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Modeling the dynamics of EMT reveals
genes associated with pan-cancer
intermediate states and plasticity

Check for updates

MeiLu McDermott1, Riddhee Mehta1, Evanthia T. Roussos Torres2 & Adam L. MacLean1

Epithelial–mesenchymal transition (EMT) is a cell state transition co-opted by cancer that drives
metastasis via stable intermediate states. Here we study EMT dynamics to identify marker genes of
highly metastatic intermediate cells via mathematical modeling with single-cell RNA sequencing
(scRNA-seq) data. Across multiple tumor types and stimuli, we identified genes consistently
upregulated in EMT intermediate states, many previously unrecognized as EMT markers. Bayesian
parameter inference of a simple EMT mathematical model revealed tumor-specific transition rates,
providing a framework to quantify EMT progression. Consensus analysis of differential expression,
RNA velocity, and model-derived dynamics highlighted SFN and NRG1 as key regulators of
intermediate EMT. Independent validation confirmed SFN as an intermediate state marker. Our
approach integratesmodeling and inference to identify genes associatedwith EMTdynamics, offering
biomarkers and therapeutic targets tomodulate tumor-promoting cell state transitions driven by EMT.

Cell state transitions are phenotypic changes in the state of a cell, primarily
driven by transcriptional programs. Such phenotypic transitions underlie
development, regeneration, and cancer. Our ability to interrogate cell state
transitions and their consequences has dramatically increased with
advances in single-cell genomics1.We can dissect the timing of key events as
cells change state2 and identify transient or intermediate states3. Efforts to
produce a comprehensive catalog of cell states are underway4, yet large gaps
in our understanding remain: both regarding cell states and even more
regarding the transitions they undertake. We do not have satisfactory
explanations of what are the initiating factors of a cell state transition, nor
what is the relationshipbetween thedynamics of cell phenotypic change and
the transcriptional dynamics acting within the cell.

The epithelial-to-mesenchymal transition (EMT), during which epi-
thelial cells become mesenchymal or mesenchymal-like5, is an exemplary
cell state transition. EMT is necessary during development and wound
healing and is co-opted by cancer, where it is a crucial component of
metastasis. Understanding EMT is thus imperative to slowing or preventing
metastasis, the leading cause of death from cancer6. Classical conceptions of
EMT characterize a binary process, with cells being either completely epi-
thelial or mesenchymal5. However, experimental and theoretical studies
have demonstrated the existence of EMT intermediate states7–12. Pan-cancer
studies of intermediateEMTstates have revealed insight into transcriptomic
signatures underlying EMT transformation13. The intermediate state

displays partial EMT phenotypes, with characteristics of both epithelial and
mesenchymal states, andmay also be called partial EMT, hybrid EMT, or an
E/M state14. EMT intermediate states are closely tied with the concept of
epithelial–mesenchymal plasticity (EMP): dynamic, bidirectional transi-
tions through multiple EMT states.

EMT intermediate states are found in both non-malignant EMT and
cancer14,15. The relevance of targeting these states is compelling: EMT
intermediate states have been associatedwith circulating tumor cells16–18 and
metastasis19, perhaps even more potently thanmesenchymal cells alone20,21.
We focus here on stable EMT intermediate states: biologically, this refers to
cells in a state that can be isolated and persist under sufficient conditions;
mathematically, stability is defined via the Lyapunov exponents of a
dynamical system22. EMT intermediate states have been described as
“metastable” in the literature, which in this case refers to stable cell states
with small basins of attraction. EMT intermediate state cells may be hard to
observe in part due to their rarity (small population sizes or small basins of
attraction) or their location (existing at the margins rather than throughout
a tissue23), although they are not necessarily a minority of cells in a sample.

Mathematical models of EMT have predicted and identified inter-
mediate states, using transcriptional networks that can successfully capture
both the steady states of the system and its dynamic properties9,24–28. These
transcription models of EMT, typically regulated by transforming growth
factor-beta (TGF-β), primarily focus on a core network with transcription
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factors ZEB, SNAIL, and OVOL, and micro-RNAs miR200 and miR34.
Although greater attention has been paid to the transcriptional dynamics,
there has also beenmathematical modeling of the cell population dynamics
during EMT, as reviewed in ref. 29.

Integrating single-cell genomics with mathematical models offers
means to infer dynamic properties from high-dimensional systems30,31.
EMT, with its relatively straightforward trajectory (non-branching, non-
cyclical), lends itself well to analysis via trajectory inference (pseudotime)32,
albeit not taking into account the spatial components of the cell fate deci-
sions which can be decidedlymore complex33. Trajectory inference coupled
withmathematicalmodeling has led to insight into the initiation and timing
of EMT34. Despite limitations in inferring Markovian cell dynamics from
single-cell data35, experimental methodologies such as metabolic labeling36

or lineage tracing21 can overcome these challenges. Here, we take an alter-
native approach to inferring the population dynamics model directly from
data35,37, and (in keeping with the observation that cell state transition
dynamics are non-Markovian38) we propose a population model of EMT
cell state transitions a priori. We subsequently learn rates of cell state
transition for each individual sample via Bayesian parameter inference of
the cell dynamics over pseudotime.

Here we use single-cell RNA sequencing (scRNA-seq) data to fit
mathematical models of EMT population dynamics across various tumor
types and stimuli. Parameter inference across these different conditions
reveals shared and distinct properties of the routes of EMT. We identify
shared genes associated with EMT intermediate states across tumor types
via differential expression and differential RNA velocity analyses. By com-
paring intermediate state genes with inferred EMT parameters, we identify
genes associated with EMT dynamics—that is, genes that speed up or slow
downEMT.Weconfirm toppredictionsby an independent analysis ofEMT
in a new cell type, demonstrating how these methods offer novel means to
identify biomarkers or potential targets during cell state transitions.

