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Spatial interactions modulate tumor
growth and immune infiltration
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Direct observation of tumor-immune interactions is unlikely in tumors with currently available
technology, but computational simulations based on clinical data can provide insight to test
hypotheses. It is hypothesized that patterns of collagenevolve as amechanismof immuneescape, but
the exact nature of immune-collagen interactions is poorly understood. Spatial data quantifying
collagen fiber alignment in squamous cell carcinomas indicates that late-stage disease is associated
with highly aligned fibers. Our computational modeling framework discriminates between two
hypotheses: immune cell migration that moves (1) parallel or (2) perpendicular to collagen fiber
orientation. The modeling recapitulates immune-extracellular matrix interactions where collagen
patterns provide immune protection, leading to an emergent inverse relationship between disease
stage and immune coverage. Here, computational modeling provides important mechanistic insights
bydefining a kernel cell-cell interaction function that considers a spectrumof local (cell-scale) to global
(tumor-scale) spatial interactions. Short-range interaction kernels provide a mechanism for tumor cell
survival under conditions with strong Allee effects, while asymmetric tumor-immune interaction
kernels lead to poor immune response. Thus, the length scale of tumor-immune interaction kernels
drives tumor growth and infiltration.

Lenia (from the Latin lenis meaning “smooth”) is a cellular automata fra-
mework that allows for continuous space and time. Cellular automata are
often used to study the “rules” that can recapitulate the collective behavior of
interacting biological “agents” (e.g., individual cells or organisms). The
development of Lenia was spurred by the search for rule sets that lead to
features that are important in artificial life: self-organization (morphogen-
esis), self-regulation (homeostasis), self-direction (motility), self-replication
(reproduction), growth (development), response to stimuli or environ-
mental factors, evolvability, adaptation1,2, and other emergent complexity3.

Many of these same features (e.g., cellular replication, growth,motility,
evolvability, and adaptation) are important in the development of complex,
multi-factorial diseases such as cancer. Thus, the purpose of thismanuscript
is to extend the Lenia framework as a tumor model, including immune
predation and escape.We show how this is a natural extension, as Lenia has
the capability to recapitulate (1) classical analytical models of cancer
(ordinary differential equations; ODEs), (2) common stochastic agent-
based models of cancer, (3) standard models of multiple cell types com-
peting onDarwinian fitness landscapes (evolutionary game theory), and (4)

generalized cell migration (e.g., chemotaxis models) common in cancer
mathematical modeling literature.

Theoverlap inmodelingartificial lifeandcancerevolution
In its original formulation, Lenia defines an on-lattice domain where each
grid location can take a continuous density value. Methods of interactive
evolutionary computation were used to find rule sets that lead to defined,
artificial “creatures” (see Fig. 1A for examples), which are capable of stable
linear or angular motion or other life-like characteristics (Fig. 1B)1,2. These
continuous creatures are reminiscent of the binary gliders, oscillators, and
still-life creatures in Conway’s Game of Life4.

Grid locations change according to an update rule describing the
growth dynamics (Fig. 1C) paired with an interaction kernel function
(Fig. 1D). For example, tumor cell density in a two-dimensional domain
(Fig. 1E, F) is convolved with an interaction kernel (Fig. 1G) to calculate the
“density potential” (Fig. 1H).Density potential is the surrounding density of
grid locations weighted by the kernel interaction function of radial distance
from the focal cell. This defines a spatially explicit growth field (Fig. 1I)1,
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whereby the update rule is enacted iteratively at each time step, t (Fig. 1E).
Thus, a natural interpretation of Lenia as a cancer model is a spatial density
map of cancer cells. Cancer cells grow according to a local density-
dependent growth rate (e.g., logistic growth) which is a function of local cell
density. Lenia can compare the effect of local (short-range kernels) versus
global (long-range kernels) on growth dynamics.

There exists a broad overlap in both methods and desired emergent
behavior between models of artificial life and models of cancer growth
(Fig. 1B). To adequately mimic biological realism in cancer, mathematical
frameworks have implemented methods classified as (1) non-spatial or
spatial, (2) deterministic or stochastic, and (3) single ormultiple populations
(cell types). Lenia allows for flexible model design to incorporate the full
range of these classifications. Extensions to Lenia include Glaberish (a
variant that leads to pattern formations that are stable in space or time5),
Flow-Lenia (imposes mass conservation over time)6, Asymptotic-Lenia
(asymptotic, smoothupdating)7, Particle Lenia (off-lattice)8, or a generalized
reaction-diffusion implementation9.

Lenia is classified as a system of integro-differential equations (IDE)10.
IDEshave beenused to study cancer progression11 and treatment12 or tofind

approximations of stochastic ABMs in cancer13, but these formulations
often focusonhow interactionkernels alter the time scale of dynamicsor the
system stability. Lenia provides a unifying framework for direct comparison
ofwell-mixed assumptions commonly used inODEmodels (corresponding
toLenia’s long-range kernel) and local-scale competition commonly used in
stochastic agent-based modeling (corresponding to Lenia’s short-range
kernels). Next, we review common tumor-immune modeling frameworks
of birth, death, and migration, and describe how Lenia may contribute to
this body of literature.

