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Cell populations simulated in silico within
SimulCell accurately reproduce the
behaviour of experimental cell cultures
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In silico simulations are used to understand cell behaviour bymeans of different approaches and tools,
which range from reproducing average population trends to building lattice-based models to, more
recently, creating populations of individual cell agents whose mass, volume and morphology behave
according to more or less precise rules and models. In this work, a new agent-based simulator,
SimulCell, was conceived, developed and used to predict the behaviour of eukaryotic cell cultures
while growing attached to a flat surface. The system, starting from time-lapse microscopy
experiments, uses growth, proliferation and migration models to create synthetic populations closely
resembling original cultures. Support for cell-cell and cell-environment interaction makes cell agents
able to react to changes in medium composition and other events, such as physical damage or
chemical modifications occurring in the culture plate. The simulator is accessible through a web
application and generates data that can be shown as tables and graphs or exported for further
analyses.

Cell cultures are widely used in biomedical research and play an important
role in different research fields, such as biochemistry, cell and molecular
biology, pharmacology, just to name a few. Analysis of cell cultures often
uses qualitative models to interpret cell behaviour and/or intracellular
molecular pathways. Dynamic microscopy and quantitative data analysis
have been used to obtain parameters descriptive of specific aspects of cell
morphology and functionality and tounderstandhowthebehaviourof a cell
population changes over time or reacts to perturbations1–5. Quantitative
models and simulations have often provided the opportunity to test
hypotheses, make predictions trying to fill gaps in knowledge, set up
experimental procedures or evaluate conditions that would be difficult to
obtain with in vitro cell cultures6. In silico simulations, by integrating
information from various sources, help bridge the gap between concepts,
models and experimental data and may provide a better view of cell
behaviour7. In recent years, they have been used to analyse problems in
population genetics8, to study neuronal activity9–11, to investigate cell
dynamics in the colonic crypt12,13 or to model liver regeneration14,15, among
others. Understanding the effects of biological perturbations can suggest
ways to intervene and reestablish proper cell function in diseases such as
cancer or in autoimmune disorders16–21.

Tools and procedures aimed to simulate cell behaviour range from cell
mass simulation, where a generic cell represents the behaviour of a whole
population22–24, to tools where cells are represented by one or more lattice

elements, among which a relevant example is CompuCell3D25,26 which uses
Glazier-Graner-Hogeweg (GGH) models based on Cellular Potts Method
(CPM) to simulate cell behaviour and dynamics at single-cell resolution in
the context of cell organisation into tissues. CompuCell3D has been used to
variously describe cell growth, division, differentiation, death, motion and
contact with neighbouring cells27–29. Its combinationwith a C++ library for
two-dimensional CPM led to the development of a comprehensive simu-
lation environment, the Tissue Simulation Toolkit30,31, which has been
widely used for the implementation of in silico models for studying cell
migration and morphology in different tissue contexts32–35. More recently,
simulation systems have been shifting towards models based on cell agents
where mass, volume and morphology behave according to rules, thus
allowing additional flexibility as each cell can depend on its neighbours and
the surrounding environment. Among these, CellSys is a modular software
tool for off-lattice simulation of cell growth and organisation in multi-
cellular systems where each cell is modelled by an isotropic, elastic and
adhesive sphere capable of migration, growth and division36. PhysiCell is
another open source agent-based simulator able to handlemany interacting
cells in dynamic tissue microenvironments. It was originally developed for
studying cancer cells and includes a standard library of customisable sub-
models for cell volume changes, cycle progression, apoptosis and necrosis,
cell-cell interaction andmotility37,38. Some simulation tools rely onMaBoSS
to enable probabilistic simulations of cellular networks, wheremolecules are
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boolean variables24,39. UPMaBoSS40 produces dynamic populations of
interacting cells, associating cell fate decision, division and death, while
PhysiBoSS simulates spherical cells that can grow/shrink, divide, move, die
while interacting with their environment or other cells41,42.

Some simulations onlymodel specific aspects of cell behaviour, such as
cell fate decisions related to proliferation, death or differentiation. Fouliard
et al.43 for example, represent the evolution of cultured stem cells by mod-
elling a heterogeneous cell population, inwhich cell cycle alternates between
a quiescence phase and a proliferation phase: local growth medium com-
position influences the transition probability between cycle phases and cell
differentiation43. Similarly, Altinok et al.44 used a simple cell cycle model,
where cells switch between phases, divide into daughter cells or exit cycle
because of death, to study how cell cycle dynamics is affected by factors as
phase duration, population size and initial conditions44. A purely mechan-
ical approachwas used byTaylor et al.45 to integrate cellmotion and cell-cell
interaction in 2-dimensional cultures. Simulated cells move by combining
random and persistent components while interactions are introduced as
steric repulsion and/or as cell-cell attraction by transient links between
cells45. Movement paths may also be produced within CelltrackR by com-
bining a range of movement features, although no support is included for
interactions between cells or reaction to other stimuli46.

In this work, a novel simulation system and tool, SimulCell, is pro-
posed, based on cell agents which integrate movement, growth and other
features to produce synthetic cell populations which can closely reproduce
the behaviour of experimental ones. Here, simulated cell agents control
growth, survival and replication as well as cell cycle transitions, considering
volume changes and external stimuli, such as local cell confluence and the
presence of growth factors or other drugs in the medium. Movement
simulationbuilds on apreviously developedmotionmodel, representing the
movement of experimental cell populations in terms of random, persistence
and bias components47, and adds the ability tomodifymovement according
to cell-cell repulsion, attractant molecules, cell health and metabolism,
attachment state and cell cycle. The system is accessible through a web
application which allows to run simulations and evaluate results in
numerical and graphic format.