Results
Single-cell analysis of EMT across cancer types & stimuli iden-
tifies a spectrum of EMT states
To characterize trajectories across a spectrum of EMT, we studied twelve
scRNA-seq datasets across five cancer types. Cells were processed and
clustered to identify cell states. We found evidence for three cell states in
each of the in vitro cell populations and four states in the in vivomouse skin

squamous cell carcinoma (SCC) sample (Supplementary Figs. 1 and 2).
Silhouette scores broadly support the selected clustering resolutions, bal-
ancing cluster quality and number of states (Supplementary Fig. 3). Clusters
were labeled basedonEMTmarkers from the literature, includingHallmark
EMT genes from the Molecular Signatures Database (MSigDB)39 and epi-
thelial cell genes from PanglaoDB40. Distinct clusters representing epithelial
and mesenchymal cell types were identified in each dataset, although the
relative sizes of these clusters varied widely (Fig. 1a). In all datasets, at least
one cluster expressing combinations of epithelial andmesenchymalmarker
genes was identified as an intermediate state. Certain samples from ref. 41
that did not exhibit a clear EMT were excluded from further analyses
(Supplementary Figs. 4 and 5). This is in agreement with ref. 41, who also
found that certain conditions did not permit a full EMT within the
experimental timeframe.

EMT scores were assigned to single cells across all datasets (Fig. 1b).
Single cells were each assigned an EMTscore via UCell42 using MSigDB
Hallmark EMT genes. Each sample exhibited a range of EMTscore,
reproducible by replicate andvarying considerably by cell type and stimulus.
Notably, not only the variance but also the start and end points vary by cell
type, highlighting differences not only in EMT but also in the “epithelial-
ness” of different cell types. Samples excluded from analysis due to lack of/
incomplete EMT, as identified bymarker gene expression, exhibited little to
novariation inEMTscore (SupplementaryFig. 5), confirming the lack of cell
state transition under the tested conditions. The in vivo EMT inmouse SCC
exhibited the largest range of EMTscore by a wide margin, highlighting the
increase in heterogeneity among single cells during a spontaneous, unsti-
mulated, environment-dependent EMT. Since an additional intermediate
state was identified in this dataset, in line with previous work43,44, the data
suggest that both the number of attractor states and the size of their basins of
attraction are larger for cells in their natural environment than cell line-
derived models stimulated in vitro.

Sharedmarker genes of intermediateEMT states are associated
with extracellular function
EMT can proceed alongmany paths11, and both cell/treatment-specific and
consensusEMTpathways are important to study indifferent contexts.Here,
we focus on the shared properties of EMT cell state transitions. To study
intermediate state gene expression across an EMT spectrum, we performed
differential gene expression and differential RNA velocity analysis across

scRNAseq cell states EMTscore distributionsa b

EMTscore

0 500 1000 1500 2000 2500 3000 0.0 0.1 0.2 0.3 0.4 0.5

Number of cells

Mouse SCC, in vivo

HMLE stim. TGF-β (8d)

HMLE stim. TGF-β (8d)

HMLE stim. TGF-β (10d)

HMLE stim. TGF-β (10d)

HMLE stim. Zeb1

A549 stim. TGF-β

DU145 stim. TGF-β

OVCA420 stim. TGF-β

OVCA420 stim. TNF

OVCA420 stim. EGF

HMLE stim. Zeb1

D
en

si
ty

0
20

Epithelial
Intermediate
Intermediate 2
Mesenchymal

Mouse SCC, in vivo
HMLE stim. TGF-β (8d)
HMLE stim. TGF-β (8d)
HMLE stim. TGF-β (10d)
HMLE stim. TGF-β (10d)

HMLE stim. Zeb1
A549 stim. TGF-β
DU145 stim. TGF-β

OVCA420 stim. TGF-β
OVCA420 stim. TNF

OVCA420 stim. EGF

HMLE stim. Zeb1
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states. Cell states were identified via clustering and gene expression. bKernel density
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intermediate states in different cell populations (Fig. 2a). We identified
differentially expressed genes for intermediate states in each sample (2396
genes total) and examined shared intermediate state-specific genes, defined
as those upregulated in an intermediate state relative to epithelial/
mesenchymal states. Using a log2 fold change (log2FC) threshold of +0.58
(1.5-fold change) in at least five samples, we identified 32 genes shared
among EMT intermediate states (Supplementary Fig. 6 and Supplementary
Data 1). No single gene is universally upregulated across intermediate EMT
states; notably, the same holds for epithelial andmesenchymal states across
all datasets. This observedheterogeneity is consistent with previousfindings
that canonical EMTgenes45 and empirically derived EMTgene sets46 exhibit
substantial variability, underscoring the complex & context-dependent
nature of EMT.

