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A deep learning approach predicting the
activity of COVID-19 therapeutics and
vaccines against emerging variants
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Understanding which viral variants evade neutralization is crucial for improving antibody-based
treatments, especially with rapidly evolving viruses like SARS-CoV-2. Yet, conventional assays are
labor intensive and cannot capture the full spectrum of variants. We present a deep learning approach
to predict changes in neutralizing antibody activity of COVID-19 therapeutics and vaccine-elicited
sera/plasma against emerging viral variants. Our approach leverages data of 67,885 unique SARS-
CoV-2 Spike sequences and 7,069 in vitro assays. The resulting model accurately predicted fold
changes in neutralizing activity (R2 = 0.77) for a test set (N = 980) of data collected up to eight months
after the training data. Next, the model was used to predict changes in activity of current therapeutic
and vaccine-induced antibodies against emerging SARS-CoV-2 lineages. Consistentwith other work,
we found significantly reduced activity against newer XBB descendants, notably EG.5, FL.1.5.1, and
XBB.1.16; primarily attributed to the F456L spike mutation.

Viruses can accumulate sequence changes under immune selectionpressure
and due to natural genetic variation1–3. Such mutations can permit evasion
of host immune responses, leading to the emergence of new viral variants
that reduce the efficacy of vaccines and antibody-based treatments4,5. With
the ongoing evolution of a virus, there arises an uncertainty as to whether
monoclonal antibodies and vaccines will be effective in neutralizing novel
strains. Because of this, it is crucial to monitor viral strains’ potential for
antibody escape to revise clinical and public health guidelines and develop
more effective therapeutic and vaccine strategies.

Cell-based assays are a widely used tool for assessing the antibody
evasion potential of viral strains6,7. These assays involve exposing a viral
strain to an antibody agent in cell culture and evaluating the level of viral
replication, infectivity, or virulence in vivo or in vitro.However, these assays
have certain limitations, particularly when the virus is evolving rapidly. This
is due to the fact that they rely on a limited number of viral isolates, which
may not adequately represent the full diversity of circulating strains8–10.
Consequently, it becomes challenging to monitor viral escape entirely and
develop effective treatments that can target awide range of viral strains. This
challenge has been particularly evident during the COVID-19 pandemic, as
the SARS-CoV-2 virus continues to evolve and produce new lineages and

sub-lineages, with over 1.7 million unique sequences recorded to date11.
Therefore, it is essential to complement these assayswith surveillance efforts
and realistic models to ensure that emerging viral strains and underlying
antibody escape properties are entirely detected andmonitored in real-time.

Modeling approaches, such as phylogenetic analysis, structural mod-
eling, and machine and deep learning, offer valuable insights into under-
standing viral behavior, assessing antibody and vaccine efficacy, and
predicting the impact of mutations. Recent studies have successfully mod-
eled the temporal and geographic evolution of SARS-CoV-2, determined
phyletic lineages of SARS-CoV-2 variants, and predicted the impact of
mutations on ACE2 binding12–14. The arrival of new influenza strains each
year has also driven the development of models that predict antigenic
variation of influenza, helping aid the creation of annual flu vaccines15–17.
Furthermore, in an era where there is a significant amount of viral sur-
veillance data18–20, modeling approaches can be used to extract valuable
knowledge about viral properties and antibody escape that may not be
entirely captured by conventional methods.

Here, we propose a deep learning-based method to predict changes in
neutralizing antibody activity of COVID-19 therapeutics and vaccine-
elicited sera/plasma against emerging SARS-CoV-2 variants. Our method
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utilizes a variational autoencoder (VAE) to encode spike protein sequences
into a latent space embedding, allowing viral sequences to be inputted into a
predictive model. Using compiled in vitro assay data, we trained a neural
network model to predict fold changes in the neutralization activity of
COVID-19 therapeutics and vaccine-elicited sera/plasma against spike
protein variants, relative to their activity against the ancestral strain
(Wuhan-Hu-1). This work presents a comprehensive analysis of the spike
protein variants and corresponding antibody resistance of SARS-CoV-2,
augmenting the insights derived from experimental assays. Through this
research, advancements can be made towards developing more effective
therapeutic and vaccine strategies against rapidly evolving viruses. Addi-
tionally, it can facilitate the detection of viral variants thatmay evade current
approved treatments and the discovery of antibodies that have regained
their effectiveness against new variants.

Results
Encoding SARS-CoV-2 spike protein sequences using VAE
A VAE was first developed to encode SARS-CoV-2 spike protein
sequences and create a latent space that captures mutational patterns
and relationships between sequences. The dataset comprised 67,885
unique spike protein sequences extracted from the NCBI Virus
Database as of October 31, 2022 (Fig. 1a). To train the VAE,
54,308 sequences were fed into the encoder, which compressed them
into a 32-dimensional latent space (Fig. 1b, c). The decoder then
reconstructed the sequences from their latent embedding. Following
training, a difference score was calculated between the input and
output sequences, indicating how well the decoder reconstructed the
sequences from their latent embedding. For the test set (N = 13,577),
the average difference score was 2.29 amino acid mistakes
after reconstruction (standard deviation = 1.54) out of 1273 amino

