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Model ofmetabolism and gene expression
predicts proteome allocation in
Pseudomonas putida
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The genome-scale model of metabolism and gene expression (ME-model) for Pseudomonas putida
KT2440, iPpu1676-ME, provides a comprehensive representation of biosynthetic costs andproteome
allocation. Compared to a metabolic-only model, iPpu1676-ME significantly expands on gene
expression, macromolecular assembly, and cofactor utilization, enabling accurate growth predictions
without additional constraints. Multi-omics analysis using RNA sequencing and ribosomal profiling
data revealed translational prioritization in P. putida, with core pathways, such as nicotinamide
biosynthesis and queuosine metabolism, exhibiting higher translational efficiency, while secondary
pathways displayed lower priority. Notably, the ME-model significantly outperformed the M-model in
alignment with multi-omics data, thereby validating its predictive capacity. Thus, iPpu1676-ME offers
valuable insights into P. putida’s proteome allocation and presents a powerful tool for understanding
resource allocation in this industrially relevant microorganism.

Pseudomonas putida KT2440 is a versatile and metabolically robust bio-
technological workhorse1,2. It thrives in diverse environments3,4, degrades a
wide range of organic compounds4,5, and as a result, is employed to produce
a variety of bulk and fine chemicals6. Recent studies have focused on har-
nessing the potential of P. putida KT2440 and on understanding and
manipulating its metabolic network7. Genome-scale metabolic models
(M-models) have long been used in metabolic engineering to identify
metabolic bottlenecks and potential improvements in metabolic pathways
for bioproduction8–10. While M-models provide valuable insights into
metabolic capabilities, they do not account for macromolecular expression
and the biosynthetic cost of enzymes and, as a consequence, require
extensive constraining11–13. Thus, predictions using M-models can lack
robustness11, making it challenging to predict engineering strategies to
improve performance14.

Models of metabolism and gene expression (ME-models) mechan-
istically describe gene expression pathways and their intertwined role with
metabolic pathways to achieve optimal resource allocation for growth12.As a
result, ME-models make predictions beyond the scope of traditional M-
models, including unconstrained by-product secretion11, overflow
metabolism15, cofactor usage15, protein overproduction14, and proteomic

responses to stress conditions16. However, the reconstruction ofME-models
is time-intensive and requires extensivemanual curation, which has led to a
reduced number of reconstructed ME-models, only available for Bacillus
subtilis14, Clostridium ljungdahlii15, Escherichia coli12,17, and Thermotoga
maritima11.

Here, we reconstructed an ME-model for P. putida KT2440,
iPpu1676-ME, offering an unprecedented level of detail in the
cellular function and proteome allocation of this bacterium. We
show the improved predictive capabilities of proteome limitation
in P. putida KT2440. Furthermore, we interrogated the gene
expression of P. putida KT2440 using transcriptomics (RNA-Seq)
and translatomics (Ribo-Seq) data. We analyzed the translational
prioritization of pathways, as well as pathways that were sig-
nificantly less prioritized for translation. When contrasting the
model predictions against these sequencing datasets, we found
stronger agreement with the ME-model compared to the M-model.
Thus iPpu1676-ME represents a valuable asset for accurate
predictive modeling as a tool for bioprocess design and optimi-
zation and metabolic engineering8–10 in this industrially important
strain.
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Results
iPpu1676-ME predicts proteome limitation and overflowmeta-
bolism in P. putida KT2440
The ME-model of Pseudomonas putida KT2440, iPpu1676-ME, was
reconstructed based on a previous genome-scale metabolic model
(M-model), iJN14621. The gene expression machinery was integrated into
the ME-model following available ME-model reconstruction protocols12,18.
Protein complex stoichiometries, function, localization, translocation
pathways, and transcriptional unit compositions were retrieved and map-
ped from the genome of P. putida KT2440 (AE015451.219) as well as the
strain-specific database in BioCyc20. iPpu1676-ME consists of 7526 meta-
bolites, 14,414 reactions, and 1676 genes. Compared to the original
M-model template this represents an increase of 250% in metabolite, 392%
in reaction, and15% ingene coverage (Fig. 1a–c). The expressionmachinery
(E-matrix) adds up to 5443 metabolites, including types of RNA (mRNA,
tRNA, and rRNA), proteinswith andwithoutmodifications, and complexes
(Fig. 1a). In addition, the E-matrix contains 5040 reactions, including
translation and modification, translocation, transcription, and tRNA
charging (Fig. 1b). Finally, the added 214 genes in iPpu1676-ME (Fig. 1c)
correspond to mapped gene expression machinery including tRNA ligases,
ribosomal proteins, RNA polymerase subunits, transcription factors, and
protein modification machinery (including translocation machinery)
(Supplementary Fig. 1).

