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Integrative systems biology framework
discovers common gene regulatory
signatures in mechanistically distinct
inflammatory skin diseases
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M. Shahid Mukhtar 2,5

More than20%of thepopulation across theworld is affectedbynon-communicable inflammatory skin
diseases including psoriasis, atopic dermatitis, hidradenitis suppurativa, rosacea, etc. Many of these
chronic diseases are painful anddebilitatingwith limited effective therapeutic interventions. This study
aims to identify common regulatory pathways and master regulators that regulate the molecular
pathogenesis of inflammatory skin diseases. We designed an integrative systems biology framework
to identify the significant regulators across several diseases. Network analytics unraveled 55 high-
value proteins as significant regulators in molecular pathogenesis which can serve as putative drug
targets for more effective treatments. We identified IKZF1 as a shared master regulator in hidradenitis
suppurativa, atopic dermatitis, and rosacea with known disease-derived molecules for developing
efficacious combinatorial treatments for these diseases. The proposed framework is verymodular and
indicates a significant path of molecular mechanism-based drug development from complex
transcriptomics data and other multi-omics data.

Nearly 25% of the world’s population is affected by non-communicable
chronic inflammatory diseases1. Some of the inflammatory skin diseases
include acne, atopic dermatitis (AD), actinic keratoses (AK), psoriasis (PS),
hidradenitis suppurativa (HS), and three types of rosacea (RS) share specific
immune regulator activitieswithpsoriasis1–3.Most of these diseasesmanifest
autoimmune signatures on a temporal basis. Psoriasis is one of the best-
described inflammatory skin diseases that affects approximately 1–3% of
global adults4. Psoriasis patients manifest comorbidities such as diabetes,
metabolic disorders, and severe cardiovascular disease5. Epidermal kerati-
nocytes are the major targets in various skin diseases including HS & PS6–9.
These keratinocytes act as the disease driver in corroboration with immune
cells, specifically T helper 17 cells (Th17), which are also considered
important in the pathogenesis and treatment of these and various other
disease10,11. Importantly, targeting Th17 cell signaling and several inter-
leukin cytokines including IL-23, IL-17A, and IL-17F have improved long-
term remissions by 85–100% in psoriasis patients5,11. Similarly, AD is an
immune-mediated disease that is prevalent in approximately 25% of

children and 10%of adults12. Likewise,HS has a distinct anatomical etiology
including the occurrence of inflammatory nodules, abscesses, and pus-
draining sinus tracts at the places where skin rubs against each other like the
underarm and groin10. The treatment regimens for AD andHS have limited
effectiveness and cannot serve effectively themajority ofmoderate to severe
disease patients. Therefore, understanding the shared and unique genetic
signatures, activated pathways, and regulators through innovative systems
biology and integrativemulti-omics canbehighly significant and rewarding.

The widespread availability of bulk transcriptomics datasets presents
an invaluable opportunity for systemsbiologists to integrate transcriptomics
with other omics layers, including biological networks. This approach
enables a comprehensive and extrapolated investigation of diseases, parti-
cularly immune-mediated disorders, where the underlying molecular
pathways remain incompletely understood13. Network sciences have been
applied to diverse biological domains to identify the associatedbiomolecules
in disease, cancer, infections, and other stress conditions. Briefly, biological
networks are graphical representations containing nodes (genes/proteins)
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and edges (links) for a specific condition14,15. These networks tend to change
their interacting partners in different scenarios including normal/healthy
anddisease response16.Network-based systems biology analyticshas proven
a great tool to unravel the structural properties of biological networks and
highlight the significant contributors to disease pathogenesis and orga-
nismal development across different systems13,17–22. In this study, we
designed an integrative systems biology framework to identify the sig-
nificant regulators across several inflammatory skin diseases. We exploited
the gene co-expression network (GCN)- and protein–protein interaction
(PPI)-based networks to identify shared genes and protein components in
eight skin diseases with relevant functional implications. Further, we
identified 55 high-priority proteins (HPPs) with increased network indices,
which are also associated with immune-mediated pathways. Finally, we
explored the candidate drug–gene interactions to highlight some
therapeutic-relevant target selections for developing putative treatment
strategies. In summary, our integrative framework unravels the data-based
regulatory signatures and activated molecular pathways across inflamma-
tory skin diseases.

Results
A network science-based framework to prioritize genes/path-
ways from transcriptome datasets
To study the shared and unique genetic signatures, regulators, and prior-
itizing genes in different chronic inflammatory skin diseases, we imple-
mented an integrative multi-omics framework utilizing the transcriptome
datasets and extrapolating the network-based analysis pipeline. In this fra-
mework, 11 different steps are followed to identify the most appropriate
drug–gene interactions (Fig. 1). 1. First, we extracted publicly available
transcriptome datasets in eight different inflammatory skin diseases
(namely: acne, atopicdermatitis (AD), actinic keratoses (AK), psoriasis (PS),
hidradenitis suppurativa (HS), and three types of rosacea (RS)) as described
in the methods. 2. Subsequently, we performed the gene co-expression
network construction and analysis for all eight disease datasets through
WGCNA23. We achieved eight disease-specific networks ranging from 320
nodes with 264 edges in Acne to 5465 nodes with 132,849 edges in PS.
Which demonstrated the challenges in the handling of multivariate tran-
scriptomes. 3. The third step was to perform DEG analysis on all eight
disease datasets with the same threshold parameters24. We observed some
similarities anddifferences in expressionprofiles among eight diseases. 4.To
establish the disease-specific protein–protein interaction network, we next
combined the results from co-expression networks, DEGs, and the largest
publicly available human protein–protein interaction network from the
STRING database25. Finally, we had a collection of eight disease-specific
protein–protein interaction networks ranging from 90 nodes with 90 edges
in Acne to 3622 nodes with 33,173 edges in PS. 5. Based on the network
explosibility, a comparable number of nodes and interactions, as well as