Fig. 1 | Schematic overview of VAE training and architecture. a SARS-CoV-2
genomes from the NCBI Virus Database are collected and translated into spike
protein amino acid sequences. b Illustration of VAE architecture. The spike protein
amino acid sequences are used to train the autoencoder, where the encoder com-
presses the sequences into 32 latent space vectors and the decoder reconstructs the
encoded sequences back to their original input. c The uniform manifold

approximation and projection (UMAP) plot visualizes SARS-CoV-2 variant clus-
tering along the first two principal dimensions. Colors differentiate variants within
the reduced dimensional space. d Pearson correlation of Levenshtein distances of
each sequence pair and Euclidean distances of the corresponding latent vectors, with
least-squares line of best fit shown.
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acid positions. Rates of reconstruction error for individual
positions in the Spike protein sequence are reported in Supplemen-
tary Fig. 1.

To validate the VAE’s accuracy in capturing similarities and
differences between spike protein sequences, Levenshtein distances
between sequences were compared with Euclidean distances between
encoded versions of sequences using Pearson’s correlation (Fig. 1d).
Levenshtein distance is defined as the minimum number of single-
character edits (substitutions, deletions, insertions) required to
change one sequence to another. Euclidean distance is defined as the
length of the line segment between two sequences in latent space. The
two variables were found to be correlated (ρ = 0.75, p < 0.001),
demonstrating the VAE’s ability to accurately capture relationships
between sequences in latent space.

Uncertainty-based neural network prediction of fold changes in
neutralization activity against SARS-CoV-2 variants
NCATS OpenData Portal’s curated dataset of 7069 results from in vitro
assays was used to train a neural network model to predict fold changes in
the neutralization activity of therapeutics and vaccine-elicited sera/plasma
against SARS-CoV-2 variants (Fig. 2a). Fold changes are relative to the
neutralization activity against the wild-type ancestral Wuhan-Hu-1 strain
and were log10 transformed to ensure normality of the ratios. Spike protein
sequences of viral isolates subjected to the assayswere encoded into 32 latent
dimensions using the VAE model, and the 40 therapeutics and vaccine-
elicited sera/plasma tested against viral isolates were one-hot encoded (Fig.
2b). The training set comprised data collected between January 9, 2021, and
October 31, 2022 (N = 6089), and the test set comprised data collected
between November 1, 2022, and June 22, 2023 (N = 980). We integrated a

Fig. 2 | Illustration of neural network training and evaluation for the prediction
of SARS-CoV-2 fold change in neutralization activity. a SARS-CoV-2 isolates
were subjected to therapeutic and vaccine in vitro assays, and resultant neutraliza-
tion activity fold change ratios between the wild-type and variants were compiled
and log10 transformed. b Variant spike protein sequences were VAE encoded and
corresponding therapeutics and vaccines were one-hot encoded.Data collected from
January 9, 2021, to October 31, 2022, was used as training data (N = 6089), and data

collected from November 1, 2022, to June 22, 2023, was used as test data (N = 980).
cA neural network model was trained to predict log10 fold change in neutralization
activity and estimate the uncertainty (variance) in each prediction. d Comparison
between model predictions and actual measurements for the test set, highlighting
yellow points for higher prediction uncertainty. e Correlation between prediction
error and estimated uncertainty for the test set, with least-squares line of best
fit shown.
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custom loss function into themodel, basedonBayesian inference, toprovide
reliable estimates of prediction uncertainty (Fig. 2c). This loss function
enabled the estimation of variance associated with each prediction, pro-
viding a quantifiable metric that could be used to construct prediction
intervals.

Performance evaluation of the uncertainty-based neural
network model
Following training, the model demonstrated satisfactory performance
on the test set, with an R2 of 0.77 and a r-MSE of 0.42 (Fig. 2d). To
ensure that variance estimates serve as a dependable indicator of
prediction uncertainty, we compared the absolute prediction error
with the estimated variance for the test set using Pearson’s correlation
(Fig. 2e).We observed a statistically significant correlation between the
two variables (ρ = 0.75, p < 0.001), implying that higher prediction
uncertainty is associated with a greater likelihood of prediction inac-
curacy. To ensure that the observed predictive capacity was not due to
overlap between the training and testing sets, introduced by our date-
based splitting of the data, model performance was also assessed using
only therapeutic-sequence pairs not part of training. This subset of the
test set comprised 746 data points (76.1%) that were not seen by the
model during training. The model’s performance on these novel data

points remained robust, yielding an R2 of 0.76 and a r-MSE of 0.47
(Supplementary Fig. 2).