As previously reported, the integration of the E-matrix provides the
ME-model with a quantitative description of the biosynthetic cost of bio-
chemical reactions12. Reaction fluxes are limited by the underlying gene
expression cost, resulting in reducedflux variability11 and higher certainty in
model predictions. The flux variability analysis of iPpu1676-ME showed
reducedflux ranges (Fig. 1e). Themajority of theM-model ranges are above
100, while ME-model ranges are mostly below it, increasing the certainty of

predictions in the latter. Moreover, the ME-model readily recapitulates the
maximum growth rate of P. putida KT2440 in a glucose-containing mini-
mal medium (Fig. 1d), which has been reported at 0.58 (σ = 0.02) h−1 and at
a glucose uptake rate of 8.15 (σ = 2.00) mmol/gDW/h from five different
studies6,21–24. As opposed to the M-model, whose metabolic reactions are
unconstrained by biosynthetic costs, the ME-model reaches proteome
limitation when in nutrient excess and is capable of generating biologically
relevant simulations without any additional constraints (Fig. 1d).

We further assessed the accuracy of intracellular flux predictions by
contrasting them to previously published reports of metabolic flux analysis
(MFA) in P. putida KT244025,26. Notably, both M- (Supplementary File 1)
andME-models (Supplementary File 2) reproduce the overall activity of the
core metabolism assessed in the experimental MFA studies. At a glucose
uptake rate of 2.21mmol/gDW/h25 (simulation constraints and flux dis-
tributions are provided in SupplementaryData 1), glucose is converted to 6-
phospho-D-gluconate,which is thenassimilatedandconveyed to glycerol-3-
phosphate, bypassing the upper half of glycolysis. Interestingly, there is
minimal but nonzero flux through part of the pentose phosphate pathway
predicted by both M- andME-models and observed inMFA26. The second
half of glycolysis is active and feeds into the tricarboxylic acid cycle, with all
enzymatic steps being active25,26. However, only the M-model incorrectly
predicted isocitrate lyase and malate synthase (the glyoxylate shunt) to be
active, which were observed to be inactive in MFA25,26. Furthermore, we
found that the ME-model correctly predicts the activity of pyruvate
kinase25,26, which is inactive in the M-model simulations. In the latter,
phosphoenolpyruvate is converted to pyruvate through dGTP:pyruvate 2-
O-phosphotransferase.

Another improvement in ME-models is the prediction of proteome
limitation, which leads to the mechanistic prediction of overflow metabo-
lites in ME-models15. In iPpu1676-ME, this leads to predicting

Fig. 1 | Properties and predictions of the ME-model of P. putida KT2440. a and
b Breakdown of metabolites (a) and reactions (b) in iPpu1676-ME as compared to
the templateM-model, iJN14621. cGenome coverage of iPpu1676-ME and iJN1462.
d Comparison of flux variability analysis of the M- and ME-models of P. putida
KT2440. The distribution of the flux ranges is bimodal due to the tolerance of the
QuadMINOS solver of 10−16, below which fluxes can vary at a negligible level.

e Prediction of the maximum growth rate of P. putida KT2440 by the ME-model as
opposed to the overestimation in the M-model, compared to reported maximum
growth rates6,21–24. Area plots show the predicted secretion rates of overflow meta-
bolites acetate and 2-ketogluconate by the ME-model, which the M-model does not
predict.
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2-ketogluconate and acetate secretion in excess of glucose (Fig. 1e). While
2-ketogluconate is a known secreted metabolite by P. putida, acetate was
predicted as a minor by-product, which has been shown in oxygen-limited
conditions22,27. Notably, iPpu1676-MEmaintains the same 85% accuracy in
gene essentiality prediction1 of 54 metabolic gene knockout strains in M9
minimal medium28.

Multi-omic data reveal translational prioritization in P.
putida KT2440
Translational efficiency (TE) refers to the rate of protein synthesis per unit of
mRNA transcript29. The translation of a group of genes is said to be
prioritized if their TE (see the “Methods” section) is high relative to other
genes29. Translational prioritization readily informs the resource allocation
strategies of an organism30–32. It can be used to infer specific objectives30,33,
such as maximizing growth or uptaking a substrate. Thus, we aimed to
interrogate the proteome allocation of P. putida and its translational
prioritization using RNA-Seq andRibo-Seq. Then, we contrasted it with the
predictions by iPpu1676-ME.

P. putida was grown in glucose-containing M9 minimal medium in
three biological replicates, and paired RNA-Seq and Ribo-Seq were per-
formed. The three samples yielded a wide range of gene activity in both
datasetswith four and six orders ofmagnitudedifferences, as observed in the
raw read counts from RNA-Seq (Supplementary Fig. 2a) and Ribo-Seq
(Supplementary Fig. 2b), respectively, reinforcing the disparity in resource

allocation throughout the genome. In order to discard technical artifacts34 as
a confounding factor, we performed two-tailed t-tests (p < 0.05) and cal-
culated Pearson correlation coefficients of the replicates. No significance in
the means of the read count distributions was observed, and all replicates
were very strongly correlated (PCC > 0.9) in both RNA-Seq and Ribo-Seq
(Fig. 2a).