Results
Growth, proliferation and survival of single cell agents in simu-
lated populations
Cell proliferation is possibly the most visible feature of a growing cell
population and, during every experiment, cells grow, die or progress in the
cell cycle until they eventually reach mitosis, split and give rise to daughter
cells. In an attempt to produce synthetic cell populations composed of
independent cell agents interacting with each other, a simple but flexible
procedurewas setup, inwhich cell cycle transitions andmitosis depend on a
combination of factors which take into account volumetric growth, extra-
cellular signalling and DNA replication. The developed procedure uses a
Markov chain approach to model cell cycle progression as a succession of
states, broadly related to cycle phases, where cellsmove fromone state to the
next according to probabilities which depend on several internal or external
factors (Fig. 1a). In the model, during G1 phase cells may pass a checkpoint
andmove to aG1c state where cells are committed to S phase in dependence
of current volume and extracellular signalling provided by serum or other
factors. Similarly, G2-M phase transition depends on a combination of
current cell volume and serum type and concentration. Entering S phase
depends on genomic DNA being ready for duplication (rfdDNA), while
completeDNAduplication is needed tomove toG2 phase. DuringMphase,
nucleus breakdown and cell elongation result into cell duplication. In
addition to the “main loop”phases, G1 cells can temporarily exit the cycle by
entering G0 and optionally reenter it by moving into G1c, influenced by cell
volume, local cell crowding and/or serum type and concentration. When
cells are highly confluent or low serum concentration persists, they have a
higher probability to undergo apoptosis which then leads to decrease in
vitality and death. Cell death may also be the result of cell damage by
physical events, like a scratch, or drug addition to the medium. Damaged

cells can recover from damage or undergo death according to the damage
level.Volumetric cell growth is simulated by an exponentialmodel inwhich,
during each time interval (Δt), cell volume increases according to

Vt ¼ Vc � eαΔt ð1Þ

where, Vc is the current volume and α is the growth rate, which in turn
depends on cell type and cycle phase and varies over time and among cells,
whichmay grow faster or slower than the population average. The described
procedure works effectively with time intervals ranging between a few
minutes and a few hours, according to the need. An example population,
simulatedwith thismodel and followed for 3 days at 20min time interval, is
shown in Fig. 1b–d. The number of cells (Fig. 1b) exponentially increases
over time, with an average replication timeof about 24 h and a small portion
of cells undergoingapoptosis anddeath.Theaccuracyof the replication time
obtained by simulating cell cycle in this way was tested by comparing
requested versus calculated replication time (average cell age atmitosis) in a
panel of simulated populations (Supplementary Table 1): for all of them, the
two values turned out to be always very close, even with a broad range of
replication times (20–32 h); the apparent duplication time of the same
populations is also coherent with the expectations as it is necessarily larger
due to the fraction of cells which die or spend time in G0 before undergoing
apoptosis.

Cell cycle phase composition, as should be expected, reflects phase
durations and is maintained over time: most cells (50–60%) are in G1,
20–30%of cells are in S phase, while smaller fractions of cells are in the other
phases (Fig. 1b). Cell volume, plotted as a function of age separately for each
cell (Fig. 1c), shows an overall increase pattern although, within the same
population, curves differ for different cells as internal state and external
factors play a role in generating variability between cells. Cell volume
changesduring the cell cycle (Fig. 1d), progressively increasing fromG1 toM
phase. Cell numbers and volumes, calculated according to this model, are
coherent with known doubling times and not far from growth patterns
experimentally observed in different cell cycle phases48–52.

Cells growing on a culture dish change shape and attachment status
following interactions with the substrate and in relation to phase changes.
To represent the association between these processes, a second Markov
chainwas introduced and connected to the above described cell cyclemodel
(Fig. 1e). Basically, a detached cell is modelled as freely fluctuating into the
medium and has a variable probability, depending on substratum and cell
type features, of making a first stable contact with the plate thus becoming
attached. Similarly, an attached cell has a given probability of starting a
spreading process, thus becoming spreading, i.e. a state in which it reshapes
by progressively flattening its volume and increasing its surface, until it
becomes fully spread. Some phase changes in the cell cycle produce changes
in attachment state, represented in Fig. 1e by dashed lines connecting, for
example,Mphase or apoptosis (apo) statewith the de-spreading state. These
attachment states can influence cell behaviour by acting on growth rates and
motility and may be used as hints when graphically representing cells. In
Fig. 1f, cell surface, plotted as a function of age for each cell of the previously
described population, is shown to rapidly increase in thefirst few hours, as a
result of cell spreading; after that, surface increases following volume
increase and finally decreases, rapidly when cells undergo mitosis or more
slowly when de-spreading during apoptosis.

In Fig. 2a, two populations of NIH3T3-like simulated cells were fol-
lowed for 15 days while growing at serum concentrations of either 10% or
2.5% calf serum together with a third one first growing at 10% and later at
2.5%, after a serum step down on the sixth day. The simulated populations
show different growth rates for the two serum concentrations, and stop
growing at different cell densities when the cultures arrive at confluence and
cell numbers become stable; these patterns are very similar to those observed
a long time ago in experimental cultures53; see Supplementary Fig. 1 for a
graphic comparison. Consistently, the distribution of cells in the different
cell cycle phases changes with time: on the 3rd day (exponential growth),
about half cells are in G1 phase at 10% cs, but only 20% of cells are inG0; the
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G0 fraction is much higher (52%) in cells growing at 2.5% cs (Fig. 2b). This
difference becomes much smaller when populations reach confluence and
cell numbers stop increasing: under these conditions, cell cycle phase
composition is very similar for the three analysed populations (15th day).
These fractions are very close to those observed under similar conditions in
experimental cell populations54–57; for cells exponentially growing at 10%
serum, for example,Kues et al. report 67–73%cells inG0/G1and9–16% inS
phase. In Fig. 2c, d simulated NIH3T3-like cells, seeded at four different
densities, were “grown” for 15 days at 5% cs. During the earlier days, the
observed percentage of G0 cells varies and progressively increases as cell
numbers go up, but when, later in the experiment, the stationary phase is
reached, most cells (~70%) are in G0 phase and cell numbers become
independent of the initial seeding density (Fig. 2c, d).

Cells simulated in this way respond to different levels of serum by
modifying their growth rate and progression through the cell cycle; their
behaviour under more extreme conditions was tested to see whether they
react by temporary or permanently arresting cell cycle progression. In

Fig. 2e, NIH3T3-like cells were simulated initially as growing under 10%
FBS and then as starved by reducing FBS to 0.5%; results show that while
cells are kept at 10% FBS, they exponentially grow over time but, when
starved by stepping down FBS to 0.5%, cells slow down until they stop
increasing in number as a large fraction (79–85%) of cells enter G0 phase, a
fraction very close to the 78–80% observed in experimental populations
under similar conditions47. Cell rescue from starvation, by again raising FBS
to 10%, causes cells to enter S phase and synchronously restart growth and
proliferation until they reach confluence and slow down again. In order to
monitor cell cyclemodifications, the accumulation of two reporter proteins,
cdt1 and p27, frequently used as markers for G1 and G0, respectively, was
also simulatedby relating their synthesis to intracellular state andpropensity
to phase changes. In Fig. 2f, where each simulated cell is positioned in the
plot according to the concentration of the two proteins on the indicated day,
for each of the different serum levels the results are consistent with curves in
Fig. 2e and very similar to those reported in the literature for the same cell
type under similar conditions55,56. Cells “grown” under 10% FBS (day1)
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mostly have low p27 levels, following a pattern typical of cycling cells, while
cells kept in low serum mostly show high levels of both cdt1 and p27, a
pattern typical of G0 phase (day3). Cells rescued by raising serum back to
10% gradually reenter cell cycle as confirmed by the reduced p27 levels