Assessment of the variability in prediction accuracy
We further evaluated the model’s prediction accuracy across the different
COVID-19 therapeutic agents and SARS-CoV-2 lineages. Figure 3
demonstrates that prediction error varies among the therapeutic agents,
with higher mean absolute error (MAE) observed for specific monoclonal
antibodies such as Cilgavimab (MAE = 0.62), Bebtelovimab (MAE= 0.55),
and S2E12 (MAE = 0.52) (Fig. 3a). Conversely, prediction error was lower
for COVID-19 vaccine-elicited sera/plasma and convalescent plasma
therapies (Fig. 3b, c). Increased prediction error was also associated with
select SARS-CoV-2 lineages, such as CJ.1.1 (MAE = 0.30), BA.2 (MAE =
0.29), and BA.4/5 (MAE = 0.23) (Fig. 3d). Additional analysis of predictive
accuracy for each therapeutic and lineage pair showed higher predictive
error for CJ.1.1, BA.2, and BA.4/5 lineages when tested against Cilgavimab,
Bebtelovimab, and S2E12 antibodies (Supplementary Table 1). In contrast,
these lineages exhibited lower error against other therapeutics. Therapeutic
and lineage pairs with high predicted error were found to exhibit high
standard deviation in the experimentally measured log10 fold change
(Supplementary Table 2). Importantly, estimated uncertainty values sig-
nificantly correlated with prediction error for these specific antibodies and

Fig. 3 | Assessment of neural networkmodel prediction error and uncertainty for
COVID-19 therapeutic agents and SARS-CoV-2 lineages in the test set. The
distribution of absolute prediction error was assessed for each (a) monoclonal
antibody, (b) vaccine, and (c) convalescent plasma sample, as well as for each (d)
SARS-CoV-2 lineagewithin the test set, with progressive ordering (left to right) from

lowest to highest mean absolute error. Absolute error was compared with the
model’s predicted uncertainties (σ̂) using Spearman’s correlation, with corre-
sponding p-values of less than 0.05 considered statistically significant and annotated
within the figures.
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lineages with larger error, indicating the model’s capacity to provide robust
uncertainty estimates when prediction inaccuracy is likely.

Temporal generalization and performance
We further conducted a temporal analysis to assess the extent to which the
model can generalize predictions for prospective variants. Specifically, we
evaluated the model’s predictive performance for test sequences assayed
within 0–4 months and 4–8 months after the end of the training period of
October 31, 2022 (Supplementary Fig. 3). The model displayed exceptional
predictive capability for sequences assayed 0-4 months after the training
period (N = 696), achieving an R2 of 0.84 and a r-MSE of 0.34. Despite a
decrease in performance, themodel still exhibited good predictive capability
for sequences assayed 4–8 months after the training period (N = 284), with
an R2 of 0.64 and a r-MSE of 0.58.

Predicted effects for emerging SARS-CoV-2 lineages
As a proof of concept, we present in Fig. 4 the predicted fold changes in
neutralizing activity of vaccine-elicited sera/plasma and monoclonal anti-
bodies against newly designated SARS-CoV-2 lineages: EG.5, FL.1.5.1,
XBB.1.16, and BA.2.86. The predicted effects for parent lineages BA.2 and
XBB are also shown as a point of reference.

For this analysis, we trained the VAE and neural network on all
available data as of August 18, 2023, to demonstrate the usefulness of our
model for surveying new variants in a real-world scenario. The model
predicted that both newer XBB descendants (EG.5, FL.1.5.1 and XBB 1.16)
and BA.2.86 induce lower neutralizing activity for existing COVID-19
vaccine-elicited sera/plasma andmonoclonal antibodies, compared to their
parental lineages (XBB and BA.2, respectively). However, BA.2.86 is pre-
dicted to exhibit a smaller reduction in neutralizing activity to all vaccine-
elicited sera/plasma and most monoclonal antibodies, compared to newer
XBB descendants.

In particular, although bivalent BNT162b2 (OMI BA.4/5) and Sotro-
vimab are predicted to retain some level of activity against these viral
lineages, the predicted fold reduction for bivalent BNT162b2 is 315-fold
against EG.5 (95% PI: [247, 401]), 384-fold against FL.1.5.1 (95% PI: [300,
491]), 443-fold against XBB.1.16 (95% PI: [296, 662]), and 38-fold against
BA.2.86 (95% PI: [24, 62]). For Sotrovimab, the predicted fold reduction is
155-fold against EG.5 (95%PI: [111, 218]), 56-fold against FL.1.5.1 (95%PI:
[30, 106]), 27-fold against XBB.1.16 (95% PI: [8, 97]), and 57-fold against
BA.2.86 (95% PI: [30, 106]).

We then conducted a comprehensive analysis of the acquired spike
mutations, focusing on identifying those predicted to have the greatest
impact on activity of selectmonoclonal antibodies and vaccine-elicited sera/
plasma (Supplementary Figs. 4 and 5). To accomplish this, we first calcu-
lated the distinct core mutations distinguishing each new lineage (EG.5,

FL.1.5.1, XBB.1.16, andBA.2.86) from their parental lineages. Subsequently,
we systematically introduced each mutation, one at a time, into the core
spike protein sequence of parent lineage (XBB) to understand the predicted
partial impact of each mutation. Notably, the spike mutation F456L, which
is present in EG.5 and FL.1.5.1 sequences, is predicted to have the most
significant effect on the neutralization activity of therapeutic agents shown
in Supplementary Fig. 4.Moreover, the largest predicted partial effect of this
mutation, relative to XBB parent, is seen for therapeutic agents S309 (pre-
cursor of Sotrovimab), VIR-7832, and ZF2001.We observed that the newly
acquired mutations within the BA.2.86 lineage did not result in substantial
changes in the therapeutic effectiveness (Supplementary Fig. 5).