Among the 32 genes shared across EMT intermediate states,mostwere
absent from canonical EMT or epithelial gene sets (Fig. 2b). Two predicted
intermediate state genes, ITGB4 and SFN, are annotated as epithelial genes
in PanglaoDB40, although the literature on these genes is complicated:
integrin β4 (ITGB4) (Fig. 2d) was initially identified in epithelial cells and

tumors47 but has also been linked to promoting EMT in hepatocellular and
pancreatic carcinoma48,49. ITGB4pairswith another intermediate state gene,
integrinα6 (ITGA6) (Fig. 2e), to form theα6β4 complex,which is implicated
in promoting EMT characteristics in hepatocellular carcinoma cells50.
Stratifin (SFN) (Supplementary Fig. 6) is annotated as epithelial (named for
its role in the stratification of epithelial cells51) but is also linked to cell
migration and EMT markers in cervical and hepatocellular carcinoma52–54.
The apparent contradictory roles of both ITGB4 and SFN as marking for
both epithelial and mesenchymal states can be reconciled if these genes are
in fact markers of an intermediate EMT state, as predicted by our analysis.

A majority of predicted intermediate EMT marker genes encode
proteins localized in the extracellular space, on the plasma membrane or as
secreted signaling factors (Fig. 2c). Gamma-synuclein (SNCG), upregulated
across multiple cell lines (Fig. 2f), is found in the extracellular exosome. It
plays a role in suppressing mesenchymal markers including CDH2 (N-
cadherin) and VIM55 while promoting cancer cell migration56–58. Other
notable upregulated genes include WNT9A, IL4R, and IL6R. Wnt-9a
(WNT9A) (Fig. 2g) is a secreted protein in the canonical Wnt/β-catenin
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signaling pathway that is implicated in partial EMT by mediating cell
adhesion59. IL4R and IL6R (Supplementary Fig. 6) are interleukin cell sur-
face receptors, with their cytokines IL4, IL13, and IL6 associated with EMT
promotion60–62. Interestingly, SOCS1 (suppressor of cytokine signaling 1)
(Fig. 2h) is a negative regulator of IL6 yet conversely has been found to
promote EMT63, highlighting the bidirectional signaling at play during the
establishment of intermediate EMT states.

Tensin 4 (TNS4) (Fig. 2i) is involved in focal adhesion & integrin
interaction and promotes EMT and cell motility64,65. Tubulointerstitial
nephritis antigen-like 1 (TINAGL1) (SupplementaryFig. 6) encodes another
secreted protein that binds directly to certain integrins, and it is found to
both promote and inhibit metastasis in different cancers in vivo66,67. Both
TNS4 and TINAGL1 interact with epidermal growth factor receptor EGFR,
yet their effects are contradictory: TNS4 reduces EGFR degradation68, while
TINAGL1 binds directly to EGFR and suppresses EGFR signaling66. These
opposing interactions may again reflect the dynamic balance necessary to
sustain the intermediate EMT state.

Overall, many genes associated with the intermediate EMT state
exhibit conflicting roles in the literature, including ITGB4, SFN, IL4R and
IL6R with SOCS1, and TINAGL1 with TNS4. These genes can contribute
both to the promotion and inhibition of EMTaswell as the balance between
epithelial and mesenchymal states. This duality underscores the dynamic
nature of EMT and the importance of intermediate states. Gene set
enrichment analysis (GSEA) of intermediate state genes identified enriched
pathways (SupplementaryData2), thoughmost representedgeneral cellular
processes or were supported by only 2–3 genes. GSEA also revealed
enrichment of transcription factor binding sites, particularly for AP-1,
suggesting a regulatory role during transitions through EMT intermediate
states.

The tumor microenvironment (TME) likely influences EMT-driven
cell state transitions, as indicated by greater variability in intermediate states
and EMT scores in vivo compared to in vitro (Fig. 1). We identified genes
marking EMT intermediate states across all datasets (TME + non-TME)
and compared them to those shared only among in vitro datasets (non-
TME). Including in vivo data revealed 32 differentially expressed genes in
intermediate states (Fig. 2), whereas excluding it reduced this number to 22
(Supplementary Fig. 7), hinting at the complexity the TME introduces.
However, gene ontology and pathway enrichment analysis via PantherDB
did not find any significant terms that distinguished TME from non-TME
intermediate EMT genes, suggesting subtle regulatory influences.

Differential regulation via RNA velocity reveals EM plasticity
genes in EMT intermediate states
To investigate dynamically regulated genes during EMT, we performed
differential RNA velocity across EMT cell states69,70. Fourteen genes had
differential velocity (DV) in the intermediate state in at least three of the
five41 samples, which includes cells from lung, prostate, and ovarian tumors
(Supplementary Fig. 8). Of the 14 DV genes, all but one encode proteins
located extracellularly or in the plasmamembrane (Fig. 3a). Several of these
genes are involved in focal adhesion, including integrins ITGA2 and ITGB4,
laminins LAMC2 and LAMB3, collagen COL4A2, and plasma membrane
caveolae component CAV1. Eleven of the DV genes have annotated signal
peptide sequences, underscoring their designation as secretory/membrane
proteins71,72.

DV genes showed greater overlap with canonical EMT gene sets than
the intermediate statemarker genes we identified (Fig. 3b). This is expected,
as genes actively upregulated in EMT intermediate states are more likely to
overlap with mesenchymal markers. Epithelial–mesenchymal plasticity
(EMP), i.e., bidirectional cell state transitions between epithelial and
mesenchymal phenotypes46, is also characteristic of theDVgenes identified.
This overlap supports EMP conceptually: capricious cells require dynamic
changes in gene expression to change state.