Spatio-temporal models of cancer growth dynamics
Tumor growth can be expressed as amathematical law using anODE14 and
used as a predictive tool in assessing the course of tumor progression15,16.
ODE frameworks use the well-mixed assumption, where each cell is equally
likely to interact with each other cells in the tumor. Thus, there is a broad
interest in understanding the effect of local, cell-scale contact inhibition on
the emergent tumor-scale global growth dynamics17–19. The choice of spatial
structure within a model (e.g., non-spatial, deme models, mesoscale, or
boundary-driven growth) affects the evolutionary dynamics within
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Fig. 1 | Lenia as a cancer model. A Lenia artificial life virtual creatures, as found by
evolutionary computation in ref. 1. B List of characteristics possible to produce in
Lenia by varying the growth dynamics function (C) or the interaction kernel
function (D). E adding a fraction of the growth field at each time step to the cell
density, forms the Lenia update rule, as seen in eqn. (1). FAn example snapshot of a

simulation shows the density of cells at each lattice location where the interaction
kernel (G) specifies the nature of interaction of cells depending on their distance
from each other. H The density potential, interpreted as a weighted average of
interactions at each lattice location, is calculated as the convolution ofA(x) andK(x).
I the growth field is calculated by applying a growth map to the density potential.
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heterogeneous tumors20–23, tumor growth dynamics24,25, and the emergent
pattern formation26–28.

Spatio-temporalmodels of tumor-immune interactions
Tumors do not grow in isolation but must develop immune escape
mechanisms to avoid extinction. Tumor-immune interactions have been
described using logistic tumor growth with immune recruitment and
exhaustion29 or as a predator-prey relationship30. Immune predation has
likewise been modeled using IDEs31–34, mesoscopic models35, or stochastic
agent-based methods36.

Importantly, classical predator-prey models may be insufficient to
describe tumor-immune dynamics without also considering mechanisms
for avoiding oscillatory behavior common to these models37. Thus, in the
models developedherein,we includeAllee effects, whereby tumors require a
cooperative benefit of close aggregation when at lower densities38,39. Allee
effects lead to a decreased growth benefit when tumor density is low, and
thus are proposed to enable immune predation to fully eliminate tumors in
the absence of immune escape37.

Spatio-temporal models of cell migration and the
extracellular matrix
Immune cell migration is influenced by the spatial configuration of nearby
collagen fibers40,41. The density, orientation, and thickness of collagen fibers
within the extracellular matrix (ECM) can influence migration through
contact guidance, thereby facilitating both migration and invasion42. Much
of the mathematical modeling in this area focuses on recapitulating the
spatial patterns of tumor-associated collagen signatures, which correlate
with benign growth or invasive migration43,44. Models also aid in under-
standing the process of cancer cell metastasis as cells migrate through the
ECM and extravasate into vasculature45.

Lenia as a birth-death-migration model
In summary, stochastic birth-death-migration models are commonly used
to model tumor-immune-ECM growth dynamics, often with a focus on
deriving approximations that map local interaction dynamics to global
mean-field approximations. It should be noted that agent-based methods
commonly use a fixed, local neighborhood size (e.g., a Moore or von
Neumannneighborhood)which is a special casewithinLenia.Alterations in
cell migration, proliferation, and death parameters may lead to spatial

heterogeneity in cell density, reducing the accuracy of naive mean-field
approximations. Thus, it is convenient for a cancer modeling framework to
include (1) non-spatial or spatial, (2) deterministic or stochastic, and (3)
single ormultiple populations (cell types). Below,webeginby implementing
several classical growth dynamicsmodels to illustrate the utility of Lenia as a
tool in theoretical oncology in recapitulating classicalmodels. These include
logistic growth of tumor cells in isolation, as well as a multi-channel Lenia
model of cell-cell (tumor-immune) interactions using a classical predator-
prey model. Finally, we implement a data-driven Lenia model of immune
infiltration in head and neck squamous cell carcinomas using Particle (off-
lattice) Lenia.

Results
Increased range of interaction increases tumor diffusivity and
speeds growth
First, we implement a single population (one cell type) model of tumor
growthdynamics inFig. 2.Growthdynamics aredescribedby logistic growth
with an Allee threshold (Methods, eqn. (4)), such that tumors seeded above
the Allee threshold have positive growth. The solution to this ODE is shown
in blue in Fig. 2A. Comparing deterministic Lenia (Fig. 2A; solid lines)
illustrates that systematically reducing the effective range of the interaction
kernel reduces the rate of growth, and alters the temporal dynamics. Smaller
interaction kernels (e.g., black lines) are characterized by slow growth due to
the presence of contact inhibition in small interaction neighborhoods. The
reason for this is that Lenia normalizes the neighborhood kernel of inter-
action by the sum of the total neighborhood size (eqn. (3)). In effect, this
means that the per capita interactions are lower for larger neighborhood
sizes, providing the mechanism for lower overall growth rate.