Discussion
In this study, we outline a novel deep learning approach to monitoring the
impact of SARS-CoV-2 variants on the neutralizing activity of COVID-19
antibody therapeutics and vaccine-elicited sera/plasma. First, we developed
a variational autoencoder (VAE) capable of encoding spike protein
sequences into a latent space while preserving the integrity of spike protein
information. This resulted in an average reconstruction loss of 2.29 amino
acids per 1273 positions on the spike protein. Subsequently, we trained a
neural network model to predict fold changes in the neutralization activity
of 40 different COVID-19 antibody therapies and vaccine-elicited sera/
plasma against spike protein sequence variants, relative to their activity
against the ancestral strain (Wuhan-Hu-1). To assess the model’s general-
izability to predict prospective sequences, we evaluated its performance on
sequences tested eight months after the training data cutoff date of October
31, 2022. Our findings indicate that the model can accurately predict the
impact of prospective spike proteinmutants on the neutralization activity of
therapeutics and vaccine-elicited sera/plasma (R2 = 0.77), making it a
valuable tool for identifying emerging viral variants that are likely to evade
current COVID-19 treatments.

Ourmodel’s predictions for emerging SARS-CoV-2 lineages alignwith
current research findings. Consistent with recent data21–23, the model pre-
dicts that the newer XBB descendants, specifically EG.5, FL.1.5.1, and
XBB.1.16, have significantly reduced in vitro susceptibility to both vaccine-
elicited sera/plasma andmonoclonal antibodies, rising concerns for evading
vaccine-driven immunity and lack of efficacy to clinically relevant mono-
clonal antibodies. On further analysis of mutations linked to reduced
responsiveness, our model identifies the spike mutation F456L, present in
EG.5 and FL.1.5.1, as a primary contributor to reduced neutralization by
selected COVID-19 antibodies and vaccine-elicited sera/plasma. This
observation aligns remarkably with recent studies using pseudovirus neu-
tralization assays22,24, anddeepmutational scanning25, which highlighted the
mutation’s role in ACE2 receptor binding. The F456L mutation emerged
independently in XBB descendant strains such as EG.5, FL.1.5.1, and

Fig. 4 | Predicted in vitro susceptibility of COVID-
19 therapeutic agents to new Omicron sub-
lineages. The presented graphs showcase the esti-
mated fold changes in neutralization activity of (a)
monoclonal antibodies and (b) vaccines against the
newly emerged SARS-CoV-2 lineages: EG.5,
FL.1.5.1, XBB.1.16, and BA.2.86. Parent lineages
XBB and BA.2 are also depicted in the figures. Error
bars represent the 95% prediction intervals derived
from the variance estimates, and the color-coding of
the data points and error bars correspond to the
lineage to which the prediction was made for.
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XBB.1.16.6 and was found in 40% of newly uploaded SARS-CoV-2
sequences by August 202322. Continuous shifts at this position and its
vicinity, highlighted by deep mutational scanning25, suggest the virus is
evolving to dodge antibody responses while effectively binding to its target
receptors. Remarkably, our deep learning framework successfully discerned
the robust immune escape properties of this mutation, despite not seeing it
within training sequences for the uncertainty-based neural network,
although the mutation was encountered in the VAE training sequences.

On August 17, 2023, the World Health Organization (WHO) desig-
nated BA.2.86, a highly mutated subvariant originating from BA.2, as a
variant under monitoring due to potential immune evasion risks. However,
recent studies employing live andpseudovirus neutralization assays indicate
that BA.2.86 elicits a higher neutralizing antibody response to mRNA
bivalent boosters than newer XBB descendants21,23,26, though slightly lower
than its parental lineage (BA.2). Despite over 30 amino acidmutations in its
spike region compared to the parental lineage (BA.2)26, many of which are
novel to both the VAE and neural network, our model accurately predicted
BA.2.86’s behavior, underscoring its performance in emerging lineages.
Additionally, consistent with recent studies21,27,28, our model predicted that
monoclonal antibodies including Sotrovimab, Cilgavimab, and Bebt-
elovimab that previously retained some activity against parental BA.2 var-
iants have reduced neutralization activity against BA.2.86. Regarding
mutations linked to reduced effectiveness, our findings align with a recent
deep mutational scanning study25, which suggests that BA.2.86 mutations
do not significantly impact neutralization activities.

This study leverages a VAE architecture for its generative capabilities
and adept handling of non-linear data relationships29. Unlike traditional
dimensionality reduction methods that compress data into lower-
dimensional spaces using deterministic approaches, VAEs utilize a prob-
abilistic framework based on variational inference and Bayesian statistics.
Expressly, instead of mapping input data (e.g., viral sequences) to fixed
vectors, VAEs represent the data as distributions characterized by means
and standard deviations29,30. By iterative sampling and minimizing the loss
function,which includes reconstruction loss andKLdivergence,VAEs learn
data relationships29,30. We believe that this probabilistic approach is parti-
cularly relevant to our study for two main reasons. First, given the high
dimensionality of sequencing data, VAEs enable the capture of complex,
non-linear relationships within large biomedical datasets, preserving
important information during dimensionality reduction and thereby
enhancing the performance of downstream predictive models. Second, the
generative nature of VAEs facilitates the prediction of unseen viral
sequences. However, employing VAEs involves significant computational
demands and presents challenges in interpreting the latent space. VAE
primarily focuses on entire data distribution rather than individual features.
Each dimension in the latent space is composite of features and their
interactions, compressed into a form allowing the model to reconstruct
original input data. This configuration complicates direct correlation with
the original features, thereby limiting a straightforward interpretation of
feature importance30,31.