Comparison of DV genes across samples revealed a variety of
responses: somegeneswere shared acrossdifferent cell types and conditions,
while others were specific to certain conditions. Genes upregulated

regardless of cell type or stimulus included LAMC2 (Fig. 3c), FRMD6, and
SERPINE1 (Supplementary Fig. 8). In contrast, and perhaps unsurprisingly,
TGF-β-induced protein TGFBI (Fig. 3d) was upregulated in various cell
types only when stimulated by TGF-β. A similar pattern was observed for
COL4A2 (Supplementary Fig. 8). Genes upregulated by multiple stimuli in
one cell type, human ovarian OVCA420 cells, included ITGB4 (Fig. 3e),
CAV1, HMGA2, F3, and LAMB3 (Supplementary Fig. 8). Overall, RNA
velocity analysis elucidates gene regulation during EMT.Most differentially
regulated genes are specific to a stimulus or cell line; fewer are conserved
across conditions. There is substantial overlap between actively regulated
genes during EMT and those linked to EMP, highlighting the role of
dynamic transitions between cell states during EMT.

Mathematical modeling & parameter inference quantifies EMT
population dynamics
Gene expression is not static: life arises from dynamics. To study the
dynamics of EMT in more depth, we developed a mathematical model
describing cell state transitions during EMT (Fig. 4a). The model is char-
acterized by rate parameters for transitions between epithelial (E), inter-
mediate (I), andmesenchymal (M) states, suchasE→ I at ratek1 (Fig. 4band
Supplementary Fig. 9A). These rate parameters were fit to scRNA-seq data,
characterizing cell state transitions duringEMTacross pseudotime.Multiple
pseudotime trajectories were calculated for each sample, rooted by different
epithelial cells, to estimate themean&variance in pseudotime based on root
node selection. Cell state proportions across pseudotime, representing cell
population dynamics during EMT, were fitted to the model.

EMT dynamics for each dataset were fit using Bayesian parameter
inference (Fig. 4c, Supplementary Fig. 9, and Supplementary Table 2).
Differences in EMT dynamics were observed across different datasets, both
by cell type and by stimulus. For instance, the intermediate state persisted
longer inHMLE cells compared to A549 or OVCA420 cells. Analysis of the
parameter posterior distributions for each fitted EMT trajectory revealed
similarities and differences in EMT dynamics (Fig. 4d). Dividing the pos-
terior space into three approximate regions: k1 ≈ k2 (similar transition rates
across EMT); k1 > k2 (faster transition rates forE→ I than I→M); and k1 <
k2 (faster transition rates for I→M thanE→ I) highlights howboth cell type
and stimulus can strongly impact EMT dynamics. For example, OVCA420
cells exhibited k1 > k2 dynamics regardless of stimulus, where k1 > k2 implies
a larger/more stable intermediate state. In contrast, HMLE cells exhibited k1
> k2 dynamics for TGF-β stimulation but k1 < k2 for ZEB1 stimulation,
indicating that the persistence/stability of the HMLE intermediate state
depends on the stimulating factor.

An inverse proportion relationship is evident across cell types/stimuli
and within a sample; this concordance is notable since more generally
different types of parameter covariation can exist30. This analysis highlights
how EMT intermediate persistence and stability depend on the intrinsic
properties of the EMT experiment, with different carcinomas exhibiting
greater or lesser sensitivity to EMT-inducing factors and thus affectingEMT
progression.

For samples from ref. 41 with biological timepoints, we compared
inferred pseudotime with experimental time (Supplementary Fig. 10).
Pseudotime reconstructs latent dynamics by inferring a trajectory that does
not necessarily align with discrete biological sampling; for instance, ref. 41
measured cell states at five timepoints, whereaswe infer trajectories using 15
pseudotime points. In most samples, the absence of clear state transitions
over experimental time precluded model fitting, underscoring the utility of
pseudotime in capturing cell state dynamics. However, in two cases (A549
andOCA420 stimulatedwithTGF-β), cell state transitions occurreddirectly
over experimental time, allowing us to fit a mathematical model to these
trajectories. The lower temporal resolution of experimental sampling (two
timepoints capturing the intermediate state) compared to pseudotime (four
to five points) limits the precision of the intermediate state dynamics,
highlighting the strength of pseudotime analysis in revealing the cell state
transition dynamics that may not be observed by sparse experimental
sampling.
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Consensus analysis predicts that SFN and NRG1 influence
intermediate cell state dynamics during EMT
To identify genes influencing intermediate EMT dynamics, we studied
associations between intermediate EMT genes and fitted parameters of the
mathematical model. A gene’s positive correlation with k1 indicates faster
transition E → I, while a negative correlation with k2 means a slower
transition I→M; either correlation suggests that the gene is associated with
a more persistent intermediate state. Genes with significant Spearman’s
correlation were compared with differential expression and differential
velocity genes in intermediate states, and those supported by multiple lines

of evidence were consolidated into a consensus gene list of 14 genes (Sup-
plementary Table 3 and Supplementary Fig. 11). The majority of inter-
mediate EMT dynamics genes were located at the plasma membrane or in
the extracellular region (Fig. 5a). Of the 14 predicted intermediate EMT
dynamics genes, three were identified in a prior EMP study46 (Fig. 5b),
consistent with the conceptual overlap between intermediate EMT
dynamics and EMP. Notably, there is no overlap between intermediate
EMTdynamics genes and those fromhallmark EMT (mesenchymal) genes,
demonstrating that our proposed gene set is novel and distinct from pre-
vious EMT gene sets.
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Two predicted EMT dynamics genes had the strongest support (three
lines of evidence each; Supplementary Table 3). NRG1 was the only gene
identified in all three analyses, while SFN was the only gene with inter-
mediate EMT differential expression and significant correlations with both
k1 and k2 transition rates. Stratifin (SFN) was positively correlatedwith k1 (E
→ I) and negatively correlated with k2 (I → M) across cancer samples
(Fig. 5c), suggesting that it stabilizes the intermediate EMT state. Although
RNA velocity for SFN was not captured due to insufficient counts, it was
differentially expressed in intermediate states. Neuregulin 1 (NRG1) was
negatively correlated with k2 (I→M), suggesting it slows the exit from the

intermediate state (Fig. 5d), and NRG1 was also significant in intermediate
EMT differential expression and velocity (Supplementary Fig. 8).