power-law distribution of eight networks, we selected four disease-specific
interaction networks including AD, PS, HS, and RS for further analysis. 6.
Afterwards, we performed network centrality analyses on all four filtered
networks to identify the most important players in each disease13. Specifi-
cally, we analyzed the networks by betweenness centrality (bottlenecks),
degree (hubs), eigenvalue (combined effect of degree and betweenness),
information centrality (ability to pass stimuli information), and inner core
proteins identification by the weighted k-sell decomposition method. 7.
With that, we obtained a collection of high-priority proteins (HPPs) in these
four inflammatory skin diseases. When comparing the appearance of these
HPPs in all four diseases, we identified shared and unique HPPs in each
disease. 8. Then, we mapped the HPPs in significantly activated/inhibited
signaling pathways in these four skin diseases. Interestingly, we found some
highly activated signaling pathways are shared among all four diseases.
Additionally, we identified the most important regulators shared among
four diseases andmapped them against their regulated pathways. 9.Moving
forward, we identified the HHPs interacting with drugs from the publicly
available databases DGIdb26. These drug–gene (HPP) interactions can
provide significant information about the potential therapeutic options for a
disease or class of diseases. 10. From these data, we propose that these drugs
can be repurposed for treating several inflammatory skin diseases either
alone or in combination. 11. All the predictive outcomes including the role
of genes, pathways,HPPs, drug–HPP interactions, andother predictions are
required to be validated experimentally for each disease condition. Taken
together, we proposed a modular framework that can be applied to any
polygenic chronic inflammatory disease to refine the regulator identifica-
tion, pathway association, and drug–gene prediction for the alternative
therapeutic targets in any immunogenetic-related disease.

Different chronic inflammatory skin diseases display unique and
conserved transcriptome activity
The conventional transcriptome-based analysis demonstrates the expres-
sion behavior in disease for the corresponding cohort of samples. To begin,
we identified the total number ofDEGs from the transcriptomics (RNA-Seq
andmicroarray) datasets in inflammatory skin diseases including acne, AD,
AK, CD, HS, ICD, PS, and three types of RS; erythematotelangiectatic
rosacea (ER), phymatous rosacea (PhyR), and papulopustular rosacea
(PapR) with a threshold (log2FC ≥ |1|; FDR < 0.05). Based on the tran-
scriptomics platform and diseases, we identified a diverse number of DEGs
per disease (Fig. 2A and Data S1). For example, ICD has 65 up- and 47
down-regulated genes, whereas most DEGs were discovered in PS disease
with 1763 up- and 3243 down-regulated genes (Fig. S1), respectively.
Whereas, acne, CD, and HS have a similar breakdown of DEGs (Data S1).
Afterward,we performed the functional analysis forDEGs in each disease to
explore the activated/inhibited pathways in those datasets. We report that
the Th1 pathway, dendritic cell maturation, Th17 activation pathway,

Fig. 1 | Framework to prioritize genes/pathways
from the transcriptome. A Schematic representa-
tion of the implemented integrative multi-omics
framework utilizing the transcriptome datasets and
extrapolating the network-based analysis pipeline.
Eleven different steps need to be followed to identify
the most appropriate drug–gene interaction for any
immunogenetic-related disease.
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Fig. 2 |Differential expression profiles in eight inflammatory skin diseases. AThe
total number of differentially expressed genes (DEGs) in inflammatory skin diseases
including acne, atopic dermatitis (AD), actinic keratoses (AK), contact dermatitis
(CD), hidradenitis suppurativa (HS), irritant contact dermatitis (ICD), psoriasis
(PS), and three types of rosacea (RS; erythematotelangiectatic rosacea (ER), phy-
matous rosacea (PhyR), and papulopustular rosacea (PapR) with a threshold

(log2FC ≥ |1|; FDR < 0.05). Upregulated DEGs are marked in light red and down-
regulated DEGs are marked in light green. B Significantly activated and inhibited
canonical pathways in different inflammatory skin diseases (BH P-value < 0.05).
CDifferential expression profile of total common DEGs (55) in eight inflammatory
skin diseases. D The enriched functional pathways and ontologies of 55 common
DEGs across eight inflammatory skin diseases (P-value < 0.05).
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interferon signaling, Th2 pathway, IL-8 signaling, GP6 signaling pathway,
CD28 signaling in T helper cells, HOTAIR regulatory pathway, NF-κB
signaling are some of the significant activated canonical pathways in these
chronic inflammatory skin diseases (BH P-value < 0.05; Fig. 2B and
Data S1). Interestingly, we found that the senescence pathway, 1L-7 sig-
naling, and IL-13 signaling are activatedonly in acne andAK,whereasBCell
receptor signaling was activated in HS, PapR, and CD.

To identify the common transcriptomeactivity amongeachdisease,we
performed a commonality analysis. We found that 55 DEGs (including
CD28, CD48, CD53, ID4, IL37, IL4R, IL7R, JAK3, KRT16, KRT6A, PI3,
S100A7, S100A8, S100A9, SERPINB3, SERPINB4, andUPP1) are common
in seven inflammatory skin diseases, except irritant contact dermatitis
(ignored due to significantly a smaller number of DEGs reported) (Fig. 2C
and Data S1). These are the core transcriptome signatures across diseases
and are involved in leukocyte migration, NABA Matrisome associated,
response to the bacterium, regulation of defense response, regulation of
adaptive immune response, neutrophil degranulation, cytokine response,
burn,woundhealing, cellular extravasation,TNF signaling, formationof the
cornified envelope, morphogenesis of epithelium, T-cell polarization by
chemokine receptors, Immune cells, and miRNAs interactions, costimula-
tion by the CD28 family, signaling by aberrant PI3K in cancer, and lym-
phocyte activation (P-value < 0.05; Fig. 2D and Data S1).

These initial results suggest that there is a huge complexity among
chronic inflammatory skin diseases with only a few shared and distinct
genes and associatedpathways. Thus, we explored the systembiology-based
methods to unravel intricate relationships, novel gene regulators, and
master regulators of pathways altered in these diseases.

The correlation method predicted novel genes involved in four
(AD, HS, PS, and RS) chronic skin diseases
The correlation-based gene clustering is used to reduce the high-
dimensional transcriptomics datasets for easier human interpretations by
clustering genes into several groups based on their expression profile. GCN-
based clustering is also a subtype of conventional clustering with reduced
complexity through network representation. The resultant GCN can be a
source point to predict the relationships among genes in a biological
pathway through the guilt-by-association concept27. However, the main
challenge is to restrict spurious correlations,which canbe achieved to a great
extent by using datasetswith a higher numberof samples/conditions, robust
GCN network construction algorithms, and standard parameters for each
experiment. Thus, we performed our correlation-based analysis through
WGCNA with the same parameters of power-cutoff, weight-cutoff, and
clustering algorithm for eight inflammatory skin disease transcriptomes23.
There are eight resultant GCNs of which acne (320 nodes and 264 edges) is
the smallest, HS is the largest by an edge (4162 nodes and 420,422 edges)
and, PS (5465 nodes and 132,849 edges) is the largest by nodes.AK,CD, and
ICD have a comparable number of nodes and an edge. (Fig. 3A and
Data S2).