(day5) which again go up on the 7th day when they start reaching con-
fluence. Supplementary Figure 2 represents the same plots, using colour to
highlight the phase of every single cell: in the vast majority of cases, the
quantity of p27/cdt1 matches the cell cycle phase.
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Cell motion paths generated in silico accurately reproduce
experimental cells moving on a culture surface
Simulation of cell movement was setup by taking advantage of a previously
published motion model, which describes movement of experimental cell
populations as the combinationof three vectors: a random, apersistence and
adirectional bias component47. The procedure, reported inFig. 3a and in the
Methods section, uses random, bias and/or persistence vectors to produce
migration paths corresponding to completely diffusive, persistent or
directionally biased movements, in various combinations. For each time
interval, final cell displacement (d) is simulated by combining a random
vector (r) with a persistence one (p), characterised by a user definedmodule
and the same direction as the previous cell displacement (prev d), and a user
defined external bias vector (b). While the combination of purely random
displacement steps produces a relatively tortuous “Random path”, the
“Mixed path” generated by more complex movement types is also char-
acterised by directional persistence and/or bias along a given angle. The

paths followed by two simulated populations, respectively characterised by
“Random” and “Mixed”movement, are reported in the left column of Fig.
3b; in both cases, individual paths are different from each other and
reproduce the variability typically observed in experimental cell cultures.
Purely random paths, analysed according to the three-component model,
showa8.7 µmrandommodulewhile persistence andbias ones are very close
to zero; displacement lengths (centre column) show a long-tailed distribu-
tion peaking around the random module, with randomly distributed
directions. Density distribution of displacement endpoints, plotted as
starting from the origin (right column), shows the highest frequencies
(indicated by warmer colours) around the origin and uniformly enlarges in
all directions. Mixed movement, simulated by adding a persistence and a
bias vector, producedmore linear paths, directed towards the bias angle (0°),
with estimated persistence and bias modules of about 4 µm. Accordingly,
displacement directions are clustered around the bias angle while modules
are higher than in random paths although still showing a long-tailed
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distribution. Cell displacements are strongly shifted in the direction of the
bias vector but remain symmetrically distributed around the x axis. When
simulated cell displacements are followed over time (Fig. 3c), their dis-
tribution progressively enlarge in all directions with time, maintaining the
highest frequencies around the origin for randommovements, and shifting
it towards the bias direction for mixed population.

In order to test the ability of the described procedure to reproduce the
behavior of experimental cell populations observed in time-lapse experi-
ments, the three-component model was used to calculate, from a panel of
experimental cell cultures, random, persistence, and directional compo-
nents to be used to generatemovement in simulated populations. The panel
includes a number of human tumour-derived cell lines (HeLa, T24, MDA-
MB-231, PC3, A2058, A375, Calu and wm115) as well as two lines from
murine embryonal fibroblasts, NIH-3T3 and NIH-Ras, the latter over-
expressing a constitutively active variant of Ras, also known to be present in
T24 cells. All lines were cultured and analysed while exponentially growing
under standard conditions; for HeLa, T24 and NIH-3T3 lines, motion
parameters were also determinedwhile cells weremoving in wound healing
assay for 12 h after scratching the cell layer (Supplementary Table 2).
Random, persistence and bias modules from experimental HeLa, T24 and
NIH-3T3 populations were used to simulate motion behaviour of a small
population of the same size as the experimental one, as well as a standard 50
cell population (Table 1). The results show very similar values for random,
bias and persistence components for all populations of the same group and
are well separated from those of the other groups (Supplementary Figure 3).
Interestingly, simulated populations are very close to experimental ones also
for additional movement parameters, not used to generate the simulated
populations, such as average displacement module, final MSD and rMSD
(randomMean Squared Displacement). In addition, simulations were also
able to match the superdiffusive motion parameter α, consistently close to
those obtained from the experimental populations and also higher when
cells move responding to wound stimulus. In this case, persistence time,
linearity and coherence as well as circular statistics R parameter also show
correspondingly higher values. Paths generated by simulating standard
populations also appear very similar to those originally observed in the
experimental cultures (Fig. 4a). In addition, simulations reproduce many
features of the experimental populations and maintain the differences
between cell lines, with tortuous paths for HeLa, more linear and persistent
ones for T24 and intermediate features for NIH-3T3 cells. Cells simulated
while moving towards the wound produced directionally biased move-
ments, similar both in appearance and as estimated parameters (Fig. 4b).
Finally, in Fig. 4c, the variability of different simulated populations, gener-
ated from the same configuration parameters, was tested by producing, for
each experimental population, ten simulated oneswith the same number of
starting cells and ten more with 50 starting cells each. For each of eleven
parameters measured in both experimental and simulated populations, the
distributions of values obtained from each group of simulated populations
are displayed as box and whiskers plot alongside the corresponding values
obtained from the experimental populations. The obtained distributions
were rather tight for all tested parameters, even in populations characterised
by lower cell numbers, and values from experimental cultures mostly fall
within, or are very close to them. More variable values were only observed
for diffusion coefficient and persistence time: also in this case the larger
distributions observed in small populations become tighter when larger
numbers of starting cells are used. It is worth noting that only three of the
eleven parameters were used to configure the simulated populations (grey-
background plots). Although not related tomovement, replication timewas
also determined for the same populations with results reported in Supple-
mentary Fig. 4: also in this case, the obtained distributions were rather tight
and values from experimental cultures fall well within them.