Consensus gene analysis predicts that SFN promotes transitions from
an epithelial state to themetastatic intermediate EMT state. This prediction
helps to reconcile literature, which reports both epithelial and pro-EMT
roles for SFN.Named for its expression in stratified epithelial cells51, SFN can
be secreted and is found in extracellular vesicles73. Recombinant SFN
treatment has been shown to significantly enhance extracellular matrix
degradation in human dermal fibroblasts in vitro74. Despite its epithelial
association, SFN knockdown in in vitro models has led to reduced
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cell states over pseudotime. A mathematical model was then fit to each sample to
infer parameter posterior distributions. bMathematical model representing tran-
sitions fromepithelial (E) to intermediate (I) tomesenchymal (M) state cells. k1 is the

transition rate E→ I; k2 is the transition rate I→M. Additional intermediate states
can be seamlessly added (Supplementary Fig. 9A). c Model fits the following para-
meter inference: data vs. trajectory simulations, with simulation parameters sampled
from the posterior of each model. d Posterior parameter distributions of the model
for each fitted sample.
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mesenchymalmarker expression in cervical cancer cells52 and decreased cell
migration in other carcinomas53,54,75. In vivo, SFN knockdown suppressed
tumor formation and metastasis in lung adenocarcinoma models76. Clini-
cally, SFN is linked to poor prognosis, including advanced tumor stages in
lung adenocarcinoma and hepatocellular carcinoma53,77, as well as lower
survival rates in pancreatic ductal adenocarcinoma78 and head and neck
squamous cell carcinoma79. Our findings suggest that SFN promotes
intermediate EMTdynamics, potentially explaining its dual role in epithelial
cells while facilitating EMT.

Consensus gene analysis also identifiedNRG1 as playing a pivotal role
in intermediate EMT state dynamics, as the sole gene that was significant in
intermediate expression, regulation, and modeled dynamics. A member of
the epidermal growth factor (EGF) family71,NRG1 activates ERBB2 (HER2)
and ERBB3 (HER3)80. NRG1 isoforms can be found in the plasma mem-
brane or secreted81, and it binds integrins including ITGA6:ITGB4 and
ITGAV:ITGB382. In vivo, NRG1 suppression reduces tumor growth and
metastasis in hepatocellular carcinoma83. Clinically, NRG1 overexpression
correlated with poor outcomes, including lymph nodemetastasis, in gastric
cancer84.Notably,NRG1has been found topromotepartial EMT incultured
patient HER2-positive breast cancer85. While NRG1 has been mostly
described to drive EMT in epithelial cells, NRG1 stimulation on mesench-
ymal cells that already underwent EMT has been shown to instead induce
epithelial gene expression in esophageal adenocarcinoma86. Taken together,
our analyses along with literature suggest that NRG1 is a marker of highly
plastic intermediate state cells during EMT.

SFN is a marker of intermediate state EMT in independently
analyzed MCF10A cells
To assess predicted intermediate EMT genes, we analyzed a dataset of EMT
under different experimental conditions and in a different cell line: the dose-
dependent TGF-β stimulation ofMCF10A breast cells87. Similar to previous
analyses, scRNA-seqdatawas clustered, and canonicalmarkerswereused to
identify epithelial, intermediate, and mesenchymal states (Fig. 6a). Differ-
ential expression by cell state showed strong agreement with our predic-
tions, with 11 of the top 25 intermediate state genes in this sample
overlapping with our predicted intermediate EMT genes (Fig. 6b), notably
including SFN. These results highlight that shared EMT intermediate state

features can be found across diverse biological and experimental conditions,
with independent evidence corroborating one of the top genes associated
with intermediate EMT.

To assess EMT dynamics in these MCF10A cells, we applied the
mathematical model using the same analytical pipeline (Fig. 6c). While
dose-dependent EMT does not follow a true temporal progression, single-
cell heterogeneity across TGF-β doses was evident. We used a pseudotime
axis to represent a continuum of EMT states, capturing EMT transitions
with different TGF-β doses. The posterior parameter distribution lies in the
region where k1 ≥ k2, consistent with EMT dynamics induced by TGF-β in
other cell types (Fig. 6d). Across different cancer types, we see that mam-
mary (MCF10A andHMLE) and ovarian (OVCA420) cells stimulatedwith
TGF-β generally exhibit k1 > k2 dynamics, favoring stabilization of the
intermediate state. In contrast, lung (A549) and prostate (DU145) cells
stimulated with TGF-β show balanced rates of entry and exit from the
intermediate state, with k1 ≈ k2. The similarity in transition dynamics
betweenmammary andovarian cells is notable, given the shared genetic and
microenvironmental factors during oncogenesis and tumor progression88.

Discussion
Here, we characterized intermediate EMT states and identified genes
involved in dynamic transitions between states. Multiple lines of evidence
suggest EMT intermediate states are the most cancer stem-like and exhibit
the highest metastatic potential43,89–92. Our analysis predicted intermediate
state genes in agreement with recent work, such as ITGB4 and LAMB393, as
well as novel EMT intermediate genes, such as SFN andNRG1. While there
are many paths of EMT, our comparison across different cell types and
stimuli revealed common markers for intermediate states and highlighted
the role many of these genes have in extracellular remodeling.