To begin our GCN analysis, we performed several network centrality
analyses including the degree to check the scale-free properties of each
network28. As expected, we found that all eight GCNs; Acne, AD, AK, CD,
HS, ICD,PS, andRS follow scale-freeproperties calculatedby thepower-law
distribution with r2 values 0.94 for AD and 0.64 for ICD (Fig. 3B and
Data S2). Though most of these GCNs are biologically relevant through
power-law distribution, they don’t seem comparable to each other. There-
fore, random network analysis was performed and plotted on all these
networks to further explore the key features. From the results, we found all
eight GCNs showed relatively high neighborhood connectivity, especially
for PS, ICD, and AD, which are 0.5164, 0.4764, and 0.419 (Fig. S2B), and
significantly high clustering coefficients as 0.7159 for PS that indicates the
co-expression networks have strong local interactions. To check the extent
of coverage in anetwork,we calculated the network exposibility as described
in the methods section. We found that four GCNs corresponding to acne,
AK, CD, and ICD have a small number of nodes and a high number of
connected components, whereas the remaining four other GCNs related to

AD, HS, PS, and RS have a high number of nodes but a smaller number of
connected components comparably (Fig. 3CandDataS2).Todetermine the
exposibility-based reliability of eight GCNs, we set a network exposibility
threshold ≥ 10 andfilteredour four disease-specificGCNs includingHS, PS,
AD, and RS for further analysis (Fig. 3D).

It is well reported that some of the immune-mediated diseases
including PS, HS, and AD share most of their disease-associated pathways
and comorbidities with each other29,30. Therefore, to understand the shared
gene patterns among these diseases, we explored the core co-expression
network of four diseases. Interestingly, we report a core co-expression
network among PS, HS, and AD with 145 genes and 161 associations
(Fig. 3E and Data S2). Interestingly, some of these genes are RPS-, RPL-,
MRPL-, EIF-, COX-family genes, ILF2, PPIA, NDUFAB1, NDUFA4,
ATP5C1, and FH. Furthermore, to verify the biological associations of 145
core genes, we performed gene ontology analysis. The ontology analysis
identified the enriched pathways including translation initiation complex
formation, diabetic cardiomyopathy, ribosome assembly, regulation of
proteolysis, TNF-alpha/NF-kappa B signaling complex 6, telomerase RNA
localization to Cajal body, translation factors, amebiasis, Interferon type I
signaling, Emerin complex-52, protein targeting, and DNA repair31–35 (P-
value < 0.05; Fig. 3F and Data S2).

Similarly, we explored the core co-expression network among PS, HS,
and RS. In this analysis, we found a small core network encompassing 30
genes and 30 associations (Fig. 3G andData S2). Interestingly, some of these
genes are IKAROS Family Zinc Finger 1 (IKZF1), CD2 molecule (CD2),
CD53 molecule (CD53), SAM And SH3 domain containing 3 (SASH3),
Lysosomal Protein Transmembrane 5 (LAPTM5), Interleukin 10 Receptor
Subunit Alpha (IL10RA), Protein Tyrosine Phosphatase Receptor Type C
(PTPRC), and Pleckstrin (PLEK). Furthermore, to verify the biological
associations of 30 core genes in HS, AD, and RS, we performed gene
ontology analysis. We found that most of the enriched pathways are cell
activation, signaling by Interleukins, CSI at the vascular wall, downstream
TCR signaling, heterotypic cell-cell adhesion, neutrophil degranulation, B
cell receptor signaling, cytokine in immune response, and cellular
homeostasis33,35–41 (P-value < 0.05; Fig. 3H and Data S2). These results
suggest the significance of correlation-based GCN construction and ana-
lyses to identify the emerging and shared players in associated pathways
among inflammatory skin diseases.

Interactome analysis identified the central proteins in psoriasis,
hidradenitis suppurativa, atopic dermatitis, and rosacea
Themolecularmechanisms and intricacies of biological processes associated
with immune-mediated skin diseases are mostly determined by protein
interactions in certain pathways42. Given that the coverage of DEGs from
transcriptome to differentially expressed proteins is a maximum of only
~60%, we used the disease-specific co-expressed gene list to extract the PPI
network. These interactions can be more relevant in any stress condition if
they are also part of corresponding GCNs by satisfying the guilt-by-
association assumption43. To explore these possibilities, we constricted the
disease-specific PPI network by integrating the co-expressed genes into the
known interactions from the STRING database25. The resultant PPI net-
works/interactomes for these four diseases include PS with the greatest
number of nodes (3622 nodes and 33,173 edges) and RS with the least
number of nodes (851 nodes and 3234 edges) (Fig. 4A and Data S3). It is
reported that some of themolecular pathways and disease comorbidities are
shared among PS, HS, AD, and RS1. To identify the core proteins in four
PPIs,weperformed the commonality analysis and found that 53proteins are
shared among these four inflammatory skin diseases (Fig. 4B and Data S3).
Some of these proteins are CD2, CD3D, CD53, CD96, CDK1, COL1A1,
COL1A2, COL3A1, COX5A, COX7B, CXCR4, DCN, FH, IKZF3, IL10RA,
ITGAL, KRT6A, KRT6B, LAPTM5, and LCK, which participate in
immunodeficiency, anemia, Th1 and Th2 cell differentiation, Th17 cell
differentiation, lymphocyte activation, diabetic cardiomyopathy, neutrophil
degranulation, membrane raft distribution, lymphocyte-mediated immu-
nity,TYROBPcausal network inmicroglia, response tomolecule of bacterial

https://doi.org/10.1038/s41540-025-00498-x Article

npj Systems Biology and Applications |           (2025) 11:21 4

www.nature.com/npjsba


origin, microglia pathogen phagocytosis pathway, homeostasis of several
cells, formation of the cornified envelope, negative regulation of defense
response, cell cycle phase transition, positive regulation of endopeptidase
activity, regulation of glial cell differentiation, acute viral myocarditis,
human cytomegalovirus infection, and immune effector process (Figs.
S3 and S4 and Data S3).