From reproducing cell subpopulations to predicting conditional
cell behaviour on a culture plate
Unlike the previous simulations, where populations or subpopulations are
homogenous and cell-to-cell differences mostly derive from apparently

random individual variability, the behaviour of different cells growing on a
culture dish is more likely not homogenous and changes according to
intracellular state and/or local external conditions, thus giving rise to a
potentially large number of different subpopulations within the same cul-
ture. To reproduce this cell-by-cell variability, the above-described motion
model was extended to include the ability to modify speed, directionality,
and other features according to the presence of an attractant, repulsion from
neighboring cells, attachment state, and cell cycle phase. The method for
generatingmovementwas thereforemodified to take into account themany
factors able tomodifymovement,while calculating the displacement of each
individual cell (Fig. 5a). Basically, random(rand), persistence (pers) and bias
(bias) modules, obtained from an experimental population, were respec-
tively assumed to be the result of the following expressions:

rand ¼ r � dtot ð2Þ

pers ¼ p � dtot ð3Þ

bias ¼ b � dtot ð4Þ
where r, p, b, whose sum is equal to one, correspond to the fraction
respectivelyusedby random,persistence andbias components ofdtot, i.e. the
“maximum potential displacement” of a given cell type, travelling under a
given condition. The average dtot value observed in the experimental
population is in turn assumed to derive from a reference value, dref, through
a coefficient k, representing the cumulative effect of cell confluence, limited
nutrients or growth factor availability, or other inhibitors of cell movement.
When generating movement with the extended motion model, for each
simulated cell,dtot is re-calculatedbymultiplyingdref for ak value depending
on various factors including cell cycle phase, attachment state, level of
vitality and local confluence. Similarly, b is modified by taking into account
the effect of factors able to influence the final bias vector, such as global bias,
repulsion from neighbouring cells or bias due to the presence of an
attractant gradient. Re-calculated r, p, b and dtot are now used to obtain the
new random, persistence and bias modules, which, combined according to
the three component model, give the final displacement. Finally, cell
position is modified using the obtained displacement and optionally taking
into account the presence on the culture surface of physical borders or other
constraints which slow down or completely block cell movement.

As with the extendedmotionmodel it is relatively easy to compose the
effects of different factors simultaneously affecting the movement of every
single cell, support was added for short range cell–cell repulsion and locally
variable gradients of attractant molecules.

Cell-cell repulsion was determined by identifying, for a given cell, the
neighbouring cells within a given distance and by calculating, for each of
them, a repulsion vector along the straight line between the two cells with a
module depending on distance, cell speed and sensibility to repulsion by
other cells (Fig. 5b).

Similarly, to simulate the effect of gradients of attractant molecules,
another bias vector is determined from the difference in attractant level
between front andbackof a given cell. This vectorworks verynicely for short
and/or sharp gradients able to produce concentration differences at dis-
tances comparable to the size of a cell body (Fig. 5c). Support for shallow
gradients was introduced by considering the effect of dynamic self-
generated local gradients as those previously described in literature58,59,
which assume that a shallow or even completely flat gradient is locally
reinforced by the ability of cells to degrade the attractant molecule in their
immediately vicinity (Fig. 5d). Such local gradients have been shown by
different authors to be more robust, to work across greater distances and to
be better suited to represent the effect of the local environment than purely
passive cell responses60–66.

The extendedmotionmodel can effectively generate, as shown inFig. 6,
the variety of different cell subpopulations typical of wound healing
experiments, starting from the parameters determined from an experi-
mental NIH-3T3 culture exponentially growing under standard conditions

https://doi.org/10.1038/s41540-025-00518-w Article

npj Systems Biology and Applications |           (2025) 11:48 6

www.nature.com/npjsba


T
ab

le
1
|S

im
ila

ri
ty

b
et
w
ee

n
si
m
ul
at
ed

an
d
ex

p
er
im

en
ta
lc

el
lp

o
p
ul
at
io
ns

g
o
es

b
ey

o
nd

th
e
p
ar
am

et
er
s
us

ed
to

co
nfi

g
ur
e
th
e
si
m
ul
at
io
ns

E
xp

er
im

en
ta
la
nd

si
m
ul
at
ed

H
eL

a,
T2

4
an

d
N
IH
-3
T3

p
op

ul
at
io
ns

un
d
er

st
an

d
ar
d
cu

ltu
re

co
nd

iti
on

an
d
in
w
ou

nd
he

al
in
g
ex

p
er
im

en
ts
w
er
e
an

al
ys
ed

an
d
d
iff
er
en

tp
ar
am

et
er
s
w
er
e
ca

lc
ul
at
ed

,i
nc

lu
di
ng

ra
nd

om
m
od

ul
e,
b
ia
s
an

d
p
er
si
st
en

ce
m
od

ul
es

no
rm

al
is
ed

ag
ai
ns

tt
he

co
rr
es

p
on

d
in
g
ra
nd

om
m
od

ul
e,

av
er
ag

e
d
is
p
la
ce

m
en

t,
M
S
D
an

d
ra
nd

om
M
S
D
(rM

S
D
)p

er
40

m
in
,d

iff
us

io
n
ex

p
on

en
t(
α
),
p
er
si
st
en

ce
tim

e
(p
),
lin
ea

rit
y,

co
he

re
nc

e
an

d
R
p
ar
am

et
er
.I
n
th
e
ta
b
le
,c

el
ls
w
ith

a
gr
ey

b
ac

kg
ro
un

d
co

nt
ai
n
p
ar
am

et
er

va
lu
es

ob
ta
in
ed

fr
om

th
e

ex
p
er
im

en
ta
lp

op
ul
at
io
n
an

d
us

ed
to

co
nfi

gu
re

si
m
ul
at
io
ns

.

https://doi.org/10.1038/s41540-025-00518-w Article

npj Systems Biology and Applications |           (2025) 11:48 7

www.nature.com/npjsba


and moving in absence of any directional bias. As shown in Fig. 6a, the
original experimental culture (left panels) was analysed to obtain the “base
parameters” r, p, b and dref, which were then used to produce a similarly
numbered population of simulated cells (right panels) which, “growing”
under the same conditions, reach a comparable number of cells in 24 h and,
at the same time, move along similar paths (Fig. 6b). The contributions to
displacement of the three components, evaluated over time (seeMethods),
show a pattern similar to the experimental population, with an average
displacement mostly made of a random component, with a smaller per-
sistence and no bias (Fig. 6c). In Fig. 6d, the same “base parameters” were
used to simulate a wound healing experiment where cells are grown at high
density, tomake them initially produce an highly confluent “layer”which is
then subjected to a scratch. While “growing” at high density, dtot values are
reduced by lower nutrient availability or specific cellular states: for example,
cells move slowerwhen in G0 or during apoptosis. After the scratch, cells by
themselves tend to move towards the free space by diffusion reinforced by
cell-cell repulsion. The “attraction” by the wound was simulated by adding
two further components, both simulated using dynamic self-generated local