EMT is heterogeneous45. Multiple transcription factors can initiate
EMT14 and act in complex and nonlinear ways, both alone94 or in
combination95. Future work could shed more light on EMT intermediate
state transitions by broadening the scope of EMT-inducing factors96.
Additional factors contributing to EMTcomplexity, including subtypes and
intermediate states, are hysteresis during the reverse mesenchymal-
epithelial transition, differences in cell types or stimuli, and state transi-
tions driven by intrinsic or extrinsic noise.Whereas EMT ismost frequently
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modeled via gene regulatory networks, here we modeled the population
dynamics to study cell state heterogeneity and its effects on EMT path
variation. In doing so, we assumed a monostable landscape, whereas in
reality multiple stable steady states exist9. Some of the gene expression
heterogeneity underlying these multiple states is likely collapsed by this
approach, but in doing so we can identify consensus genes marking for
properties of EMT states across different conditions. Our model can be
adapted in the future to consider multiple intermediate states and more
complex (e.g., convergent/divergent) EMT paths.

Summarizing complex data across conditions to find consensus
requires simplifying assumptions. To compare gene expression across

datasets, we used log-fold changes and rank-based comparisons, similar to
other recent work97. Doing so relies on the accurate quantification of cell
states, which is not guaranteed, and can obscure single-cell resolution
information by taking pseudo-bulk measurements. While we sought to
standardize data analysis pipelines as far as possible, scRNA-seq data ana-
lysis relies on certain parameter choices. While clustering cells, we sought
fewer clusters (lower resolution) where supported, to reduce overfitting cell
states. Clustering-based cell state definitions differ between studies: ref. 43
identified four EMT states, whereas ref. 98 later identified five in the same
dataset. Similarly, ref. 99 identified five states in the ref. 41 dataset, aligning
with experimental timepoints. Each approach reveals distinct aspects of
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EMT; we take the perspective of using pseudotime to infer EMT dynamics
over a 3–4 cell state space across the EMT spectrum. Trajectory inference
relies on accurate choice of root cells and the sufficiency of the similarity
metric used. RNA velocity analysis is limited by the ratio of spliced to
unspliced counts, typically around 75–85% spliced to 15–25% unspliced69.
This abundance limitation affects genes with low or no unspliced counts,
such as SFN in our study, where RNA velocity analysis could not be per-
formed due to a lack of unspliced counts. This abundance limitation could
be addressed by experimental methods targeting dynamics, such as RNA
metabolic labeling36. We applied a standardized pipeline to each dataset
while preserving dataset-specific parameters. Although integration could
reveal shared EMT features, differences in experimental design, single-cell
platforms, and study conditions complicate the distinction between biolo-
gical variation and technical batch effects. To maintain dataset-specific
nuances, we prioritized a comparative analysis of differential expression and
dynamic model parameters, though future studies incorporating batch
correction may help determine whether intermediate EMT states share a
universal transcriptional signature.

Mathematical modeling and parameter inference with single-cell data
allow us to investigate the genes and pathways associated with dynamic
transitions between states rather than the cell states themselves—transitions
which are strongly relevant to epithelial–mesenchymal plasticity100. EMP,
exemplary of cell state plasticity, has been shown to play decisive roles in
tumorigenesis and cancer progression101,102. This property can assist tumors
in developing powerful “generalist” phenotypes as they evolve103. The
mathematical model with which we study EMT population dynamics is
phenomenological: capturing the rates of entry/exit between EMT states
without transcriptional information or feedback signaling. It does not
incorporate additional complexities such as reverse transitions or stochas-
ticity. We have used external information from the biological properties of
EMT to construct ourmathematical model, and not obtained it purely from
the cell dynamics observed in the data35. Nonetheless, to compare relative
transition rates, a simple three-compartment model seems reasonable to
describe most conditions analyzed and fits both the inferred cell states
(clusters) and thepseudotemporal dynamicsduringEMT. Incorporating cell
proliferation and death could refine EMT modeling, but doing so presents
challenges in parameter identifiability. Our approach prioritized a parsi-
monious model, using normalized cell proportions to implicitly account for
differences in cell numbers, though this does not explicitly capture variations
in cell survival. Future extensions integrating proliferation and death rates,
potentially constrained by lineage tracing or live-cell imaging, could provide
a more comprehensive understanding of EMT dynamics and intermediate
state persistence. Additional future work could include combining cell
population dynamicswith a transcriptional EMTnetwork9 to investigate the
role of cell–cell communication104 on the population dynamics of EMT—
though additional data may be required for the transcriptional dynamics of
such a model to avoid double dipping105.

Canonical EMT states are defined bymorphological features: epithelial
cells adhere to each other with apical–basal polarity; mesenchymal cells are
spindle-shaped, migratory, and lack cell–cell adhesion106. These morpho-
logical/adhesive properties cannot be fully captured by sequencing data
alone. Moreover, multiple EMT gene lists (typically focusing on mesench-
ymal traits) have been proposed, with varying levels of agreement45,46,89,107,108.
This variability in consensus genes also applies to epithelial genes, which can
show tissue-specific heterogeneity. No single gene list can do justice to the
heterogeneous paths of EMT, yet as we have shown, distinctive dynamic
properties of EMT intermediate states can be captured by marker genes.
Although our study focused on cancer-related EMT, the in vitro stimuli
such as TGF-β also apply to healthy EMT, suggesting potential relevance
beyond cancer. Nevertheless, the heterogeneity observed among tumor cell
lines underscores the need to investigate EMT in wound healing and tissue
regeneration to determine whether the identified marker genes and inter-
mediate states are conserved in the context of non-malignant EMT.