The disease-specific interactomes position their important proteins in
a particular arrangement to communicate throughout the network most
efficiently. To explore these structural arrangements,weperformednetwork
analysis on four disease-specific PPIs including PS, HS, AD, and RS. To
begin our analysis first, we tested the biological relevance of interactomes by
performing the power-law distribution analysis of four PPIs to verify their
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scale-freeness28,44. Interestingly, we report that all four PPIs for PS, HS, AD,
and RS follow scale-free properties calculated by the power-law distribution
and the r2 valuesare similar (Fig. 4CandDataS3).Randomnetwork analysis
was also applied to all PPI networks to further explore their features. The
results showed all four PPI networks for PS, HS, AD, and RS showed an
obviously high clustering coefficient which are 0.4945, 0.4586, 0.4814, and
0.4479 which indicates they have strong local interactions (Fig. S3A). Fur-
thermore, the high neighborhood connectivity also proves there are strong
local interactions in these four PPI networks as the values of 0.4408, 0.3638,
0.3333, and 0.3303 for PS, HS, AD, and RS. Previously it has been reported
that the network-basedmethod has successfully highlighted the central and
core proteins associated with disease pathogenesis13,42,44. Therefore, we
leveraged a part of this analysis in our framework and analyzed four PPIs
with a degree, betweenness centrality, eigenvector, information centrality,
and weighted k-sell decomposition method. First, we explored the degree
distribution of expressed genes (Exp; FDR < 0.05) and non-expressed (Not-
Exp; FDR > 0.05) for each disease. Interestingly, we found that expressed
genes of all four diseases namely HS, PS, AD, and RS encompass a high
degree distribution than their non-expressed counterparts (Fig. 4D and
Data S3), Mann–Whitney test P-value (HS < 0.05, PS < 0.0001, AD <
0.0001, and RS > 0.66).

Previously, we have demonstrated that some of the highly connected
genes also possess other network properties, which make them extremely
vulnerable during disease pathogenesis13,22. Therefore, we calculated the
correlation between degree centrality and other centralities including
information, eigenvector, and betweenness centralities of all four PPI net-
works. Interestingly, we found that the degree of PS and HS are strongly
correlated with information centrality with r > 0.6 for both, whereas this
correlation is not strong in AD and RS with r < 0.5 (Fig. 4E). Similarly, we
computed the correlation among degree and eigenvector centrality and
reported that PS, HS, and AD have the strongest correlation (r < 0.5),
whereas RS has the weakest correlation (r < 0.5, Fig. 4F). Differently, the
correlation between degree and betweenness is very poor in PS, AD, and RS
(r < 0.5) and strong in HS (r > 0.5) (Fig. S3B). Further, we decomposed the
PPI networks into k-shells through the Weighted k-shell decomposition
method to identify the hidden genes, which the conventional centralities fail
to identify17. Next, we identified the inner layer and peripheral (outer) layer
proteins in each PPI as mentioned by Ahmed et al.17. We report that there
are 461, 573, 393, and 95 proteins in the inner layer and 3135, 1982, 1466,
and 754 proteins in the outer layer of PS, HS, AD, and RS, respectively
(Data S3). Moving forward, we explored the degree and betweenness cen-
trality distributions of the inner layer and outer layer proteins in four PPIs.
We report that inner-layer proteins possess a significantly higher degree
compared to outer-layer proteins (Fig. 4G; Mann–Whitney test P-value <
0.0001, Data S3). However, we do not see much difference in the
betweenness centrality distribution of inner and outer layer proteins
(Fig. 4H; Mann–Whitney test P-value < 0.0001). These analyses confirm
that some of the proteins of PPIs share different types of high centrality
values, which can be central in the disease pathogenesis. Additionally, we
investigated the high centrality proteins (significant proteins) by selecting
the top 5% of high centralities i.e Hub (degree), bottleneck (Betweenness,
BW), information centrality (IC), and eigenvector centrality (EV) for
individual disease-specific PPInetwork.Wedemonstrate that 46, 51, and 23

proteins are shared by all four centralities in PS, HS, and AD, respectively
(Fig. 4I–KandData S3).Whereas therewas not a single protein sharedby all
four centralities in RS (Fig. 4L Data S3). Interestingly, we also found that
most of the high betweenness centrality (bottleneck) proteins are not shared
by any other centrality. These analyses indicate that most of these bottle-
necks are part of smaller subnetworks in four PPIs.

Network centrality-basedprioritizationof proteins andpathways
in chronic inflammatory skin diseases
It has been previously described in several instances that in the disease-
specific interactomes, the most significant contributing proteins have a high
degree (connections) and high betweenness (bottlenecks) against other
proteins throughout the PPI network18–20,42,45. Further, the analysis was
expanded to other centralities including information and eigenvector cen-
tralities, which improved the identification of significantly contributing
proteins in the interactome13. Inspired by these studies, we identified the
significant proteins for disease-specific PPI networks of PS. HS, AD, and RS
individually. The top 5% of centrality value nodes with the degree,
betweenness, eigenvector, information centrality, and the inner layer pro-
teins from the weighted k-shell decomposition method were identified as
significant proteins. Next, we put effort into classifying these significant
proteins as regulators in four skin diseases in this study and termed them as
HPPsor significant regulators (Fig. 5AandDataS4).Asa result,we identified
55 HPPs that contribute significantly to the pathogenesis of four selected
diseases (Data S4). Further, we explored the regulator activity of these 55
HPPs and found that most of these proteins are significantly activated in at
least seven inflammatory skin diseases (Fig. 5B, BH P-value < 0.05; Activa-
tion z-score > |1|; Data S4). Interestingly, someof these 55HPPs are involved
in RTKs signaling, proteoglycans in cancer, cell morphogenesis, hemopoi-
esis, PIDCXCR4pathway, epithelial cell differentiation, cytokine signaling in
the Immune system, adherens junction, regulation of kinase activity, cellular
response to lipid, head, and neck SCC, response to wounding, Hippo sig-
naling regulation46, Interferon type I signaling, PI3K-Akt signaling, leukocyte
activation, response to estradiol, lymphocyte activation37, Th1, and Th2 cell
differentiation39, and NK cell-mediated cytotoxicity41 (Fig. 5C, Data S4; P-
value < 0.05). Most of these HPPs and associated pathways are known for
their major contribution to several immune-mediated diseases5,10,11,42,44,47–50.
Additionally, we performed disease association experiments using GWAS
databases including DisGeNET and enrichR disease ontology. Most of the
highly enriched diseases for HPPs are cancer, IBD, MS, Colitis, Lupus, and
other inflammatory diseases (Fig. S5). Important to this study, hubs
including STAT1, TP63, CD2, EGFR, and YAP1 have been previously
reported in multiple skin conditions including HS, and could be promising
targets for broader therapeutic applications41,51,52. Recently,wehave identified
CD2 as an important therapeutic target and utilized an anti-CD2 therapy to
reduce the cytokine/chemokine production in Hidradenitis suppurativa in
organoids culture41. We also evaluated the enrichment of IKZF1 in negative
control ARCHS4 database53 and found its enrichment in immune (T and B)
cell activation and differentiationwith fair expression in Skin tissue (Fig. S6).
Some of themouse phenotypes associated with IKZF1 are abnormal thymus
physiology, abnormal humoral immune, abnormal bonemarrow, and B cell
deficiency. These results highlight the significance of these hubs in the
pathogenesis of different skin diseases.