We employed chronological splitting to test the model’s adaptability
to unseen viral sequences and evolving treatment trends as the model’s
predictive accuracy can be impacted by the limited representativeness of
training data for aligning viral sequences with treatments. Bayesian
inference aims to mitigate this challenge, and the model performance is
promising for future use of the algorithm to monitor therapeutic effec-
tiveness of existing immune-based therapies against emerging viral
strains. As more viral sequence and laboratory-based data continue to
accumulate, this approach could be extended to other viral agents, such as
influenza and HIV, where antigenic evolution is a critical factor in the
development of effective treatments and vaccines. Overall, the current
study showcases the proficiency of deep learning to detect patterns within
viral sequence and assay-based data, allowing for the prediction of ther-
apeutic effectiveness. Moreover, we demonstrate the use of Bayesian
modeling to quantify prediction uncertainty, enabling the identification of
viral sequences and treatments for which themodel can confidentlymake

predictions, as well as those with limited assurance where assays would be
most informative.

There are several limitations to this study. First, the in vitro assay data
used formodel development is subject to experimental bias. Representation
of viral sequences and therapeutic agents are based on availability of
laboratory-based experiments. Consequently, this may result in reduced
model accuracy for select therapeutic agents and lineages that are under-
represented in experiments, or for which there is much variation in
experimental measurements (Supplementary Table 2). It is worth noting
that the model does output uncertainty values, which improves prediction
reliability and helps address data imbalance issues (SupplementaryTable 1).
Second, the extent to which the test set differs from the training set is not
completely novel. A significant proportion of the test set sequences (56.9%,
or 558 out of 980 sequences) are identical to sequences in the training set
(Supplementary Fig. 5). However, it is important to note that only 23.9%
(234 out of 980 data points) of the test set data has the same therapeutic and
sequence combination as the training set. Moreover, the uniqueness of the
test set goes beyond the comparison of sequences, with ~75% of therapeutic
and sequence pairs not found in the training set. Third, the performance of
our model depends on the accuracy and consistency of previously con-
ducted in vitro neutralization assays. While we used fold change ratios to
standardize results across different assays, various factors, such as assay type
(live virus replication vs. pseudovirus), selected cell lines and alterations in
viral protein processing, can influence assay readouts and result in incon-
sistent findings32. Fourth, it is critical to recognize that the model’s predic-
tions regarding relative changes in in vitro neutralizing activity for
therapeutics and vaccine-elicited sera/plasma do not directly translate to
actual treatment effectiveness. In vivo studies are indispensable for more
precise assessment in this regard, as they encompass a broader array of
physiological factors. Lastly, although our model demonstrated satisfactory
performance on sequences assayed shortly after the training period, its
performance declined for sequences assayed further afterward (Fig. 4). This
suggests that ourmodel is most suited formaking predictions for sequences
emerging shortly after model training. It is important to note that future
endeavors would involve iteratively training the model on all new available
data to ensure the most reliable predictions for novel variants.

Methods
Variational autoencoder (VAE) architecture, training, and
optimization
SARS-CoV-2 genomes present in the NCBI Virus Database were down-
loaded. Sequences collected up to October 31, 2022, were used to train the
VAE. The dataset consisted of 1,208,321 spike protein amino acid
sequences. We aligned and translated the sequences using NextClade33.
Duplicate spike protein sequences were removed, which resulted in a final
dataset of 67,885 unique spike protein sequences. The sequences were one-
hot encoded as 22 by 1273 arrays, as there are 1273 amino acid positions in
theWuhan-Hu-1 spike protein and 22 options at each site: any one of the 20
amino acids, an insertion, or a deletion. In the case of an insertion, we only
encoded that there was an insertion following the current position, without
encoding the identity of the inserted fragment.

The VAE consists of an encoder and a decoder. The encoder com-
presses the spike protein sequence data (one-hot encoded amino acid
sequences) to its latent embedding and the decoder reconstructs the input
sequence data from its latent embedding. In the encoder, the number of
latent dimensions is set to 32 because additional gains in loss after decoding
wereminimal when increasing the number of latent dimensions beyond 32.
The latent space is modeled as a multivariate normal distribution with a
defined latent mean and variance (log-transformed for numerical stability).
A standard normal distribution was used as the prior distribution for the
latent space. A sampling layer is present in the encoder, where data is
randomly sampled from the latent space distribution before being passed to
the decoder.