Reduction in kernel size (different kernel sizes used in Fig. 2B are
shown in Fig. 2D) also alters the spatial variegation of tumor density. For
example, short-range kernels (Fig. 2B, left) are characterized by sharp, well-
defined boundary drive growth while long-range kernels (Fig. 2B, right) are
associated with diffuse patterns. Here, the kernel represents the distance
over which cells experience negative growth inhibition due to the presence
of neighboring cells, a biological phenomenon known as contact inhibition.
This distance may vary between cell types19 and could be approximated
experimentally by seeding cells in varying spatial distributions.

This pattern holds when considering either a deterministic (Fig. 2B;
Deterministic Lenia, DL) or a stochastic (Fig. 2B; Stochastic Lenia, SL)

Fig. 2 | Cancer growth dynamics in Lenia. A Average cell density over time for
varying kernel sizes, for deterministic and stochastic Lenia. Averages over stochastic
runs are shown in dotted lines, and individual trajectories are shown in translucent
lines. ODE solution (shown in blue) matches simulation with a well-mixed kernel
(see Supplementary Fig. 1). C indicates that maximum cell number (carrying

capacity,C = 1) per pixel.B State offield at half-maximal capacity for different kernel
sizes for Stochastic Lenia (SL) or Deterministic Lenia (DL). Density potential and
Growth distribution shown in inset. C State of field at progressive time points for
kernel size 4 for deterministic and stochastic Lenia. D Kernels used in models in
figures (B). L indicates the length of the domain (number of pixels; L = 64).
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update rule (see Methods). The average of many stochastic realizations is
shown in dashed lines (Fig. 2A), which tend to underestimate the deter-
ministic simulationwith the corresponding kernel size. This is due in part to
the fact that the cell density map A(x) in stochastic Lenia is restricted to
integer values only, which is common practice in standard agent-based
models (compare Fig. 2B, where only values of 0 or 1 are allowable). These
results illustrate the utility of Lenia to interpolate between two standard
modeling approaches: (1) ODEs and (2) stochastic, local agent-based
methods. Lenia extends standard methods to allow the investigation of
arbitrary interaction kernels.

Short-range interaction kernels are more robust to Allee effects
Next, we investigate the interplay between the Allee threshold and the
interaction kernel. Logistic growth with an Allee threshold has an unstable
equilibrium which drives the population to extinction when tumor density
is below the threshold. As shown in Fig. 3A, simulating logistic growth with

Allee in an ODE (blue line) or a well-mixed (red line; WM) both result in
eventual extinction. Interestingly, reducing the interaction kernel distance,
R, results in positive tumor growth (e.g., black line). This effect occurs for a
range of Allee threshold values and kernel sizes, shown in Fig. 3B. This
clearly illustrates an expanded region of positive growth when kernel size is
low, across a wide range of threshold values. Smaller neighborhoods
increase the likelihood that a single cell’s neighborhood will maintain a
sufficient density above the Allee threshold, and thus maintain positive
growth.

While stochastic Lenia is typically associated with slower temporal
scales (Fig. 3A, dashed lines), the long-term tumor fate (extinction or
growth) are analogous in both models and spatial variegation patterns are
also similar (Fig. 3C, D). These results suggest that well-mixed model for-
mulation may overestimate the role of an Allee effect (thus overestimating
the likelihood tumor extinction). In thenext section,we investigate the effect
of interaction kernel size on immune predation of tumors.

Fig. 3 | Short-range interaction kernels are more robust to Allee effects.
A Average cell density over time for varying kernel sizes, for deterministic and
stochastic Lenia. Averages over stochastic runs are shown in dotted lines and
individual trajectories are shown in translucent lines. ODE solution shown in blue.

B Long-term tumor fate for deterministic Lenia where trajectories that eventually
result in extinction are shown in red, or growth shown in blue (colorbar indicates
change in tumor size at t* = 3. C,D Spatial maps shown for deterministic Lenia (C)
and stochastic Lenia (D) at time t* = 3. See corresponding Supplementary Movie 1.
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High immune specificity and sensitivity maximize tumor
regression
In order to investigate the effect of short-range and long-range interactions
between tumor and immune cells (e.g., cytotoxic T cells), we employ the
multi-channel Lenia model to simulate the dynamics of a tumor-immune
(Fig. 4). Tumor-immune dynamics are described by the predator-prey
model in eqns. (6) and (7). Here, we make the simplifying assumption that
immune cells are cytotoxic T cells and that tumor-associated antigenicity is
homogeneous across all tumor cells. Similar to the previous figure, this
model contains an Allee threshold whereby tumor cells are driven to
extinction below this threshold even in the absence of immune cells37.

We consider four interaction kernels: tumor-tumor, tumor-immune,
immune-tumor, and immune-immune (Fig. 4A). We define the tumor-
immune kernel (K12) as the immune sensitivity, whereby a short-range K12

(small R12) is characterized by an increase in immune kill rate per unit area
and decreasing the time to tumor regression (TTR) resulting in a lower
stimulation of immune cells and a reduction in IPV, as seen in Fig. 4B. To
gain intuition, one can consider the tumor-immune kernel as representing
the average distance traveled by an immune cell per unit of tumor kill. For
example, a large tumor-immune kernel may represent a tumor with high
PD-L1 expression, requiring immune cells to travel a further distance before
effective immune activity.