Fig. 3 | The co-expression networks highlight core genes in several inflammatory
skin diseases. A Different co-expression networks were constructed with the same
parameters through WGCNA for eight inflammatory skin diseases with the corre-
sponding number of nodes and edges. The networks are acne (320 nodes and 264
edges), atopic dermatitis (AD; 3259 nodes and 13,716 edges), actinic keratoses (AK;
572 nodes and 1249 edges), contact dermatitis (CD; 697 nodes and 763 edges),
hidradenitis suppurativa (HS; 4162 nodes and 420,422 edges), irritant contact der-
matitis (ICD; 478 nodes and 698 edges), psoriasis (PS; 5465 nodes and 132,849
edges), and rosacea (RS; 1825 nodes and 11,810 edges). B The power-law distribu-
tion of eight co-expression networks to measure their scale-freeness. C The table

illustrates the total number of nodes and connected components to determine the
network exposibility for each co-expression network. D The network exposibility
distribution for eight co-expression networks to illustrate the robust networks to
study further with parameter (network exposibility > 10). E The core co-expression
network among psoriasis, hidradenitis suppurativa, and atopic dermatitis. F The
gene ontology analysis of enriched pathway of core co-expression network genes
among PS, HS, and AD (P-value < 0.05). G The core co-expression network among
HS, AD, and RS. H The gene ontology analysis of enriched pathway of core co-
expression network genes among hidradenitis suppurativa, atopic dermatitis, and
rosacea (P-value < 0.05).
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Fig. 4 | The protein–protein interaction (PPI) networks describe the structural
topology of proteins in four inflammatory skin diseases. ADifferent PPI networks
were constructed with a compendium of human interactome extracted by co-
expression network nodes for four inflammatory skin diseases with a corresponding
number of nodes and edges. The PPI networks are psoriasis (PS; 3622 nodes and
33,173 edges), hidradenitis suppurativa (HS; 2582 nodes and 37,498 edges), atopic
dermatitis (AD; 1866 nodes and 6428 edges), and rosacea (RS; 851 nodes and 3234
edges).BThe shared proteins in all four PPI and their expression pattern across four
diseases. Upregulated DEGs are marked in light red and down-regulated DEGs are

marked in light green. C The power-law distribution calculation of eight co-
expression networks to measure their scale-freeness. D The degree distribution of
expressed genes (Exp) and not expressed genes (Not-Exp) in four disease-specific
PPIs. E, F The correlation plots illustrate the distribution among degree, informa-
tion, and eigenvector of all four PPI networks. G, H The distribution of inner and
outer layer proteins with a degree, as well as betweenness centrality in all four PPI
networks. I–L The shared and unique proteins with significantly high centralities
(top 5%) for individual disease-specific PPI networks.
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Fig. 5 | The identification of high-priority proteins (HPPs) from disease-specific
protein–protein interaction (PPI) networks and their regulatory activity. A The
framework to identify theHPPs for each PPI network. The top 5% of centrality value
nodes with a degree, betweenness, eigenvector, information centrality, and the inner
layer proteins from the weighted k-shell decomposition method were identified as
significant proteins. If these significant proteins are also significantly activated or
inhibited regulators in each of the eight inflammatory skin diseases are termedHPPs

or significant regulators. B Our network-centric approach identified 55 HPPs and
their activity across inflammatory skin diseases. The activated regulators aremarked
in light red and the inhibited regulators are marked in light green. C The gene
ontology analysis of the enriched pathway of 55 HPPs (P-value < 0.05).
D Drug–gene interaction network pairs for HPPs and chemical compounds with
publication listed in DGIdb.
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Subsequently, we investigated the reported potential therapeutics for
candidate 55 HPPs, which may help in designing highly effective drug
repurposing strategies. We extracted the drug–gene interaction network
pairs from DGIdb26 for 55 HPPs with available literature publications. We
found a total of 32 HPPs have a known compendium of 199 drug com-
poundswith 237 interactions (Fig. 5D andData S4). Interestingly, we report
that some 55 HPPs i.e., CD2, LCK, STAT1, TNFRSF1B, IKZF1, APP, and
BMP7 can be a high-priority drug target for several of these chronic skin
diseases. Recently, we described the role of CD2 in the molecular patho-
genesis ofHS.We specifically defined the role ofNK,NKT, andTcells in the
disease progression of HS41.

