was calculated between
scaffold pairs created with the same parameters but differing in their
metric. For instance, 0.00_AS_HB_G_0.40 vs. 0.00_Bh_HB_G_0.40.JSC
is defined as the number of elements of the intersection of sets A and B
divided by the number of elements of the union of those sets™. We
calculated this distance to assess the similarity between scaffold pairs
generated with different parameters.
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Scaffold comparison by cutoff ¢, type of alignment and centrality
measure. Using scaffolds constructed from orthogonal metrics, we
compared the effect of varying the t value when generating networks. For
this task we calculated the JSC between scaffold pairs created with the
same parameters but differing in their ¢ value. For instance,
0.00_AS_HB_G_0.40 vs. 0.90_AS_HB_G_0.40. Similarly, the same
approach was followed to evaluate the effect of the type of alignment and
centrality measure in the representativity of the scaffolds.

All pairwise scaffold comparisons were conducted using SeqKit toolkit
to extract peptide IDs and then the relation between sets was obtained using
https://bioinformatics.psb.ugent.be/webtools/Venn/.

Motif discovery and enrichment

Motif discovery. Motif discovery was performed using the alignment-
free method STREME (short for Sensitive, Thorough, Rapid Enrichment
Motif Elicitation), which finds ungapped motifs enriched in input
sequences compared to control sequences providing a statistical sig-
nificance for each motif*. To generate a diversity of potential new
hemolytic motifs, we employed the community information of HSPNs
with cutoff t = 0.00 generated with the metrics: Angular Separation,
Chebyshev and Euclidean. The following steps were performed for each
of the networks:

+ Using the StarPep toolbox we extracted the sequences of peptides
belonging to each cluster (community) and saved them as fasta files.
Then these files were used as input sequences for motif discovery. For
control sequences, we let the method use shuffled input sequences.
Since our peptides contain non-standard AAs, we provided a
customized alphabet (SM5.1.1). Motifs ranging from three to six
letters, at least 20% present in the input sequences and with a p value
lower than 0.05 were retrieved.

* Similarly, the same steps were applied to retrieve motifs from the file
containing 1647 non-redundant hemolytic peptides from StarPepDB.
Then, motifs resulting from this process were combined with
hemolytic motifs reported in the literature™®, and duplicated motifs
were removed (see SM5.1.2).

Motif enrichment. Motif Enrichment was conducted using SEA (Simple
Enrichment Analysis) from the MEME suite (https://meme-suite.org/
meme/tools/sea)’”. Hemolytic motifs identified in this study and motifs
reported in the literature™® were employed to assess whether they are
enriched in benchmark databases. These motifs were evaluated in
HemoPI-1, StarPepDB and Big-Hemo datasets. Sequences labeled as non-
hemolytic were used as control sequences in enrichment analysis on
HemoPI-1; sequences not having “hemolytic” metadata were used as
control when the StarPepDB was used. For enrichment analysis in the
Big-Hemo dataset, input sequences were shuffled by the SEA algorithm
and used as control sequences. In addition, sequences with length less
than three AAs were discarded (SM5.1.4). Finally, those motifs that are
statistically significant in all three datasets were kept.

To study the relation between the number of hemolytic motifs in a
peptide and the likelihood of being hemolytic, we conducted a motif count
using FIMO (Find Individual Motif Occurrences)”” on the datasets: ABPs,
AVPs and FDA-approved. Those datasets were filtered to only contain
peptides with up to 100 AAs. The number of hemolytic motifs contained in
each peptide of a dataset was obtained using this approach. Additionally,
using the consensus between two different robust model classifiers™,
MQSSM-I1"* and “SVM + Motif (HemoPI-1) based” (HemoPI-1)*, we
predicted the peptide hemolytic activity. A threshold of 0.50 was used to
consider a peptide as hemolytic.

Data availability

The starPep toolbox software and the respective user manual, are freely
available online at http://mobiosd-hub.com/starpep. All underlying code
and installation files are accessible through GitHub (GitHub - Grupo-
Medicina-Molecular-y-Traslacional/StarPep: StarPep toolbox: a software

for studying the antimicrobial chemical space with newtork science tools
and similarity searching models) under the Apache 2.0 license.
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