Next, we define the immune-tumor kernel as the spatial immune
specificity, whereby a short-range K21 (small R21)leads to more loca-
lized recruitment of immune cells in close proximity to tumor cells
(not to be confused with specificity based on T-cell antigen recogni-
tion). A reduction in the recruitment distance (small K21) leads to the
production of an immune response in closer proximity to tumor cells
(refer to Fig. 4E). To gain intuition about the immune-tumor kernel,
one can consider this kernel as representing the average distance an
immune cell is recruited by a tumor. An immunologically quiet tumor

is represented by a large kernel with diffuse, undirected recruitment,
while increased tumor antigenicity is represented by a small kernel
with strong, localized recruitment. The resulting immune peak value,
IPV (Fig. 4B, C) depends on both immune sensitivity and immune
specificity.

As seen in Fig. 4D, both spatial immune specificity and spatial immune
sensitivity are required tomaximize tumor regression (case 3). This effect is
illustrated by observing spatial maps over time in Fig. 4E. High specificity
results in rapid recruitment concentrated within the tumor, but these
immune cells are most effective at removing tumor when sensitivity is high
(case 3). In contrast, low specificity results in a diffuse spatial pattern of
immune recruitment through the domain,wheremost immune cells are not
co-localized with tumor cells, effectively wasting a majority of immune
response (cases 2 and 4). Consequently, immune cells that do infiltrate
tumor are rare but strongly effective, leading to a heterogeneous tumor kill
(case 4). The effect of asymmetric interaction kernels leading to differences
in spatial variegationandpatterning in tumor and immunecells is shown for
a range of sensitivity and specificity values in Fig. 5.

Spatial variegation of tumor-immune interactions
We assess the degree of spatial variegation and patterning in tumor and
immune cells as a function of sensitivity and specificity in Fig. 5. Spatial
maps are shown at TTR (see Fig. 4), and thus all tumors have identical total
size in Fig. 5A.Differences in spatial patterns of tumor density are caused by
differential immune recruitment (specificity) and strength of predation
(sensitivity). As the immune specificity narrows (r21 reduces to smaller
values), immune cell concentration strongly correlates with the tumor’s
location with a high degree of specificity (Fig. 5B, right-to-left). This spe-
cificity has only a marginal effect on tumors if the range of sensitivity is
diffuse (large r12 values). As sensitivity narrows, immune predation is more
highly targeted and effective, killing tumor cells, especially in the core

Fig. 4 | Competition dynamics in Lenia. A Schematic representation of the tumor-
immune predator-prey model, illustrating various kernel sizes for tumor growth
(K11), predation distance (K12), immune recruitment (K21), and density-dependent
death distance in the immune system (K22). B, C Impact of different predation
distances (K12) and immune recruitment (K21) on the integration results of the
tumor-immune predator-prey model, with other kernels held well-mixed. D Effect

of varying predation and recruitment (K12 and K21) on the time to tumor regression
(considered when there are 2% tumor cells in the area) and the peak value in the
immune response. E Spatial outcomes of the tumor and immune response in the
model, showcasing the influence of different kernel sizes. See corresponding Sup-
plementary Movie 2. Unless otherwise noted, parameters used are γ = 5, b = 12,
g = 1.5, d = 1, L = 0.08 (see eqns. (6)–(7)).
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(Fig. 5A, bottom-left). A ring-shaped tumor is left, due to proliferating cells
on the rim.

Stage-dependent collagen alignment predicts poor immune
infiltration
Direct observation of immune cell trafficking patterns is unlikely in clinical
tumors, but computational simulations based on clinical data can provide
insight to test hypotheses. We begin by developing a model of immune cell
infiltration using an extension of Particle Lenia8. Figure 6A introduces the
image analysis to computational model pipeline. Second harmonic gen-
eration (SHG) is performed on a cohort of HPV-negative head and neck
squamous cell carcinomas (HNSCC) to quantify collagen density, D(x).
Each patient has a selected region of interest (ROI) to perform SHG that are
subsequently analyzed using OrientationJ ImageJ plugin to determine fiber
alignment, J

!ðxÞ46. Each pixel is color-coded according to the directionality
of collagen fibers, such that fibers aligned in a single direction are colored
with the same hue on the red-blue-green-yellow spectrum (Fig. 6A, semi-
circle legend colorbar). The microenvironment gradient field, ∇M(x) at
each grid location x is determined by the convolution of interaction kernel
and the OrientationJ vector field, weighted by collagen density (see Meth-
ods). Thus, immune cells move along the microenvironment gradient field
in the same direction as collagen fiber alignment. In Lenia, immune cell
movement direction is determined by the average collagen fiber alignment
within the immunecell’s interactionkernel radius,R (seeMethods; eqn. (8)).

Quantification of collagen alignment by disease stage
Late-stage HNSCC is associated with increased deposition and
alignment of fibrillar collagens47. We hypothesize that poor outcomes
are partially due to poor immune cell infiltration caused by the
deposition of a dense collagen barrier. Imaging data are quantified by
stage in Fig. 6B, which illustrates the correlation of disease stage with
collagen density and alignment. Normal adjacent control tissue and
early-stage HNSCC’s are associated with sparse and heterogeneous
collagen alignment, while late-stage HNSCC tends to contain highly
aligned collagen fiber patches.We hypothesized that late-stage disease
is associated with collagen structures which lead to poor immune
infiltration. In the next section, we next employed Lenia to test two
plausible cell migration models describing the movement of immune
cells in response to collagen: parallel or perpendicular movement.