gradients, which reflect the effect of free space and the attraction by cell
debris produced in thewound area soon after the scratch. Thefirst uses aflat
long-lived attractant uniformly present in the plate to represent the effect of
different serum factors; the second,with a relatively short half-life, simulates
the effects of molecules released by scratch damaged cells67–73. The two
gradients produce two bias vectors which, combined with others, such as
that introduced by cell to cell repulsion, result in a final bias, different for
each cell. The resultingbehaviour ismuchmore complex than in the starting
population and leads to wound closure (Fig. 6d, right panels) with timing
and patterns very similar to those of an experimental NIH-3T3 population
observed under the same conditions (Fig. 6d, left panels). Simulated cell
paths show a progressive decrease in length and linearity as the distance
from wound front increases (Fig. 6e–g) and front (fr), middle (md) and
inner (in) subpopulations, separately analysed produce results which closely
resemble those from experimental cultures. The contributions to displace-
ment of the three components, evaluated over time, also showpatterns close
to those of experimental populations, with longer displacements for front
populations mostly due to higher bias, much lower displacement and bias
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Fig. 4 | Simulations based on the movement model effectively reproduce cell
paths observed in experimental cultures. For HeLa, T24 and NIH-3T3 popula-
tions, x–y coordinates registered during experimental time-lapse acquisitions and
simulation experiments were used to draw paths followed by each cell, both under
standard culture conditions (a) and during wound healing experiments (b); an
opacity gradient is used to mark the passing of time while drawing cell paths. The
calculated random (r), persistence (p) and bias (b) modules were reported under

each graph. c For both standard and wound conditions, 10 populations were
simulated starting either with the same number of cells as in the corresponding
experimental one (red boxes) or with a standard number of 50 cells (blue boxes): for
each movement parameter, a plot reports the distribution of its values among the
simulated populations compared with the value obtained from the corresponding
experimental one (black dashes). A grey background in the plot indicates parameters
used to configure the features of the simulated cell populations.
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values for internal cells with intermediate values for middle cells (Fig. 6h).
When movement parameters obtained from the analysis of the simulated
populations are compared to a larger number of experimental populations
in the same conditions, total displacement as well as random, persistence
and bias components are within or very close to the range of experimental
values (Fig. 6i).

Setting up and executing simulations within SimulCellweb
application
The described models and procedures can be used together to produce
simulated populationswithin SimulCell, a web applicationdesigned to setup
and run simulation experiments and to quickly analyse the results. Input
data can be manipulated using standard dialog boxes, organised in sections
containing experiment, plate, cell and event parameters (Fig. 7a).During the
calculation, the application provides support formonitoring the process, by
showing images of the simulated cultures and plots reporting number of

cells or other data. After the calculation, the result page displays major
parameters and statistics organised in different tables: History, containing
summary results for each time point, Path and Frame, where data are
respectively organised by cell and time interval, in addition to Setup and
Performance, containing themajor simulation parameters used to setup the
experiment and run duration and other performance indicators. Still within
SimulCell, many different plots can be generated to visualise data as custom
graphs designed to highlight specific data features (Fig. 7b) and images and
videos are used to display cell behaviour and morphology during the
simulated experiment. Within SimulCell, as also in images shown in Fig. 6,
cell visualisation uses a “symbolic” representation, where cells are simple
geometric shapes, which change depending on cell type, status and condi-
tion. Cell body is represented by a circle or an ellipse whose size conveys
information about volume, degree of spreading and cell polarisation. Images
use a grey level colour set, reminiscent of phase contrast microscopy, to let
the user recognise cell growth, attachment status, nuclear duplication and
division in a familiar way; some examples are reported in Fig. 7c.

Figure 8 shows some simulations executed within SimulCell, which
highlight how cell behaviour is affected by the specific conditions defined
while setting up the experiment and each individual cell agent integrates
different aspects of cell behaviour and reacts to local environment changes
produced by other cells or resulting from external physical or chemical
events.

In the example reported in Fig. 8a, b, the vitality of each cell is differ-
ently affected by an antibiotic drug added to themediumand simulated cells
respond by progressively dying until they completely disappear over time.
When the same cells are “transfected” with an antibiotic resistance gene,
some acquire the new gene (Fig. 8c, yellow line), become resistant to the
antibiotic and grow and proliferate in its presence, producing resistant
clones (Fig. 8c, d) (Supplementary Movie1).

In Fig. 8e–g, simulatedNIH3T3-like cells weremodified by acquiring a
constitutively active Ras gene by transfection and later moved to 1% FBS
(Supplementary Movie2). Under these conditions, cells keep growing
although at a lower rate because of reduced serum stimulation and, after a
few days, some cells, having acquired the mutated Ras gene, accelerate
growth and produce clonal foci which after a while start overcoming the
surrounding cells (Fig. 8g and Supplementary Fig. 5). The plots show that in
low serumnon-transfected cells slowdown their growth and enterG0 phase,
unlike the few transformed cells which actively proliferate and in a few days
start a fast exponential growth and become the predominant cell population
concomitantly with the appearance of foci in the culture.

Finally Fig. 8h, i, shows the effect of infecting simulated cellswith a lytic
virus (Supplementary Movie3). Here, cell agents were configured with
parameters fromVeroE6cells and virus infectionwas assumed to lead to cell
lysis in about 9 h and to release new infective virus particles in the sur-
rounding area. The results show that 24 h after infection (day 2) the layer is
still confluent, but that starting from day 3, a lysis plaque becomes visible
and enlarges over time following the few replication cycles corresponding to
the sequential waves of infection caused by subsequent local releases of new
virus particles.

Discussion
Modelling the enormously variable behaviour of a population of eukaryotic
cells is an inherently difficult task, given the inevitable differences between
single individual cells. In many cases, the simple observation of cell popu-
lations of different sizes allows to define a “collective” behaviour, usually
relatively easy to analyse and even predict once a number of environmental
parameters have been established. But in a real cell population, the “col-
lective” behaviour derives from the combination of many independent
individual cells, each of them behaving according to its own micro-
environment and following basic rules defined by physics and chemistry: an
approach completely based on this principle could, if at all conceivable,
completely define all cell features and activities. Although such a detailed
approach appears to bewell beyond our current abilities, different aspects of
cell behaviour, such as cell proliferation and movement, have been the

a global biascell-cell rep  attractant bias 
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displacement

physical constraints 
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random persistence bias
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k