Genes predicted here as candidate markers of intermediate state EMT
genes may serve as biomarkers of cells likely to metastasize and could be

tested as predictors of clinical progression. In addition, such genes may
mark for high-risk tumor cells prone to metastasis or recurrence, given the
high metastatic potential of EMT intermediate state cells16,21,92,109. More
broadly, this study has shed new light on the plasticity of theEMT landscape
and how it shapes the cell state transitions underlying cancer metastasis.

Methods
scRNA-seq data sources
In this study, we conducted an integrated analysis of several single-cell RNA
sequencing (scRNA-seq) datasets in the public domain. We included
datasets from Pastushenko et al.43 (GEO accession GSE110357); van Dijk
et al.110 (GSE114397); Cook and Vanderhyden41 (GSE147405); and Panchy
et al.87 (GSE213753). For data from Cook and Vanderhyden41, samples
collected after the removal of the EMT stimulus were not included. For data
from Panchy et al.87, unstimulated cells were not included.

scRNA-seq sequence alignment
Data from ref. 41 were re-aligned to obtain spliced and unspliced read
counts for RNA velocity analysis below. Raw sequence files (accession
SRP253729) were downloaded from theNIH Sequence Read Archive using
the SRA Toolkit111 and converted from SRA to FASTQ files using
fasterq-dump. Python package cutadapt was used to trim the barcode
sequences to 26 base pairs112. The splici (spliced+intron) index was con-
structed using the GRCh38 human reference genome with Python package
salmon113. Sequence pseudoalignment was performed with salmon alevin-
fry. Barcode demultiplexing was carried out using the R package
MULTIseq114. Contaminant cells in the OVCA420 samples were removed
as noted by the original authors.

scRNA-seq data preprocessing and normalization
All scRNA-seqdatawere processed and analyzed using Scanpy115. Cellswith
fewer than 200 genes and genes expressed in fewer than three cells were
filtered out. Cells with high mitochondrial percentages or dis-
proportionately high total read counts were excluded based on dataset-
specific cutoffs (Supp. Table 1). In HMLE samples stimulated with TGF-β,
cells with disproportionately high ribosomal percentages were filtered out
(<1% of cells). Counts were normalized to 10,000 and log(x+ 1) trans-
formed. Batch correction for samples from41 was performed using ComBat
in Scanpy116. Cell cycle effects, which significantly impacted clustering by
EMT state identity, were regressed out117,118, similar to the original analyses.
Additional preprocessing included regressing out total counts and percent
mitochondrial counts per cell, scaling counts to uniform variance, and
selecting highly variable genes for downstream analysis.

Cell clustering and scoring by EMT status
Principal component analysis (PCA) was performed, and the top 15 com-
ponents were used to construct a nearest-neighbor graph. Based on this
graph, cell clustering was conducted using the Leiden algorithm119 with
dataset-specific Leiden resolutions (Supplementary Table 1). Silhouette
scores were computed for Leiden resolutions ranging from 0.3 to 1.0 in 0.05
increments using silhouette_score from scikit-learn120. Differen-
tially expressed genes for each cell clusterwere identifiedusing theWilcoxon
rank-sum test with Benjamini–Hochberg correction. Cell clusters were
visualized in two dimensions using UMAP and PHATE121,122.

To infer the EMT status of single cells based on a set of EMT marker
genes, an “EMTscore” was created using the UCell scoring method42 with
the Hallmark EMT gene set from the Molecular Signatures Database
(MSigDB)39,123. UCell calculates single-cell gene expression scores from a
gene set using a rank-based approach,whichwe found to effectively quantify
EMTacrossdisparate tumor types and experimental conditions.Geneswere
input into UCell as filtered and normalized counts.

Identifying shared EMT intermediate state genes
Genes were included in the intermediate state analysis if they were differ-
entially expressed (DE) in an intermediate statewith aBenjamini–Hochberg
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adjusted Wilcoxon rank-sum P value of P < 0.01, up to a maximum of 500
genes per sample. To account for the complexities of comparing gene
expression across different datasets and conditions (e.g., batch effects,
instrumentation, sequencing depth), we calculated log2 fold change
(log2FC) valuesof intermediate state genes in Scanpy, following thenotation
of Moses et al.124:

log2 FC of gene g ¼ log2 exp 1
n1

P

i2G1

Yig

 !

� 1þ ϵ

 !

�log2 exp 1
n2

P

i2G2

Yig

 !

� 1þ ϵ

 ! ð1Þ

where G1 is the focal group of cells of size n1, G2 is the comparison group
with n2 cells, and Yig denotes the log-normalized counts of gene g in cell i.
The pseudocount ϵ = 10−9 is added to avoid division by zero124. Genes were
selected as intermediate state-associated if theymet the following criteria: (i)
a log2FC ≥0.58 (1.5-fold change) in at least five samples, and (ii) at least two
of these samples were from experiments not performed on HMLE cells.
Gene set enrichment analysis (GSEA) was performed on identified
intermediate state genes123.