IKZF1 is a potential therapeutic target for several inflammatory
skin diseases
Given the overlap in the molecular profiles of multiple inflammatory skin
diseases, we explored the shared significant regulator proteins inHS, PS, AD,
and RS. For this, we complied all the significant proteins based on five
centralitymethods (degree, betweenness, information, eigenvector centrality,
andweightedk-shell decomposition) for eachof these diseases.As a result,we
have identified a list of 236, 195, 168, and 72 significant proteins, respectively
in PS, HS, AD, and RS (Fig. 6A and Data S4). Afterward, we studied the
distribution of shared and unique significant proteins in each PPI network
and found that six proteins (NDUFAB1,MRPL3,DDX1,EIF2S1, SLIRP, and
ATP5C1) are contributing significantly to these four diseases. Interestingly,
most of these genes are related to mitochondrial metabolism, protein trans-
lation in DNA damage. Earlier DNA damage and mitochondrial damage-
related signalingwere found to be associatedwithmultiple diseases including
HS in the skin34,54. In addition, these genes have also been associatedwithHS-
related co-morbidities including heart and brain comorbidities55–58. Whereas
there is only one protein IKZF1 contributing significantly toHS, AD, and RS
with high network centrality values, we explored the drug-gene interaction of
IKZF1. In this regard, six drugs including lenalidomide, daunorubicin,
methotrexate, cytarabine, imatinib, and fludarabine are known to target
IKZF1 (Fig. 6B). Some of the drugs that we identified have been reported to
alter IKZF1 functionandareapart inclinical trials. In fact, lenalidomidealone
and in combination with other drugs including pomalidomide have been
reported tomanagemultiplemyeloma and limit autoimmunity and immune
cell activity59–61. Interestingly, we also found that daunorubicin also targets
APP and BMP7 which are also part of predicted 55 HPPs. Similarly, meth-
otrexate also targets CCND1 and BMP7, and cytarabine targets BMP7 too
(Fig. 5D). Thereafter, we extracted all the possible interactions of IKZF1 from
HS-PPI, HS-GCN, and known TF-target relationships to explore the extra-
polating effect of a drug on the IKZF1 and its partners.We found that IKZF1
can be a really good candidate as it acts as a master regulator by interacting
with 19 targets, 62 proteins, and 88 co-expressed genes (Fig. 6C andData S4).
We hypothesized that the activities of these proteins and co-expressed genes
can be altered by targeting IKZF1 with a specific drug, such as lenalidomide.
As IKZF1 is shared among three of these skin diseases, we surveyed the
expression pattern of IKZF1 interacting and co-expressing genes in HS, PS,
AD, and RS. Interestingly, we found that most of the IKZF1 interacting
partners; 19 targets, 62 proteins, and 88 co-expressed genes follow a similar
expression pattern across four inflammatory skin diseases (Fig. 6 D–F and
Data S4). This is consistent with our own observations demonstrating some
efficacy of lenalidomide in suppressing inflammatory responses in our HS
model7.

Taken together, our study identified high-value proteins involved in
the pathogenesis of chronic skin diseases including HS, PS, AD, and RS.
Additionally, we designed a robust framework to identify significant con-
tributors utilizing transcriptome datasets and integrative multi-omics
approaches supported by network systems biology for more accurate pre-
dictions of regulators in most chronic skin diseases.

Discussion
Almost 1/5th of the human population across the world is affected by some
type of non-communicable chronic skin inflammatory disease62. The

disease manifestation and immune regulatory signatures are shared among
some of these inflammatory skin diseases. The high-throughput ‘omics
technology and robustmulti-omics network integration techniques showed
immense potential to accelerate more comprehensive and system-wide
discoveries in the molecular pathogenesis of complex inflammatory skin
diseases. Here, our designed robust framework, identified significant con-
tributors from different transcriptome datasets and integrative multi-omics
supported the network systems biology for more accurate predictions of
significant regulators of these inflammatory skin diseases (namely: acne,
AD, AK, CD, ICD, PS, HS, and three types of RS). Our conventional and
unconventional biological data analysis approach extracted the shared and
unique biomolecular (gene/protein/regulator) signatures and biological
processes in four (PS, PS, AD, and RS) of these eight inflammatory skin
diseases. Further, systems genetics and network biology-driven analyses
were instrumental in prioritizing the most relevant proteins (55 high-
priority proteins; HPPs) across four of these inflammatory skin diseases.
These HPPs can serve as a template to study the impact and response of
disease pathogenesis of these inflammatory skin diseases, and putative drug
targets strategies either as standalone or combinatorial approaches. Overall,
this study employs advanced and powerful network systems-based analyses
that combine integrativemulti-omics to establish amutual understandingof
inflammatory mechanisms in PS, PS, AD, and RS.

In the last two decades, PS has been one of the most studied inflam-
matory skin diseases63, which shares a significant number of immune-
mediated pathways with other inflammatory diseases including acne, AD,
AK, HS, and RS. For example, similar to psoriasis, targeting Th2 cells, IL-4,
and IL-13 have been the most efficacious (50–70%), and advanced therapy
for AD49 and Janus kinase (JAK) inhibitors has been demonstrated to
suppress the cytokine responses more effectively and are also a powerful
treatment strategy for AD49. HS is also an inflammatory skin disease
implicated by the pathogenesis of neutrophilic inflammation, dysbiosis,
TNF, interferon responses, hair- and skin-gland abnormalities, auto-
antibodies, and plasma cells50. Our multi-omics analysis identified the
shared molecules, regulators, and pathways at transcriptome and inter-
actome layers in four diseases including TNF-alpha/NF-kappa B signaling,
translation factors, amebiasis, Interferon type I signaling, Cytokine signal-
ing, and interleukin signaling. These pathways have been under investiga-
tion to manage/treat several immune system diseases35,64. For example, our
group has reported evidence of dysregulated protein translation control
through upregulation in expression and phosphorylation of eIF4E in HS
skin31. Aberrant expression and activation of serine proteases and PAR-2
have been observed in AD lesional skin32. TNF-α is a key inflammatory
player in HS, PS, and AD32,33,35. Anti-TNF therapies like adalimumab have
shown efficacy in treating HS35. Similarly, type I interferon signatures are
reported with the HS disease34. Immune cell activation in HS, AD, and
RS36,39,41, signaling by Interleukin35,38, and B cell receptor signaling in HS65.
Taken together, our analysis framework identified the most intrinsic
properties of skin diseases.

Our network analytics utilizing different conventional and improved
centralities appreciably identified the central proteins of these skin disease-
specific interactomes, as well as substantially improving the classification of
significant 55 HPPs in the pathogenesis of PS, HS, AD, and RS. The func-
tional analysis of these HPPs further highlighted the Cytokine Signaling,
adherens junction, response to wounding, Hippo signaling regulation,
Interferon type I signaling, PI3K-Akt signaling, leukocyte activation, Th1,
and Th2 cell differentiation, NK cell-mediated cytotoxicity to name a few.
Many of these pathways have been validated in various earlier
investigations42,49,66. Recently, we have demonstrated the involvement of
many of these cellular andmolecular signalingpathways in the pathogenesis
of HS41, which is the current focus of our laboratory. These findings
demonstrate the effectiveness of a network centrality-based framework to
untangle the underlying players of these diseases.