Simulated effect of collagen alignment on immune surveillance
Within the immune cell trafficking model, each simulated immune cell
moves along a microenvironment gradient field determined by collagen
fiber alignment (Methods; eqn. (8)).We consider two hypothesizedmodels
of the influence of collagen fiber alignment on immune cell trafficking:
perpendicular or parallel to collagen fibers (Fig. 7A). Immune cells are
initially evenly distributed on the edge of the domain, and we quantify the
area of surveillance covered (simplified example shown for six immune cells
per side in Fig. 7B). The total simulated time is chosen such that immune
cells in an empty domain would migrate in a linear, unaltered fashion and
provide 100% coverage of the domain.

Results indicate an overall higher level of immune coverage in the
perpendicularmodel than in parallel (Fig. 7C,D, respectively). Interestingly,
the parallel model shows a stronger anti-correlation between immune
coverage and disease stage. All stage 4 patients rank lower in immune
coverage compared to patients with stage 1 tumors (Fig. 7D). Of note, it’s
difficult to interpret immune coverage for control tissues as the absence of
immune infiltratesmay result from lower collagen density typical of normal
tissue, and that is notwell-aligned, or it could simply be due to the absence of
diseased tissue (i.e., tumor) and thus the absence of signaling cues required
to induce immune cell trafficking. These control tissues are adjacent, non-
cancerous tissues within HNSCC patients. Late-stage HNSCC tumors are
associated with a more hypoxia-related signature characterized by a low
number of CD8+ T cells48. Thus, as the parallel model consistently predicts
lower immune coverage for late-stage tumors, this model may be more
biologically relevant. This also supports previous experimental findings that
suggest immune cells move parallel to collagen structures49. Studies have
shown that collagen fibers are often perpendicular to the outer boundary of
tumors50,51, which implies that tumor cells may push fibers perpendicularly
to their radial motion of expansion and growth. Experimental evidence
suggests immune cells move parallel to aligned collagenfibers, whichwould
indeed lead to reduced immune infiltration into the tumor40,41.We compare
this immune escape best-case scenario of parallel migration to the coun-
tervailing hypothesis of perpendicularmigration to quantify the influence of
contact guidance on immune escape.. This finding supports the notion of
the parallel immunemigrationmodel as amethod of immune escape. Note:
we do not consider variable immune response here (which may vary with
disease stage) as the total number of immune cells seeded is constant across
all patient simulations.

Fig. 5 | Tumor-immune spatial variegation patterns as a function of interaction
kernels. Spatial maps are shown at the time to tumor regression (TTR; see Fig. 4) for
a range of tumor-immune sensitivity (r12) and specificity (r21) values. A Tumor
spatial map at TTR. B Immune spatial maps at TTR. Spatial variegation in tumor

density increases as both specificity and sensitivity are increased. As immune spe-
cificity narrows (r21 is small), immune cell concentration strongly correlates with
tumor’s location with a high degree of specificity. Unless otherwise noted, para-
meters used are γ = 5, b = 12, g = 1.5, d = 1, L = 0.08 (see eqns. (6), (7)).
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Individual model simulations are shown for a model seeded from the
corresponding collagen ROI in Fig. 7E. Immune cells are seeded along each
edge (left, right, top, bottom) of the domain (N = 5 cells per pixel; Fig. 7F).
Typically, as disease stage increases (left to right), immune cell coverage
decreases as seen in Fig. 7G.We define immune coverage as the percentage
of the domain covered (100% corresponds to pixels that are covered by at
least one immune cell trafficked from each of the four sides). Well-aligned
collagen structures (e.g., stage 4) result in a strongly directed migration,
deviating immune cells from providing a well-mixed coverage of the
domain. Immune coverage is also negatively correlated with the degree of
collagen alignment (measured by kurtosis) regardless of disease stage or
migration model (Supplementary Fig. 3).

Discussion
Given the fact that direct observation of immune cell migration behaviors is
limited with currently available methods, computational modeling has
emerged as a viable method for interrogating tumor-immune interactions.

Tumors under immune predation may alter their surrounding ECM
(Fig. 6), leading to patterns of collagen formation as a mechanism of
immune escape. Here, our modeling framework in Lenia is able to distin-
guish between parallel and perpendicular modes of immune cell migration
as a function of collagen fiber alignment (Fig. 7). Results indicate that a
parallel mode of migration is more likely, given the inverse correlation
betweenmodel-predicted immune infiltration and disease stage. Previously,
aligned collagen fibers have been observed perpendicular to the tumor
periphery50,51, lending supporting evidence to a parallel model of immune
migration that reduces immune infiltration. Despite neglecting alternative
mechanisms of immune escape (e.g., acid-inactivation, immune checkpoint
expression, or immune exhaustion), the immune infiltration model shows
an inverse relationship between disease stage and immune coverage as an
emergent phenomenon (Fig. 7).