Fig. 5 | Schematic representation of the movement model. a The extended motion
model used in the simulator builds on the original three component model, con-
tained in the dashed box, to simulate the influence of internal and external factors on
cell movement. dtot is the maximum displacement for a defined time interval and is
derived from dref, assumed to be the maximum potential displacement obtained for
the same cell type under an “optimal” set of conditions; r, p and b indicate howmuch
of dtot is necessary to produce the corresponding random, persistent and bias
components. By modifying these parameters, a wide range of factors can influence
cell displacement and its final position; examples are cell cycle phase, attachment
state, level of vitality and of local confluence, the presence of physical constraints and
“local” bias, like repulsion fromneighbouring cell or attraction due to the presence of
an attractant gradient in the plate. b Cell-cell repulsion gradient represented as
colour shades corresponding to cell influence on the surrounding environment. For
each cell, the repulsion vector is reported as a white arrow along the straight line
between two neighbouring cells and whose module depends on gradient. The time
interval between the first three images was 20’ intervals, while the others were taken
at 10’ interval. c Effect of a relatively sharp attractant gradient on cell movement. For
each cell, the bias vector is reported as an arrow whose module depends on the
difference in attractant level over a distance corresponding to the size of the cell body.
d Effect of dynamic self-generated local gradients on cell movement. The bias vector
is reported as an arrow with a module which, as in c, depends on attractants level,
which, in this case, is locally modified by the presence of cells able to degrade the
attractant molecule in its immediately vicinity: higher cell concentration produces
greater gradient than sparse cells. In both panels, a more intense blue indicates
higher attractant level.
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target, in recent years, of a search for parameters andmodels able todescribe
them in good detail from the phenomenological point of view2,5,74,75. Such
models have been used as a base to generate, by in silico simulation, new
populations which, to a given extent, can resemble experimental ones and
may be challenged for testing hypotheses6,26,30,37. Observing the behaviour of
such simulated cultures may turn out to be particularly useful when the
experimental system is complex, components and parameters increase in

number and the outcome is consequently more difficult to predict
analytically.

The agent-based simulation system proposed in this work goes along
these lines, simulating single cells which, interacting with each other and
with their environment, individually contribute to generate a simulated cell
population which can accurately reproduce movement and many other
features observed inexperimental cell cultures.Movement simulationbuilds
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on a previously developedmotionmodel47, whichwas here further extended
to add the necessaryflexibility: within the system, the cells, defined by “base”
parameters obtained from the analysis of a given population, react to
environmental changes, by modifying the “base” parameters taking into
account their own intracellular state and local external conditions. This
approach gives rise to a potentially large number of different cells and/or
subpopulations within the same culture. Cells simulated in this way, can, all
at the same time, feel cell-to-cell repulsion, choose their direction reacting to
the presenceof attractantmolecules andmodifymovement according to cell
metabolism, attachment state and cell cycle phase; while doing that, the
same cells control growth, survival and replication, as well as cell cycle
transitions, also in relation to local cell confluence and presence of nutrients
or drugs in the medium. In this way, cell-to-cell differences derive from
random individual variability but are also due to a non-random differential
behaviour, which reflects intracellular state and/or local external conditions
and can give rise to different subpopulations within the same culture.

Simulation planning and execution takes advantage of a web applica-
tion, SimulCell (http://simulcell.ceinge.unina.it/), whichprovides a standard
setup, but where most parameters may be modified and a large number of
cell functions and features can be easily graduated or simply turned on/off.
SimulCellwas designed to be an environment wheremodels formovement,
growth and proliferation are already available, and can be used to test the
behaviour of cultured cells by users who can access parameters for different
cell types and easily modify them. It provides a small collection of basic
parameters, corresponding to a set of experimental cell types and/or
populations, and can be used to modify most parameters defining cell
behaviour, culture plate specifications, medium components, geometry of
the acquisition area. Events occurring during the simulation are also set up
through the interface, including changes in serum type and level, addition or
removal of physical borders, mechanical injuries, addition of attractant
molecules or drugs; in the same way, even simple acquisitions of exogenous
genes or a basic “viral” infection procedure can be used in experiment
planning. Being available as a freely accessible web application, SimulCell
requires no installation or package dependence and can run, maintaining
performance, independently from the available computer hardware or
operating systems. These features possibly contribute to make cell simula-
tion more easily accessible by users with no programming experience than
other currently available simulation tools. In this sense SimulCell, unlike
other frameworks for buildingmodels such asCompuCell3D and PhysiCell,
does not require users to write their own code or build andmanagemore or
less complex XMLmodels, although a large number of parametersmay still
be modified and different combinations may be easily tested, stored and
replayed; in this sense, the system may turn out to be usable when testing
hypotheses or trying to answer questions of the “What if…?” type. SimulCell
is also a potentially useful demonstration tool for academic courses, where it
should be relatively easy to set up typical experimental situations involving

Fig. 6 | Simulation of NIH3T3-like cells moving under wound healing experi-
ments.Movement parameters obtained from the experimental cell population, kept
under standard conditions, of panels (a-c) were used to produce synthetic popula-
tions moving in a wound healing experiment in panels (d–h). a Phase contrast
images taken at 24 hour distance of cells exponentially growing under standard
culture conditions and in absence of any directional bias (left side images), compared
to a simulated cell culture “grown” under the same conditions and rendered at the
same times using a phase-contrast inspired symbolic representation (right side
images). bMovement paths of experimental and simulated cells during the 24 h
period, drawn by using an opacity gradient to mark the passing of time.
c Contributions to cell displacement of random (blue), persistence (green) and bias
(red) evaluated for experimental and simulated cells by analysing, at each time point,
overlapping 12-hwindows. dAwoundhealing simulation, where the cell population
uses parameters from the experimental population of panel (a), is compared to a

wound healing experiment featuring an independent experimental population. For
both simulated and experimental populations the images are organised as in panel
(a). e–g Movement paths for experimental and simulated sub-populations corre-
sponding to cells located after the wound at the front (e), middle (f) or back (g),
drawn, as in (b), by using an opacity gradient to mark the passing of time. hAverage
contributions to cell displacement of random (blue), persistence (green) and bias
(red) evaluated over time, by separately analysing overlapping 12-h windows for
experimental and simulated cells located at the front (fr), middle (md) and back (in).
i Distribution of displacement, random, persistence and bias values obtained for
experimental cells from 5 populations under standard culture conditions (red
boxes), 16 populations at the wound front (blue boxes) and 6 intermediate (green
boxes) and internal populations (violet boxes). The corresponding values from the
simulated populations are reported as dashes.