Our integrative approach combines network topology with multi-
omics data, leveraging five distinct centrality measures—degree, between-
ness, eigenvector, information centrality, and weighted k-shell
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Fig. 6 | The identification of shared significant regulator proteins in four
inflammatory skin diseases. A The Venn diagram represents the distribution of
shared and unique significant proteins in each PPI network. Interestingly, IKZF1
protein is shared among hidradenitis suppurativa (HS), atopic dermatitis (AD), and
rosacea (RS) with high network centrality values.BThe six drugs are known to target

IKZF1. C The IKZF1 acts as a master regulator by interacting with 19 targets, 62
proteins, and 88 co-expressed genes. Activities of these proteins can be altered by
targeting IKZF1 with the drug Lenalidomide. D–F The expression profile of IKZF1
interacting partners; 19 targets, 62 proteins, and 88 co-expressed genes in four
inflammatory skin diseases including HS, PS, AD, and RS.
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decomposition—to uncover key regulatory proteins thatmay act as “master
regulators.” By expanding beyond traditional methods and incorporating
diverse centrality metrics, our strategy reveals hidden patterns and reg-
ulatory mechanisms, offering novel insights and potential advancements in
therapeutic and biotechnological applications (Fig. 5). Recent studies have
demonstrated the significant impact of modeling regulatory network
topology on understanding the genetic basis of complex traits67–69. By ana-
lyzing 18 human traits across 38 distinct regulatory networks, it was shown
that genetic signals associated with these traits are frequently enriched
within interconnections that are specific to the cell types or tissues most
relevant to the traits67. This finding highlights the importance of context-
specific regulatory interactions in elucidating the underlying genetic
mechanisms. Furthermore, heritability enrichment within these context-
specific regulatorynetworks has been shown to enhance the identificationof
phenotype-relevant tissues, offering a more precise approach to linking
genetic variations with their functional consequences in specific biological
contexts68. These insights highlight the potential of leveraging network-
based methodologies to deepen our understanding of trait-specific genetic
architecture.

Our integrative multi-omics framework has identified IKZF1 as a
significant shared regulator among HS, AD, and RS. In this study, IKZF1 is
associated with chromatin remodeling and lymphocyte differentiation
which can influence the disease pathogenesis. The diverse mechanisms
linked to IKZF1 dysfunction contribute to a spectrum of immune-related
conditions, including heightened vulnerability to infections, autoimmune
diseases, allergic reactions, and various types of cancer. These alterations in
IKZF1 function candisrupt normal immune responses, leading to a range of
pathological outcomes that span from impaired pathogen defense to aber-
rant immune activation and malignant transformation70. Of note, several
studies have already established IKZF1’s significant role in various auto-
immune and inflammatory conditions. Hu et al.71 demonstrated IKZF1’s
critical function in systemic lupus erythematosus pathogenesis71. Klarić et al.
(2020) revealed IKZF1’s involvement in regulating IgG glycosylation, which
is relevant to multiple autoimmune diseases72. Hoshino et al.73 identified
IKZF1 variants impacting the lymphoid differentiation stages which are
associated with a wide range of inflammatory, autoimmune, and allergic
symptoms73. More recently, Garcia-Solis et al.74 reported on IKZF1 gain-of-
function variants causing IgG4-related disease and B-cell malignancy74.
IKZF1 also serves as a regulator of immune infiltration in solid tumors and
therefore provides a molecular therapeutic target for enhancing suscept-
ibility to immunotherapy75.

A considerable amount of IKZF1 interacting partners in HS inter-
actome and co-expression networks suggest the involvement of this tran-
scription factor in the immune environment modulation in the disease
pathogenesis. This transcription factor has earlier been identified as amaster
regulator together with DLX4, which underpins the pathogenesis of Alo-
pecia Areata. In this process, IKZF1 and DLX4 induce Alopecia Areata-like
immune infiltration76.

Interestingly, we also foundmost immune-system pathways including
cellular response to cytokine stimulus, leukocyte activation, neutrophil
degranulation, inflammatory response, TCR pathway, CXCR4 pathway,
hemostasis, andmicroglia pathogen phagocytosis pathway enriched among
IKZF1 interactors. The specific role of neutrophils, macrophages, B cells,
and plasma cells has been identified in HS pathogenesis65,66,77. Similarly,
CXCR4 pathways are considered important in regulating B cell functions,
homing of plasma cells, and themigration of T cells78,79. Interestingly, many
small molecule drugs are known modulators of IKZF1 responses. Among
these, multiple immunomodulatory drugs are being contemplated for
various skin diseases including those of HS. In our ex vivo skin culture
models we showed some efficacy of lenalidomide in suppressing cytokine
chemokineproduction7. It is likely that these or similarmoleculesmayfinda
place indeveloping therapeutic innervationsof these complex inflammatory
skin diseases.We highlighted IKZF because it has been found inHS and can
contribute to its pathogenesis. However, we anticipate that IKZF1 alone
might not be highly effective in completely abrogating the HS symptoms.

Therefore, additional molecular targets including transcription targets
should be investigated to develop combination therapy that may manifest
highly efficacious response80,81. For instance, here we identified additional
potential targets in concert with IKZF1, whichmay be playing a critical role
in the pathogenesis of HS and other similar chronic inflammatory skin
diseases. STAT1 is involved in interferon-gamma signaling, which has both
pro-inflammatory and pro-repair functions in intestinal inflammation81.
TNFRSF1B (also known as TNFR2) is part of the TNF signaling pathway,
and targeting the TNF/TNFR superfamily has shown success in treating
various immune-mediated inflammatory diseases80. EGFR signaling has
been linked to inflammatory processes, and its inhibition can reduce STAT1
levels, potentially modulating immune responses82. Recently, we demon-
strated the role of CD2 targeting in attenuating inflammatory response in
HS41. Combining targets, suchas IKZF1withCD2, STAT1withTNFRSF1B,
or EGFR with STAT1, could offer synergistic effects in modulating
inflammatory responses. These regulators are now reported by several high-
throughput single-cell and spatial transcriptome experiments and thus
could be easily employed as a testable hypothesis. Importantly, further
research is needed to fully understand their interactions while developing
effective therapies and uncover the molecular basis of adverse effects.
Overall, our integrative network-based multi-omics framework identified
the underlying regulators, and pathways common among these diverse
proinflammatory diseases.

This study also has limitations as available datasets for bulk tran-
scriptome-driven/disease integrative multi-omics inflammatory skin dis-
eases, will not generate themost reliable prediction of significant regulators,
yet this framework as suggested here can be applied for multiple tran-
scriptome datasets of a single disease for more accurate predictions. Fur-
thermore, expanding the current version of transcriptome-driven
integrative systems to the next level by implementing other multi-layered
datasets including systems genomics, epigenomics, single-cell RNA
sequencing, and spatial transcriptomics will uncover the high-resolution
molecular pathogenesis, pathways, and cell-cell communications in chronic
inflammatory skin disease.