Trajectory inference and EMT subpopulation dynamics
Diffusion pseudotime (DPT) was used for trajectory analysis125. Root nodes
were chosen as the epithelial cells with extreme coordinates on a diffusion
map. Pseudotime was calculated five times with different epithelial root
nodes, and the median values were assigned to each cell, with the standard
deviation indicating pseudotime variation. This approach minimized the
impact of root node selection on pseudotime calculation. Pseudotime values
range from 0 (epithelial) to 1 (mesenchymal). This range was divided into 15
bins (12 for Pastushenko et al.43 due to fewer cells), and cell counts were
calculated for each cluster (epithelial, intermediate, and mesenchymal) for
eachbin. The counts per binwere converted into cell populationproportions.

RNA velocity analysis
RNAvelocity analysis was conducted in Python using the package scVelo in
dynamical mode on highly variable genes70. Each sample was analyzed
individually. Differential velocity (DV) was assessed using the rank_-
dynamical_genes function on clusters. Genes with a DV score above
0.25 were retained as DV genes. To ensure monotonic transitions, genes
with Spearmancorrelation coefficients below0.5were excluded. In addition,
DV genes with poor dynamical model fits were filtered out. Ultimately, we
retained DV genes that were upregulated in themajority of cancer samples,
designating them as shared upregulated velocity genes across EMT.

A mathematical model of EMT dynamics
We developed amathematical model of the dynamics of EMT described by
ordinary differential equations (ODEs). Specifically, we sought to describe
the cell state transitions during EMT, from the epithelial (E) to intermediate
(I) state or states, and then to the mesenchymal (M) state. While EMT
systemsmay also exhibit direct transitions (E→M) and reverse transitions,
our data specifically investigate forward EMT and do not exhibit strong
evidence for direct transitions.

The population dynamics of E, I, andM are described by:

dE
dt ¼ �k1EI
dI
dt ¼ k1EI � k2IM

dM
dt ¼ k2IM

ð2Þ

where k1 denotes the transition rate fromE to I, and k2 denotes the transition
rate from I toM. We consider second-order transitions, meaning both the
initial and final states influence the transition rate to the final state. In cases
where more than one intermediate state exists, the model can be extended
using the same framework (Supplementary Fig. 9A).

Parameter inference of cell population dynamics over
pseudotime
We sought to infer the rates of EMT using Bayesian parameter inference
with the Turing.jl package in Julia126–128. The input data for each model
consists of the cell state dynamics over pseudotime. To focus on relevant
dynamics, we excluded periods where all cells remained in the epithelial
state. Timepoints along pseudotime were normalized to a range of t ∈ [0,
10], facilitating direct comparison of EMT trajectories across samples. For
each sample with one intermediate state, we fit three parameters: k1, k2, and
the observational noise parameter σ. For the in vivo sample with two
intermediate states, we fit four parameters: k1, k2, k3, and σ.

Letting f represent the numerical solution to theODEmodel and y0 the
initial conditions, we performed parameter inference as follows:

θki � N ð4; 1Þ
σ � Inv�Gamma ð3; 1Þ

byðtÞ ¼ f ðy0; t; θÞ
yðtÞ � N ðbyðtÞ; σÞ

ð3Þ

where θ ¼ ðθki ; σÞ gives the prior parameter distribution, and y(t) defines
the likelihood function in terms of ODE model simulation (byðtÞ) for tran-
sition rate parameters θki and noise parameter σ.

The posterior parameter distribution was estimated via Markov chain
Monte Carlo (MCMC) simulations using the No-U-Turn Sampler
(NUTS)129. MCMC chains were each run for 1000 iterations following 250
warmup iterations to ensure convergence. Fitted trajectorieswere visualized
by solving themodel using 300 joint parameter sets of kn, randomly selected
from the posterior distribution for each sample, and plotting the mean and
standard deviation of the resulting trajectories.

Comparative analysis of EMT intermediate state-
associated genes
We identified genes associated with EMT transition rates by analyzing
correlations between model-inferred posterior parameters and gene
expression. For each transition rate parameter kn, we used its maximum a
posteriori value for each sample and examined pairwise correlations with
the log2FCexpressionof 145genes, eachpresent in at least 5 sampleswith an
intermediate state log2FC ≥ 0.2. Genes with a Spearman’s rank correlation
coefficient of ρ > ∣0.6∣ (P < 0.05) were considered associated with, and
potential influencers of, transitions into or out of EMT states.

To specifically identify genes linked to EMT intermediate state
dynamics, we focused on genes positively correlated with k1 (faster E→ I)
and negatively correlated with k2 (slower I → M). Genes meeting both
correlation criteriawere included, aswell as those showing either correlation
as well as differential expression or differential velocity in the intermediate
state. Cellular location annotations were performed using DAVID72,130 and
PANTHER131.

Data availability
All scRNA-seq data used in this study are publicly available on the Gene
Expression Omnibus (GEO). We included datasets from Pastushenko et
al.43 (accession GSE110357); van Dijk et al.110 (GSE114397); Cook and
Vanderhyden41 (GSE147405); and Panchy et al.87 (GSE213753). Raw
sequence files from Cook and Vanderhyden41 were downloaded from the
NIHSequenceReadArchive (accessionSRP253729). SupplementaryTables
and Figures are provided as a separate document. Supplementary datasets
provided are: gene expression plots of all 32 identified EMT intermediate
state genes (Supplementary Data 1, available at: https://github.com/
maclean-lab/dynamicEMT-genes under 3–DE genes) and GSEA results
(Supplementary Data 2).
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Code availability
All code and data analysis associated with this study are released under an
MIT license, available on GitHub: https://github.com/maclean-lab/
dynamicEMT-genes.
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