a

b

c

Fig. 7 | SimulCell web application. a The setup page is used to define a multi-
experiment run using the available plates, cells and events and gives access to all
parameters needed to run a simulation through dialog sections customised for plate,
cell and event. b The result page gives access to the simulation results using custo-
mised tables and plots and showing videos to display cell behaviour. c Simulated
“symbolic” representations of cell morphology compared to phase contrast images
of experimental NIH3T3 cells under similar conditions: cells are visualised as oval
shapes, whose size and elongation depend on cell features as well as simulated
volume and degree of spreading; as for their experimental counterpart, border colour
is dimmer in fully spread cells and becomes thicker and clearer when cells de-spread
during nuclear duplication and division or apoptosis.
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Fig. 8 | Experiment examples performedwithin SimulCell. aNumber of simulated
NIH3T3-like cells while responding to an antibiotic added to themedium at time 6 h
and followed for 8 days. b Phase-contrast like images of the same population on days
0, 1, 3 and 6. c Production of antibiotic-resistant clones by DNA transfection. After
transfection with an antibiotic resistance gene at time 0, the number of total simu-
latedNIH3T3-like cells (blue line), non-transfected (green line) and transfected cells
(yellow line) is reported over time while cells respond to an antibiotic added to the
medium at time 6 h. dPhase contrast like images of the same population on days 1, 4,

6 and 8. e–g Production of foci by overgrowth after transformation by exogenous
DNA. The total number of cells (blue line) and the number of cells in S (green line)
andG0 (yellow line) phase after transfection with constitutively activated Ras gene at
time 12 h and serum step down to 1% FBS ate time 24 h is reported for non trans-
fected (e) and transfected cells (f). g Phase contrast like images of the same popu-
lation on days 2, 6, 8 and 10. hNumber of dead (blue line) and infected (green line)
simulated VeroE6 cells after infectionwith a lytic virus (9 h replication time). i Phase
contrast like images of the same population on days 2, 3 and 4.
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standard cell cultures to test cell response in different conditions and to try
experimental setups difficult or impossible to reproduce in a wet-lab prac-
tical lesson. The use of SimulCell within an educational context could be
particularly indicated as, being a web tool, its performance is relatively
independent from the browser or the computer hardware available to the
user: of course, when long tables or large movies are produced, better
hardware and a faster browser can result in a more pleasant experience.

Although the system is effective at simulatingmotion and proliferative
behaviour, its use is necessarily restricted by the planned aspects of cell
behaviour. For example, the 2D nature of the current model does not
account for complex 3D interactions between cells andwith the extracellular
matrix, a feature whichwould obviously help while workingwith tissue-like
structures. In addition, in its present form the system only keeps track of a
few protein molecules: more molecular simulations would certainly help
create more control points for internal signalling or external factors.
However, the modular architecture makes it relatively easy to extend, thus
opening up future perspectives. A welcome addition, for example, would be
a better definition of cell morphology, which could be of help in both
simulation and result visualisation phases. Similarly, interfacing with an
externalmolecular simulation toolwouldadd support for a largernumberof
simulated molecules, a useful feature when investigating physiological or
pathological situations involving regulatory molecules and signalling
pathways76–79.

Methods
Cell culture
Cells were propagated in Dulbecco’s Modified Eagle’s Medium (DMEM)
supplemented with L-Glutamine (2mM), 10% foetal bovine serum (FBS),
penicillin (10 U/ml) and streptomycin (10 ng/ml) and maintained at 37 °C
and 5% CO2. Cells were transferred by detaching them in trypsin/EDTA
(trypsin 0.05% and 0.53mM EDTA) and collecting them with a complete
culture medium. After centrifugation at 1200 rpm for 5min, pellets were
suspended in fresh medium, properly diluted, and plated again.

The cell lines used for time-lapse acquisitions include murine fibro-
blastsNIH-3T380 andNIH-Ras producedby transfectingRasV12 intoNIH-
3T381, and human immortalised cell lines HeLa from cervical cancer82, T24
from bladder carcinoma83 MDA-MB-231 from breast cancer84, A2058,
A375 and wm115 cells from melanoma85–87 and PC3 and Calu cells from
prostatic and lung adenocarcinoma, respectively88,89.

To investigate randommovement ability, 25000 cells/well were seeded
in 12 well plates andmaintained in completemedium at 37°C and 5%CO2.
After 16–18 h, the plate was placed in the incubator chamber of the
microscope. For wound healing assays, cells were seeded in confluent
monolayers by plating 250000 cell/well in 12 well plates in complete med-
ium; 24 h after plating the cell layer was scratched with a sterile pipette tip.

Data acquisition
Phase contrast images (objective 10x) of different samples have been
acquired at 10min interval for 24 h or more by using a Zeiss Cell Observer
system, composed by an inverted microscope (Axiovert 200M), an incu-
bator chamber that maintains the temperature at 37°C and CO2 partial
pressure of 5%, and a digital camera (Axiocam H/R or Hamamatsu Orca
Flash). A motorised stage was used to permit prolonged automatic acqui-
sitions at different positions. For this work, digital frames were typically
acquired as 16 bit images of 650×514 pixels. The pixel scale of the acquired
images is 0.767 pixel/µm, obtained by acquiring with the same system an
image of a Burker chamber with known measures.

Cell displacement was tracked by using a semi-automated procedure
available within MotoCell90. The tracking procedure allows to collect cell
positions (in terms of x/y coordinates) at different times (frames) to construct
for each cell a path characterised by an origin (start, newborn, found, gone in)
andadestiny (split, dead, lost, goneout).Theregistereddataare stored ina text
file that can be read byMotoCell to perform the quantitative analysis.

Mathematical and statistical analyses
Mathematical and statistical analyses were carried out within the R envir-
onment. The function kde2d (MASSpackage) has been used to compute the
two-dimensional density distribution of cell positions (x and y coordinates),
graphically represented by using the image and persp functions (graphics
package), for 2D and 3D representations, respectively. In addition, stats
package from the basic configuration as well as the external package ggplot2
have been used to produce most graphics. Curve fitting has been done by
using nls (non-linear least squared) function.

Determination of movement parameters
The random, persistence and bias components of analysed cell movements
were evaluated using the model and procedure described in Toscano et al.
(2022)47. Diffusive behaviour was evaluated by collecting mean squared
displacements (MSD) corresponding to progressively increased time
intervals and by fitting the functionMSD ¼ k � tα to the data, usingweights
proportional to the number of averaged squared displacements. Persistence
analysis was carried out byfitting themodel initially proposed by Fürth et al.
in 192091and described by Alt et al. in 199092, where the relation between
MSD and time (t) is given by the following equation:

MSD ¼ 2S2 � P � t � P � 1� e
�t
P

� �h i
ð5Þ

where S is the root mean squared speed and P is the directional persistence
time, i.e. the time in which cell movement tends to persist in the same
direction.