Methods
Data acquisition
Publicly available transcriptomedatasetswere extracted fromNCBIGEO in
eight different inflammatory skin diseases including hidradenitis suppur-
ativa (HS, GSE72702)83, rosacea (RS, GSE65914)48, atopic dermatitis (AD,
GSE121212)84, contact dermatitis (CD, GSE6281)85, actinic keratoses (AK,
GSE90643)86, Irritant contact dermatitis (ICD, GSE18206)87, Acne
(GSE53795)47, and psoriasis (PS, GSE121212)84.

Transcriptomics analysis
The differentially expressed genes (DEGs) analysis was performed on all
eight disease datasets with the same threshold parameters24. DESeq2 was
used for RNA-Seq experiments and edgeR was used for microarray
experiments. Standard cutoff i.e. log2fc ≥ |1| and adjusted P-value by
FDR < 0.05 was selected for DEGs quantification.

Co-expression network constriction
We performed the gene co-expression network (GCN) construction and
analysis for all eight disease datasets through weighted gene co-expression
network analysis WGCNA23. First, we preprocess the gene expression data
by removing low-expression genes and outliers. Next, we construct a
similarity matrix based on pairwise correlations between genes and trans-
form it into an adjacency matrix using a soft-thresholding power. This
adjacency matrix is then used to calculate topological overlap, a robust
measure of interconnectedness. We perform hierarchical clustering based
on topological overlap to identifymodules of co-expressedgenes. Finally, for
network topological analyses and visualization, the weighted undirected co-
expression networkwas extractedutilizing a hard threshold ofweight ≥ 0.75
and exported into Cytoscape v.3.7.1 by exportNetworkToCytoscape func-
tion. We achieved eight disease-specific networks ranging from 320 nodes
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with 264 edges in Acne to 5,465 nodes with 132,849 edges in PS. This
analysis demonstrated the challenges in the handling of multivariate tran-
scriptomes. Networks were visualized in Cytoscape88.

Protein–protein interaction network construction
To establish the disease-specific protein–protein interaction network we
fused the results from co-expression networks, DEGs, and the largest
publicly available human protein–protein interaction network from the
STRING database25. Finally, we had a collection of eight disease-specific
protein–protein interaction networks ranging from 90 nodes with 90 edges
inAcne to 3622 nodeswith 33,173 edges inPS.Next, we performednetwork
centrality analyses on all four filtered networks to identify the most
important players in each disease13. We also computed the inner core
proteins identification byweighted k-sell decompositionmethod17. Networks
were visualized in Cytoscape88.

Random network generation
10 random networks were generated for each original network (both co-
expression networks and PPI networks) through expected_degree_graph
function from networkx 3.4.2. Each random network was analyzed by
Network Randomizer 1.1.3 under Cytoscape 3.7.2 compared to the original
network.

Network analysis
NetworkX and Cytoscape were utilized to calculate network centralities of
gene co-expression and protein–protein interaction networks as a graph.
The graph is represented through nodes (genes/proteins) and edges (con-
nections) based on the respective relationships. We computed the network
measures covering neighborhood-based, path-based, and iterative refine-
ment centralities. For example, degree Centrality measures the number of
direct connections a node has. In a co-expression network, a high degree of
centrality indicates a gene that is co-expressed with numerous other genes,
suggesting a central role in the network. The degree_centrality() function
from NetworkX was used to calculate the degree centrality. Betweenness
Centrality quantifies how often a node acts as a bridge along the shortest
paths between other nodes. Genes with high betweenness centrality might
be crucial for connecting different functional modules in the network. The
betweenness_centrality() functionwas used for this calculation. Information
Centrality assesses a node’s importance based on its contribution to the
overall information flow in the network. Genes with high information
centrality are considered vital for transmitting information across the net-
work. The information_centrality() function is employed here. Eigenvector
Centrality assigns relative scores to nodes based on the centrality of their
neighbors.Ahigh eigenvector centrality indicates a gene that is connected to
other highly connected genes, highlighting its influence in the network. The
eigenvector_centrality() function was utilized for this calculation.

Network exposibility analysis
To check the extent of coverage in a network and inspired by theCOVID-19
exposibility scenario89, we calculated the network exposibility by dividing
the total number of nodes by the total connected components in the net-
work. Based on the network exposibility threshold ≥ 10 to determine the
reliability of eight PPI networks, we filtered four disease-specific interaction
networks including HS, PS, AD, and RS for further analysis.

High-priority protein identification
To identify the High-priority proteins (HPPs) or significant proteins for
each PPI network, we calculated the top 5% of centrality value nodes with
the degree, betweenness, eigenvector, information centrality, and the inner
layer proteins from the weighted k-shell decomposition method. Next, if
these significant proteins are also significantly activated or inhibited reg-
ulators characterized by pathway analysis in each of the eight inflammatory
skin diseases, then these proteins are termedHPPs or significant regulators.
Additionally, we identified the most important regulators shared among
four diseases and mapped them against their regulated pathways.

Drug-gene interaction network
We extracted the HPPs interacting drugs from the publicly available data-
bases DGIdb26. Only the interactions with listed publication information
were included in this analysis. These drug-gene (HPPs) interactions can
provide significant information about the potential therapeutic options for a
disease or class of diseases. The drug-gene interaction network was visua-
lized in Cytoscape88.

Gene ontology and pathway analysis
The canonical pathway and regulator analysis was performed by IPA with
default parameters. The gene ontology and pathway analysis were per-
formed through metascape90 with standard parameters.

Significance analysis
The DEG analysis was performed with (log2FC ≥ |1|; FDR < 0.05) para-
meters. The canonical pathway analysis was performed with a significance
test BH correctedP-value < 0.05. The gene ontology analysis was performed
with a significance test P-value < 0.05. The network power-law distribution
fitness threshold is r2 ≥ 0.5. The network exposibility threshold was 10 for
reliable networks. The correlation among values of different centralities is
positive if r ≥ 0.5. The significance of degree and betweenness among the
inner and outer layers of four PPIs were tested by the Mann–Whitney test
for non-parametric distributed values. The significant regulator analysis
through IPA was tested by BH P-value < 0.05.

Data availability
All datasets usedandgenerated fromthis study are accessible throughData S
files.This studydidnot generatenewunique reagents.Requests formaterials
and communications with the journal should be addressed to M.S.M.
(mshahid@clemson.edu) and M.A. (mohammadathar@uabmc.edu).
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