TheVAEwas compiledwith anAdamoptimizer. The loss function for
theVAE is the sumof the reconstruction loss and theKullback–Leibler (KL)
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divergence between the distribution returnedby the encoder and a standard
normal distribution. The reconstruction loss is calculated using binary
cross-entropy. The VAE loss function is defined as follows:

Lreconstruction ¼ PN

i¼1
�xi log xi þ 1� xi

� �
logð1� xiÞ

LKLdivergence ¼
PN

i¼1

PJ

j¼1
� 1

2 ð1þ log σ2i;j � μ2i;j � σ2i;jÞ

LVAE ¼ Lreconstruction þ LKLdivergence

ð1Þ

where xi represents the i-th input sequence (one-hot encoded), x̂i represents
the reconstructedsequence for input xi, i, j2 represents the variance of the
latent distribution for the i-th inputsequence and j-th latent dimension, and
z represents the mean of the latent distribution for the i-th input sequence
and j-th latent dimension. The reconstruction loss quantifies the ability
toreconstruct the input sequence data from its latent embedding, while the
KL-divergence ensuresthat the learned latent space distribution follows a
standard normal distribution. This helps theVAE learn smooth latent
representations where distance in latent space reflects similaritybetween
inputted sequences. TheVAEwas trained on 80%of the sampled sequences
(N = 54,308) and evaluated on the remaining 20% of sampled sequences

Table 1 | Number (percentage) of COVID-19 therapeutic agents in neural network model training and test sets

Therapeutic class Therapeutic agent Training set Test set All

Convalescent plasma B.1.1.529 Conv. Plasma/Sera 55 (0.9%) 0 (0%) 55 (0.8%)

Convalescent plasma B.1.1.7 Conv. Plasma/Sera 30 (0.5%) 0 (0%) 30 (0.4%)

Convalescent plasma B.1.351 Conv. Plasma/Sera 31 (0.5%) 0 (0%) 31 (0.4%)

Convalescent plasma B.1.617.2 Conv. Plasma/Sera 52 (0.9%) 13 (1.3%) 65 (0.9%)

Convalescent plasma BA.1 Conv. Plasma/Sera 63 (1.0%) 7 (0.7%) 70 (1.0%)

Convalescent plasma BA.2 Conv. Plasma/Sera 20 (0.3%) 54 (5.5%) 74 (1.0%)

Convalescent plasma BA.4/5 Conv. Plasma/Sera 4 (0.1%) 25 (2.6%) 29 (0.4%)

Convalescent plasma BA.5 Conv. Plasma/Sera 0 (0%) 26 (2.7%) 26 (0.4%)

Convalescent plasma COVID-19 Conv. Plasma/Sera 179 (2.9%) 0 (0%) 179 (2.5%)

Convalescent plasma COVID-HIG 39 (0.6%) 0 (0%) 39 (0.6%)

Monoclonal antibody Adintrevimab 69 (1.1%) 0 (0%) 69 (1.0%)

Monoclonal antibody Amubarvimab 165 (2.7%) 31 (3.2%) 196 (2.8%)

Monoclonal antibody Amubarvimab+Romlusevimab 28 (0.5%) 18 (1.8%) 46 (0.7%)

Monoclonal antibody Bamlanivimab 233 (3.8%) 0 (0%) 233 (3.3%)

Monoclonal antibody Bamlanivimab+Etesevimab 61 (1.0%) 0 (0%) 61 (0.9%)

Monoclonal antibody Bebtelovimab 402 (6.6%) 58 (5.9%) 460 (6.5%)

Monoclonal antibody Casirivimab 369 (6.1%) 3 (0.3%) 372 (5.3%)

Monoclonal antibody Cilgavimab 580 (9.5%) 56 (5.7%) 636 (9.0%)

Monoclonal antibody Etesivimab 233 (3.8%) 0 (0%) 233 (3.3%)

Monoclonal antibody Cilgavimab+Tixagevimab 482 (7.9%) 56 (5.7%) 538 (9.0%)

Monoclonal antibody Imdevimab 332 (5.5%) 3 (0.3%) 335 (4.7%)

Monoclonal antibody Regdanvimab 70 (1.1%) 0 (0%) 70 (1.0%)

Monoclonal antibody Romlusevimab 119 (2.0%) 18 (1.8%) 137 (1.9%)

Monoclonal antibody Imdevimab+Casirivimab 78 (1.3%) 3 (0.3%) 81 (1.1%)

Monoclonal antibody S2E12 38 (0.6%) 18 (1.8%) 56 (0.8%)

Monoclonal antibody S309 170 (2.8%) 61 (6.2%) 231 (3.3%)

Monoclonal antibody Sotrovimab 344 (5.6%) 5 (0.5%) 349 (4.9%)

Monoclonal antibody Tixagevimab 610 (10.0%) 58 (5.9%) 668 (9.4%)

Monoclonal antibody VIR-7832 26 (0.4%) 0 (0%) 26 (0.4%)

Vaccine Ad26.COV2.S 73 (1.2%) 0 (0%) 73 (1.0%)

Vaccine BNT162b2 233 (3.8%) 34 (3.5%) 267 (3.8%)

Vaccine Bivalent BNT162b2 OMI (BA.4/5) 4 (0.1%) 21 (2.1%) 25 (0.4%)

Vaccine ChAdOx1 nCoV-19 35 (0.6%) 2 (0.2%) 37 (0.5%)

Vaccine CoronaVac 416 (6.8%) 228 (23.3%) 644 (9.1%)

Vaccine Unspecified/Mixed Bivalent Vaccine 0 (0%) 72 (7.3%) 72 (1.0%)

Vaccine Unspecified/Mixed Vaccine [Prime + Boost] 132 (2.2%) 102 (10.4%) 234 (3.3%)

Vaccine Unspecified/Mixed Vaccine [Prime] 26 (0.4%) 0 (0%) 26 (0.4%)

Vaccine ZF2001 33 (0.5%) 0 (0%) 33 (0.5%)

Vaccine mRNA-1273 231 (3.8%) 8 (0.8%) 239 (3.4%)

Vaccine mRNA-1273.351 24 (0.4%) 0 (0%) 24 (0.3%)

Rows are colored by the therapeutic class.
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(N = 13,577).We trainedtheVAE for 50 epochswith a batch size of 32,while
also providing an early stopping function witha patience of five to stop
training once the validation loss stopped improving for five
consecutiveepochs.