Methods in artificial life represent a promising cross-over potential in
cancer modeling. For example, Lenia demonstrates the capability to reca-
pitulate important features required formodeling the evolution and ecology

Fig. 6 | Collagen alignment in HNSCC. A Pipeline of image analysis to compu-
tational model using second harmonic generation to determine collagen density and
subsequently the alignment and microenvironmental gradient. B Alignment col-
lagen fibers is determined using OrientationJ ImageJ plugin46; alignment tends to

increase by disease stage. See Supplementary Fig. 2 for alternativemetrics to quantify
alignment. C Spatial distribution of collagen alignment, color-coded by degree of
alignment where red is highly aligned, yellow is moderately aligned, and green is
non-aligned. Analysis done using CT-Fire63 and CurveAlign64.
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Fig. 7 | Immune cell traffickingmodel in particle Lenia. AHypothesizedmodels of
the influence of collagen fiber alignment on immune cell trafficking. See corre-
sponding Supplementary Movie 3. B example simulation showing immune cell
infiltration (circles) with track indicating path taken. Cells seed on all four sides,
color-coded by initial side (see F). C, D Simulated immune coverage for perpen-
dicular (C) or parallel (D) immune trafficking model, colored by stage.
E Representative sample ROI alignment and density of collagen fibers (using

OrientationJ ImageJ plugin46) ordered by disease stage. F Immune coverage, color-
coded by immune initial condition of which of the four sides: left, right, top, bottom
(see legend). The color of each pixel is determined the most trafficked side.
G Immune coverage as the percentage of all four sides covered by immune sur-
veillance. For example, if no immune cells reached this pixel it is white, if all four
sides reached this pixel, it is dark purple. See corresponding SupplementaryMovie 4.
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of cancer: growth dynamics (deterministic/stochastic), cell-cell interactions,
and cell migration. To our knowledge, we have introduced the first example
of Lenia applied as a cancer model52. While here we focus on modeling
tumor-immune spatial interactions, the role of spatial structure more
broadly has important implications for optimizing cancer treatment53,54,
modulating evolutionary dynamics of tumor heterogeneity21,23,55, and
altering cell-cell competitive dynamics56 even when using the same inter-
action rules57,58. Lenia is flexible enough to mimic non-spatial (well-mixed)
ODEs (with sufficiently large kernel sizes) as well as small-scale spatial
neighborhoods commonly used in agent-basedmethods (e.g.,Moore or von
Neumann neighborhoods). It is also straightforward to simulate determi-
nistic dynamics and the corresponding stochastic dynamics.

Additionally, Lenia can simulate ecological interactions between
multiple cell types in heterogeneous tumors. We have shown the ability of
Lenia to recapitulate common models of tumor-immune dynamics (logis-
tic-Allee). Here, we modeled cytotoxic T cells infiltrating a tumor of
homogeneous antigenicitywhere all T cells recognize all tumor cells equally.
However, it is possible to consider nonuniform T-cell recognition in Lenia
by implementing a range of tumor cell types with varying antigenicity that
are recognized and killed by cytotoxic T cells are different rates.

Finally, we illustrate the ability of Particle Lenia to recapitulate cell
migration and trafficking in an off-lattice, with an application in squamous
cell carcinomas. However, Lenia provides several natural advantages over
traditional birth-death-migration models. Kernel convolution can be per-
formed using fast-Fourier transforms, drastically decreasing the computa-
tional cost of simulations. Additionally, the convolution of extrinsic
migration gradient can be pre-computed, increasing computational effi-
ciency. Despite the myriad advantages of Lenia’s framework, there may be
several aspects of biology for which it is more difficult for Lenia to capture,
including cell plasticity or other cell-scale morphology. On-lattice and off-
lattice (Particle) implementations of Lenia are suitable to investigate the
same biological phenomena but at different spatial scales. On-lattice Lenia
(DL, SL) is more suitable for larger spatial scales, especially in applications
where course-graining the spatial scale of resolution is more appropriate. In
contrast, Particle Lenia (by definition) tracks individual particles, rather
than a density. This is more suitable for smaller spatial scales, where indi-
vidual cell-cell (or cell-environment) interactions are important.

In addition to flexible methodology, Lenia has shown promise in
understanding the mechanics of tumor-immune interactions. We have
illustrated that immune-ECM interactions decrease immune infiltration
(Fig. 7). Next, we show that short-range interaction kernels provide a
mechanism for tumor cell survival under conditions for strong Allee effects
(Fig. 3).We have also shown the importance of the length scales of immune
sensitivity and specificity in immune response (Fig. 4). In the absence of
strong sensitivity or specificity poor immune response leads to prolonged
tumor growth and in some cases, immune escape. Differential interaction
kernels alter the spatial patterns of tumor-immune cells (Fig. 5), leading us
to hypothesize the possibility of making inferences of kernel sizes based on
spatial co-localization of cells in futurework.Here,wemay draw inspiration
from literature in ecologywhere kernel inferencesare drawn fromplant seed
dispersal patterns59. Thus, in each of these examples, the characteristic
kernel distance of tumor-immune-ECM interactions drives tumor growth
and immune infiltration.