Linearity was calculated as the ratio of net displacement (i.e. the dis-
tance between the starting and end point) to path length. For a given
population, linearity is the average of linearity values independently cal-
culated for each cell. The coherence parameter of a population was mea-
sured as the ratio between the length of the resulting vector, obtained by
composing the displacement vectors for each cell path and the sum of the
single net displacement vector lengths. Circular statistics analysis was used
to evaluate the distribution of cell displacement directions. The displace-
ment vectors were combinedwithout taking into account vectormodules to
obtain a resulting vector having its origin in the centre of a circle with unit
radius. Its direction is defined as the average angle, whereas its length is
named linear dispersion coefficient (R), which is descriptive of the disper-
sion of the angles around the average. R value ranges between0 and 1: values
close to 0 indicate a uniform angle distribution with no directional bias;
larger values are obtained when displacement angles are clustered around a
given direction, reaching 1 in the special case of all identical angles.

The average scalar contribution of random, persistence and bias
components to displacement length were calculated by averaging, for a
given time window, the projections of each of the corresponding vectors
onto the displacement direction.

Calculation of cell cycle state transitions
Cell cycle state progression was simulated by using Markov chains, where
each cell moves from one state to the next by using probabilities calculated
by combining the effects of number of factors able to influence the transi-
tion.At each timepoint, the probability (prob) ofmoving to adifferent status
in a given time (probTime) is adapted to the simulation time interval
(timeInt) according to the following formula:

probtimeInt ¼ 1� ð1� probÞ timeInt
probTime

� �
ð6Þ

The effect (eff) of each enhancing or limiting factor affecting the transition is
reported within the 0–1 interval by using the logistic function:

eff ¼ 1

1þ ekðXc�Xref Þ ð7Þ
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where Xc in the current value of the parameter which influences the tran-
sition,Xref is themean of logistic function and is the value at which there is a
50% probability to go the next state and k is the logistic growth rate or
steepness of the curve.

Generation of cell displacement frommovement parameters
Cellmovement is simulated by using three parameters corresponding to the
length of random, persistence and bias components: during each time
interval, a ten step randomwalk is calculated to generate a vector of variable
direction andmodulewhich is optionally combinedwith a persistence and a
bias vector. The three components may be provided by the user, but more
often are the result of the evaluation of experimental paths according to the
method and procedure described in Toscano et al. (2022)47. In alternative,
the two-level approach described in the Results section was used to obtain
movement parameters starting from the “base parameters” (r, p, b and dtot).
This last method allows to adapt experimentally determined parameters to
culture conditions other than those used to acquire them and, at the same
time, is used to modify them for each individual cell, taking into account
localmedium changes or other factors affecting cell movement. In addition,
the global bias represented by b value, is combined with additional bias
vectors due to repulsion from neighbouring cells and/or the presence of an
attractant gradient. Modified b value, together with r and p values, are then
rescaled to bring their sum back to 1 and used to obtain the new random,
persistence and bias components to be used to calculate the final displace-
ment. Support for short range cell-cell repulsion is introduced as an addi-
tional bias: for each cell, the neighbouring cells within a given radius are
identified and, for each of them, a repulsion vector is calculated along the
straight line between the twocells andwith amodule dependingondistance,
cell speed and sensibility to repulsion by other cells. Another additional bias
is used to support local attractant gradients determined as difference in
attractant level between cell front and back. These levels are optionally
adjusted to produce a dynamic self-generated local gradient to simulate cells
able to degrade attractants.

SimulCell development
SimulCellhas beenbuilt byusing thePHPprogramming language andusing
an object oriented approach which allowed the development of a strongly
modular program. A schematic representation of the architecture of the
simulation system in terms of objects and data flow is reported in Supple-
mentary Figure 6. The execution of a simulation run is started by an
expRunner object using parameters obtained from one or more expSetup
objects, originally setup by the user through the SimulCell graphical inter-
face or other means. For each expSetup, the expRunner creates one experi-
ment object, responsible for time management and for processing
simulation data, recorded at each time interval using a movie object. An
experiment creates a plate object, which works as a “dynamic” container of
cells and represents the ever changing environment inwhich they live,move
and proliferate. A plate has properties like geometry, surface and medium,
whose components are updated at each step and can influence cell beha-
viour. According to the input parameters defined by the user, different cell
objects are added to the plate, each of them set up starting from a parameter
library derived from the analysis of experimental cell populations (some are
reported in Supplementary Table 2) andmodified according to user choices
contained in the expSetup. The cell object contains the current state of the
cell and provides most functionality in terms of functions, responsible for
implementing the models defining cell behaviour. Cells use a plate-owned
cellGrid to manage and calculate cell-cell and cell-device distances and
interactions. A general event class is used to contain the basic features of any
event and is further extended to produce specific events: update, med-
iumChange, moleculeAddition, gradientAddition, contraintRemoval,
scratchOnPlate, transfection, viralInfection, are examples of currently
available events.

In its present form, SimulCell runs as a web application in an apache2-
PHP environment and benefits to some extent frommulti core processing.
Examples of execution times obtained from a 12-core M1 processor are

reported in Supplementary Table 3. Simulation of a 100 cell starting
population for 5 days produces a final population of over 1600 cells in less
than 3min. Execution time per cell increases linearly with simulation time;
similarly, it linearly increases with the number of starting cells, with an
average of 0.04-0.06 seconds per cell per day, corresponding to over 1400-
1900 cell updates per second of simulation.

Representation of cell morphology
Within SimulCell, the generated simulations produce, in addition to text
basedoutputswhich report the results as tablesor plots, a dynamic graphical
representation of cells that can be used to build image stacks and mp4
movies. Here cells are represented by using a “symbolic” representation
where cells use simple geometric shapes which change depending on cell
type, status and condition. Cell body is represented by either a circle whose
radius depends on cell volume and degree of spreading or an ellipse which,
in addition, has a variable level of elongation to indicate cell polarisation
along one axis. Images use grey level colour sets, reminiscent of phase
contrast microscopy, where changes in shape, border colour, cell opacity
and contents are used as visual hints to help the user better recognise cell
growth, attachment status, nuclear duplication and division.

Data availability
Procedures and data used to generate the described experiments are pro-
vided in themain text, in figures and Supplementary Information; access to
simulations based on the described models is freely available through the
SimulCell web page (http://simulcell.ceinge.unina.it/), together with a
library of sample cell types. Any additional information may be obtained
from the corresponding author upon request.

Code availability
The simulations described in the manuscript were produced through
SimulCell (http://simulcell.ceinge.unina.it/), a web application used during
the project to test the described algorithms and procedures and to produce
the results of the example runs. Algorithms and procedures are described in
text and figures provided in the Manuscript and in the Supplementary
Information files. The authors will respond to all reasonable requests from
the readers after publication.
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