OpenData Portal curation of neutralizing activity against SARS-
CoV-2 variants
The SARS-CoV-2 variant therapeutic data on the OpenData Portal have
been curated by the National Center for Advancing Translational Sciences
(NCATS) in collaboration with the National Institutes of Health (NIH)
Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV)
Preclinical Working Group and Tracking Resistance and Coronavirus
Evolution (TRACE) initiative with support from the Foundation for the
National Institutes of Health (FNIH). The data shared on the OpenData
Portal have been manually curated from publications (both preprints and
peer-reviewed articles) or data directly submitted. Curation efforts prior-
itized publications on advanced stage therapeutic agents (those approved
and/or in clinical trials), with an emphasis on studies conducted 1) by each
agent’s parent pharmaceutical company or 2) with a government partner.
Curation efforts collatedneutralizing activity of vaccine-elicited sera/plasma
and therapeutics against SARS-CoV-2 variants, in addition to related
metadata, from in vitro assays utilizing live or pseudotyped viruses. Fold-
reductions and rawvalues provided via publication or direct submission can
be accessed via download on the OpenData Portal web browser (https://
opendata.ncats.nih.gov/variant/activity).

Preprocessing and encoding of in vitro neutralization assay data
SARS-CoV-2 in vitro neutralization activity data compiled by the National
Center for Advancing Translational Sciences (NCATS) on its COVID-19
OpenData Portal34 were used for model development. The dataset consists
of in vitro assays collected between January 9, 2021, and June 22, 2023. Both
live virus replication assays and pseudotyped virus assays were considered
for this analysis. Neutralization activity fold change ratios between the
SARS-CoV-2 wild-type strain (Wuhan-Hu-1) and spike protein variants
were compiled and log10 transformed. COVID-19 therapeutics and
vaccine-elicited sera/plasma with less than 20 data points were excluded
from our study to ensure high confidence in the predictions. Spike protein
sequences fromvariants testedwere auto-encoded into 32 latentdimensions
using the previously described VAE. The specific therapeutics and vaccine-
elicited sera/plasma evaluated in each assay were one-hot encoded into 40
additional dimensions, consisting of 19monoclonal antibodies, 11 vaccines
(vaccine sera samples) and 10 convalescent plasma samples (Table 1). To
enable quantification of performance against future data, we divided the
available data into training and test sets based on the data collection date.
Specifically, the training set consistedof sequences tested between January 9,
2021, andOctober 31, 2022 (N = 6089), and the remaining test set consisted
of sequences testedbetweenNovember1, 2022, and June22, 2023 (N = 980).
Table 2 reports the number and percentage of sequences belonging to a
particular SARS-CoV-2 viral lineage in both the training and test sets.

Uncertainty-based neural network model architecture, training,
and optimization
A neural network model underwent training, hyperparameter tuning, and
cross-validation of the training set to predict fold changes in neutralization
activity for COVID-19 therapeutics and vaccine-elicited sera/plasma
against variant spike protein sequences. The model was compiled with an
Adam optimizer and a custom loss function (Eq. (2))35. The activation
function for the input and hidden layers is a leaky rectified linear unit
function (LReLU) and the activation function for the output layer is a linear
function.We trained themodel for 100 epochs with a batch size of 32, while
also applying an early stopping function with a patience of ten to stop
training once the validation loss stopped improving for ten consecutive
epochs.

A custom loss function, based on prior literature, was used to optimize
our neural network (Eq. (2)), where the output layer of themodel consists of

Table 2 | Number (percentage) of SARS-CoV-2 lineages in
neural network model training and test sets

Viral lineage Training set Test set All

Single mutation 2717 (44.6%) 0 (0%) 2717 (38.4%)

BA.2 469 (7.7%) 534 (54.5%) 1003 (14.2%)

B.1.351 559 (9.2%) 2 (0.2%) 561 (7.9%)

Omicron: Other 407 (6.7%) 41 (4.2%) 448 (6.3%)

BA.4/5 178 (2.9%) 241 (24.6%) 419 (5.9%)

B.1.1.7 380 (6.2%) 0 (0%) 380 (5.4%)

B.1.617.2 316 (5.2%) 2 (0.2%) 318 (4.5%)

BA.1 299 (4.9%) 0 (0%) 299 (4.2%)

P.1 216 (3.5%) 0 (0%) 216 (3.1%)

B.1.617.1 92 (1.5%) 0 (0%) 92 (1.3%)

B.1427/429 88 (1.4%) 0 (0%) 88 (1.2%)

B.1.526 64 (1.1%) 0 (0%) 64 (0.9%)