Methods
Lenia cellular automata
The notation here follows ref. 1, which we re-state here for clarity. Lenia is a
cellular automata defined by five components: (1) a discrete grid of points,
L, (herein we consider two-dimensional lattice grid L 2 R2), (2) the
range of allowable states S ¼ ½Amin;Amax�, (3) the local update rule ϕ :
SN ! S is the local update rule, (4) the neighborhood around each focal
cell at location x, given by Nx ¼ fx þ n : n 2 Ng, and (5) time steps
t 2 T. The spatial cell density map configuration is defined by
At : L ! S: the collectionof states over thewhole grid, at time t 2 T, the
timeline. Herein, we let A be a two-dimensional matrix where A(x)

represents the cell density at grid location x which is updated via the fol-
lowing equation:

AtþΔtðxÞ ¼ AtðxÞ þ GðUtðxÞÞΔt� �Amax

Amin
ð1Þ

where G(u) is the density-dependent growth function defined on the
interval u 2 ½Amin;Amax�. For each point x, the convolution of a kernel K
with AtðNxÞ is calculated to compute the potential distribution Ut:

UtðxÞ ¼ K � AtðxÞ ¼
X
n2N

KðnÞ � Atðx þ nÞ ð2Þ

Thus, the growth is defined at every lattice location: Gt(x): =G(Ut(x)). A
fraction of the growth distribution is added to each site at each time step
(Euler approximation update rule) and the value at the site is clipped to
½Amin;Amax�. We implement the computational model in the Hybrid
Automata Library framework (Java)60.

Interpretation of Lenia as a cancer model
Next, wemake explicit the connection to cancermodeling. Lenia provides a
natural framework for constructing mathematical models of cancer cell
growth, competition, andmigration, where each lattice location x contains a
density of tumor cells,At(x).Whenmodeling tumordynamics, setAmin ¼ 0
andAmax ¼ C whereC represents themaximumresource- or space-limited
carrying capacity of cells within each single lattice location. Classic cell
interaction neighborhoods such as von Neumann (the four nearest neigh-
bors;R = 1) orMoore (eight nearest neighbors;R = 1.8) can be written as an
interaction kernel function, defined as a circle of radius R:

KðrÞ ¼ ϵ � ð1�HðR� rÞÞ ð3Þ

whereH is theHeaviside function, and ϵ is chosen tonormalize the elements
of the kernel to sum to one. Thus,U(x) represents a potential density that is
perceived by the focal location, determining the location-specific growth
rate of cells,G(U(x)). The density potential is the convolution of cell density
within theneighborhood,AðNxÞ, weighted (convolved) by the values in the
kernel function. Typical kernel functions in cancermodeling are likely to be
non-increasing functions of the radial distance from the focal location. For
notational convenience, define the mean density of the field as
n̂ðtÞ ¼ 1

jjLjj
P

x2LAtðxÞ, where jjLjj is the total number of lattice locations
in domainL.

Lenia can be extended to a stochastic setting by restricting only integer
values on each lattice point (AðxÞ 2 ½0; 1; 2; . . . ;Amax�) with stochastic
updates (see Supplemental Section 4.3). We note that classic agent-based
methods often restrict each lattice location to contain at most a single cell
(Amax ¼ 1) and make the implicit assumption that cells divide into sur-
rounding empty locations with probability b. This is qualitatively similar to
defining a Moore-like or von Neumann-like interaction kernel
with G(U(x)) = b.

In practical implementations of Lenia, best practice is to choose a pixel
resolution that is identical to available imagingdata (e.g.,MRIorH&Edata),
and to approximate maximum density of cells, Amax, using clinical or pre-
clinical estimates of maximum cell density for the cell type of interest.

Tumorgrowthdynamicsmodel.Wefirstmodel tumor growth as a local
logistic growth dynamic, shown in Fig. 1E, F given by:

GðuÞ ¼ γuðC � uÞðu� LÞ ð4Þ

where γ is the intrinsic growth rate of tumor cells,C is the carrying capacity
(maximum density) of each lattice location, L is the allee effect, and u is the
density potential (eqn. (2)).

Tumor-immune predator-prey model. Using multi-channel Lenia, we
can extend the model to account for cell density of multiple cell types,
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Ai(x)where i∈ {1, 2,…,N}. For example, hereinwe consider competition
betweenN = 2 cell types that each have a growth field which is a function
of the density potential for both cell types: Gt

i ðxÞ :¼ GiðUt
1ðxÞ;Ut

2ðxÞÞ. In
this two-type case, the dynamics are given by:

AtþΔt
i ¼ At

i þ Gi U
t
i1ðxÞ;Ut

i2ðxÞ
� �

Δt
� �Ai;max

Ai;min
ð5Þ

Thus, the tumor-immune model can be written as a system of two
growth functions:

G1ðu11; u12Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
tumor ðpreyÞ

¼ γu11ðu11 � LÞðC � u11Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
logisticgrowthwithAllee

� bu11u12|fflfflffl{zfflfflffl}
predation

ð6Þ

G2ðu21; u22Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
immune ðpredatorÞ