BQ.1.1 8 (0.1%) 54 (5.5%) 62 (0.9%)

BQ.1 8 (0.1%) 23 (2.3%) 31 (0.4%)

B.1.429 30 (0.5%) 0 (0%) 30 (0.4%)

XBB 4 (0.1%) 25 (2.6%) 29 (0.4%)

C.37 27 (0.4%) 0 (0%) 27 (0.4%)

B.1.621 27 (0.4%) 0 (0%) 27 (0.4%)

B.1.525 25 (0.4%) 0 (0%) 25 (0.4%)

BN.1 6 (0.1%) 17 (1.7%) 23 (0.3%)

CH.1.1 0 (0%) 17 (1.7%) 17 (0.2%)

B.1.1.519 16 (0.3%) 0 (0%) 16 (0.2%)

B.1.616 14 (0.2%) 0 (0%) 14 (0.2%)

AY 14 (0.2%) 0 (0%) 14 (0.2%)

XBF 0 (0%) 12 (1.2%) 12 (0.2%)

CJ.1.1 0 (0%) 12 (1.2%) 12 (0.2%)

P.2 11 (0.2%) 0 (0%) 11 (0.2%)

B.1.2 9 (0.1%) 0 (0%) 9 (0.1%)

B.1.1.298 9 (0.1%) 0 (0%) 9 (0.1%)

C.1.2 8 (0.1%) 0 (0%) 8 (0.1%)

A.VOI.V2 7 (0.1%) 0 (0%) 7 (0.1%)

R.1 6 (0.1%) 0 (0%) 6 (0.1%)

A.23.1 6 (0.1%) 0 (0%) 6 (0.1%)

A.27 6 (0.1%) 0 (0%) 6 (0.1%)

B.1.1.33, B.1.1.1 6 (0.1%) 0 (0%) 6 (0.1%)

B 6 (0.1%) 0 (0%) 6 (0.1%)

B.1.214.2 6 (0.1%) 0 (0%) 6 (0.1%)

A.23 5 (0.1%) 0 (0%) 5 (0.1%)

B.1.177.31 5 (0.1%) 0 (0%) 5 (0.1%)

B.1.388 4 (0.1%) 0 (0%) 4 (0.1%)

B.1.258 4 (0.1%) 0 (0%) 4 (0.1%)

AV.1 4 (0.1%) 0 (0%) 4 (0.1%)

R.2 4 (0.1%) 0 (0%) 4 (0.1%)

Multiple mutations 4 (0.1%) 0 (0%) 4 (0.1%)

B.1.523 3 (0.0%) 0 (0%) 3 (0.0%)

B.1.619.1 3 (0.0%) 0 (0%) 3 (0.0%)

B.1.617 3 (0.0%) 0 (0%) 3 (0.0%)

B.1.625 3 (0.0%) 0 (0%) 3 (0.0%)

C.36 2 (0.0%) 0 (0%) 2 (0.0%)

B.1.619 1 (0.0%) 0 (0%) 1 (0.0%)
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twoneurons topredict themeanandvarianceof eachobservation35. The loss
function can be described as:

L θð Þ ¼ 1
N

XN

i¼1

ŷi � yi
�� ��2

2σ̂2i
þ log σ̂2i

2
ð2Þ

Where yi is the prediction for the i-th observation, i2 is the estimated
variance for the i-th observation, and yi is the true target value for the i-th
observation. Typically, a Bayesian neural network is trained to predict the
log variance, si=logi2 (Eq. (3)):

L θð Þ ¼ 1
N

XN

i¼1

1
2
exp �si

� �
: ŷi � yi
�� ��2 þ 1

2
s
i

ð3Þ

This is because the loss avoids a potential division by zero35. The
exponential mapping also allows us to regress unconstrained scalar values,
where exp -si is resolved to the positive domain giving valid values for
variance35. Non-Bayesian neural network training methods usually ignore
the variance term in this equation, assuming it is constant across all
observations in the data.However, by adding the variance term, the variance
can be implicitly learned as a function of the data and can be used as a
measure of uncertainty inherent in the observations. Including the variance
term also allows the model to be more robust to noisy data because
observations with higher variance (i.e., higher uncertainty) will have a
smaller effect on the loss.

Data availability
Sequences used to train the VAE were downloaded from the NCBI Virus
Database (https://www.ncbi.nlm.nih.gov/labs/virus/). NCATS, in colla-
borationwithACTIVTRACEand industry partners, has compiled adataset
of in vitro therapeutic activity against SARS-CoV-2 variants from a prior-
itized set of publications (both preprints and peer-reviewed articles). All
variant activity data is made freely available through direct download
(https://opendata.ncats.nih.gov/variant/activity). This data was collected on
August 18, 2023, and was used to train the neural network model.

Code availability
The autoencoder and neural network models were built in Python (3.10.6).
Datawasprepared andvisualizedusingNumPy (1.22.4), pandas (1.4.4), and
matplotlib (3.5.3). The models were implemented in Keras (version 2.9.0)
using a TensorFlow backend (version 2.9.1). The Bayesian Optimization
library in python (https://github.com/fmfn/BayesianOptimization) was
used to perform a search of the optimal hyperparameters of the neural
network model.
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