¼ gðbu21u22Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
predatorgrowth

� du22|{z}
naturaldeath

ð7Þ

where uij represents the density of cell type j perceived by cell type i. The
Allee threshold is given by L, carrying capacity of tumor cells is C, and
predation rate is b. Immune cells and expand at rate g (weighted by immune
predation response) and die at rate d.
Modeling cell migration using Particle Lenia
A recent extension referred to as Particle Lenia extends the mathematical
framework to off-lattice. The location of each cell i is given by vectorpi: = {x,
y} corresponding to its location in two-dimensions. Movement of the par-
ticle is determined by the local gradients of the energy and chemotactic
migration fields: E(pi) andM(pi), respectively.

dpi
dt

¼ �∇EðpiÞ|fflfflfflfflffl{zfflfflfflfflffl}
celladhesion�repulsion

þ ∇MðpiÞ|fflfflfflffl{zfflfflfflffl}
microenvironment

¼ � ∂EðpiÞ
∂ðpiÞ

þ ∂MðpiÞ
∂ðpiÞ

ð8Þ

Particles (i.e., cells) in this model move against the local gradient of the
energy field, representing particle interactions. For example, one might
define E as the Lennard-Jones potential function, which describes the
balance of repulsive and attractive forces as a function of the distance
between two interacting particles61. The cell-cell repulsion and adhesion
fields are a function of the potential field, U, such that:

EtðxÞ ¼ E UtðxÞ� � ð9Þ

¼ E
X
i

K x � pti
� � !

ð10Þ

¼ E
X
i

K x � pti
�� ��� � !

ð11Þ

where Et(x) is interpreted as the energy field as a function of the distance
from the focal particle. Interacting cells move along the gradient of the
energy field, weighted by the interaction kernel as a function of particle-
particle distance, and summed over all particles.

Similarly, an extrinsic microenvironmental field M(pi), defines the
chemotactic direction of cells moving toward a nutrient-based or bio-
mechanical gradient. The cell position update rule can be deterministic
(following the highest point of gradient) or stochastic (weighted in the
direction of gradient).

Stochastic Lenia
The Lenia framework can be extended to a stochastic setting by considering
the likelihood of a lattice location x containing a single cell. LetA(x)∈ [0, 1]
be a random variable, such that the probability, P, of a cell potentially being
added to an existing lattice location x at the next time step t+ Δt. This

probability is determined by the Binomial distribution (if the lattice location
is currently empty), at a rate of G(U(x))Δt.
Modeling the effect of collagen on T-cell migration
In this manuscript, we assume negligible T-cell adhesive-repulsive inter-
actions such that E(Ut(x)) = 0. Instead, T cells move in a directed fashion
influenced by the surrounding extrinsicmicroenvironment according to the
following equation:

∇MðpiÞ ¼ K � C
!t

ðxÞ ð12Þ

where K is the cell-microenvironment interaction kernel (see eqn. (3)),
C
!¼ fjjCjj; θg is a vector field determined by collagen fiber alignment. At
each time point, noise is added to the collagen vector field’s angle such that
θ0 ¼ θ þ RðσÞ where R is a uniform random variable on [0, σ] radians.

In this way, we model the influence of collagen fibers to direct T-cell
movement as a weighted vector summation of the collagen fiber alignment
in the focal T-cell’s local neighborhood. The collagen fiber alignment vector
field is inversely proportional to the density of collagen (cells travel slowly in
dense fibers).We consider two plausible models of the influence of collagen
on T-cell migration: T cells travel 1) in parallel to collagen fibers or 2)
perpendicular to collagen fibers, denoted ∥ and ⊥, respectively.

C
!ðxÞ ¼ ð1�DðxÞÞ J!?ðxÞ ð13Þ

C
!ðxÞ ¼ ð1�DðxÞÞ J!kðxÞ ð14Þ

where J
!ðxÞ is collagen fiber alignment (a unit vector) derived from

clinical imaging, detailed in the next section below, scaled by the
inverse of the normalized density of collagen at each grid location,
D(x) ∈ [0, 1].
Immune cell migration field defined using OrientationJ
Tumormicroarray (TMA)having FFPE tissue samples fromHPV-negative
HNSCCpatient cohort from theH. LeeMoffitt CancerCenter andResearch
Institute (IRB:MCC#18754) was analyzed to determine collagen alignment
in the tumormicroenvironment. TheTMAcoreswere imagedusing a Leica
SP5 AOBS multiphoton confocal microscope and a 25x, HC IR Apo, NA
0.95water immersionobjective. The excitationwavelengthwas tuned to 880
nm and emitted light was detected at 440 nm using bandpass filters for
detecting the SHG signal of collagen. The SHG images were analyzed using
theOrientation J plugin46 in ImageJ softwarewhichprovides both visual and
quantitative data outputs for collagen fiber alignment62. The selection cri-
teria for theROI is based on capturing an area that encompasses both tumor
core and stroma within each core. The ROI selected for each core captures
one-third of the core area based on the image magnification performed.

Data availability
Any additional information required to analyze the data reported in this
work paper is available from the corresponding author upon request.

Code availability
Code for an implementation of Lenia in the Hybrid Automata Library60

framework (Java) can be found here: https://github.com/mathonco/Lenia-
in-hal52.
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