When contrasting across datasets, RNA-Seq andRibo-Seq counts-per-
million (CPM) show significant correlations, with a PCC of 0.78 (p = 0.0) in
the three samples (Fig. 2b). Despite the significant correlation at the whole-
dataset level, there are variations in the resource allocation at the pathway
level in the transcriptome and the translatome, which shows differential
translational prioritizationacross the genomeofP. putida. Thus,weassessed
whether metabolic pathways were observed with high or low translational
prioritization. We measured the translational prioritization of a pathway
using the average TE of its associated genes (see the “Methods” section) and
calculated the significance of the prioritization through a one-tailed
Mann–Whitney U (MWU) test. As part of the MWU test, we sorted and
ranked the genes in the RNA-Seq and Ribo-Seq datasets and contrasted if
their ranks differed significantly in eitherdataset. A highTE and a low right-
tailed MWU test p-value for a significant increase in rank in the Ribo-Seq
dataset (p < 0.05) support high translational prioritization.

A right-tailed Mann–Whitney U test revealed that there were ten
metabolic pathways with significantly higher ranks in the Ribo-Seq dataset
(p < 0.05),which canbe evidencedby the calculated translational efficiencies

Fig. 2 | Multi-omic data of P. putida KT2440 growth in glucose. a Pearson cor-
relation coefficient (PCC) of and two-tailed t-test (p-values) for the difference in
mean of the CPM distributions in the RNA-Seq and Ribo-Seq replicates. Strong
correlation and no significant mean difference across replicates indicate there are no
replicate outliers. b Correlation of RNA-Seq and Ribo-Seq CPM in the three

samples. cMetabolic pathways with higher rank in the Ribo-Seq dataset against the
RNA-Seq dataset (p < 0.05 as calculated by the right-tailed Mann–Whitney U-test).
Translational efficiencies (TEs) are shown for reference. dMetabolic pathways with
lower rank in the Ribo-Seq dataset against the RNA-Seq dataset (p < 0.05 as calcu-
lated by the left-tailed Mann–Whitney U-test).
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(TE)30,35,36 between 1.4 and 2.1 (Fig. 2c). Notably, the highest prioritization
(highest TE) was calculated for nicotinamide biosynthesis (TE = 2.1,
p = 5.38e−4), which produces the essential cofactor NAD+. Other core
metabolic pathways, such as urea cycle (TE = 1.9, p = 0.02), pyrimidine
biosynthesis (TE = 1.7, p = 5.04e−3), lipid A biosynthesis (TE = 1.7,
p = 0.02), and queuosine biosynthesis (TE = 1.7, p = 0.006), which are
directly associatedwith cell proliferation37, showed significant prioritization.
As expected, there was significant prioritization of gene expression,
including translation (TE = 1.8, p = 0.03) and tRNA charging (TE = 1.6,
p = 0.04).

On the other hand, 11 metabolic pathways had significantly lower
ranks as calculated by a left-tailed Mann–Whitney U test (p < 0.05). The
lowest prioritization was shown for pathways less necessary for growth in
glucose, namely levulinate metabolism (TE = 0.2, p = 7.02e−4),
phenylacetyl-CoA catabolon (TE = 0.3, p = 0.03), cellulose metabolism
(TE = 0.5, p = 0.02), and starch and sucrosemetabolism (TE = 1.0, p = 0.01).
Membrane-associated pathways, such as inner membrane transport
(TE = 1.0, p = 0.02), outermembrane transport (TE = 0.8, p = 8.5e−3), iron
uptake (TE = 0.7, p = 0.03), peptidoglycan biosynthesis (TE = 0.8, p = 0.04),
and murein recycling (TE = 0.5, p = 0.01), showed low translational prior-
itization. It is worth noting that a TE equal to 1.0 can still mean an overall
lower prioritization due to the variation in ranks in both datasets, such is the

case for starch and sucrose metabolism and inner membrane transport
(Fig. 2d).

The ME-model recapitulates optimal proteome allocation
Our translational prioritization analysis highlighted significantly higher TEs
for growth-required pathways, both metabolic and gene expression-related
(Fig. 2c, d). Most of the transcriptome and translatome are allocated for
these pathways (Fig. 3a), led by translation and followed by energy and
biomass production. However, multi-omic data does not provide a quan-
titative understanding of themetabolic and gene expression rates. Predictive
metabolic models are used to attain this understanding. Thus, here, we
assessed the improved performance of the ME-model of P. putida KT2440
over the M-model when contrasting against the expression levels inferred
from multi-omics (simulation constraints and flux distributions are pro-
vided in Supplementary Data 2).

We comparedM- andME-model predictions of cumulative pathway-
level fluxes of P. putida KT2440 against pathway-level expression from
RNA-Seq, Ribo-Seq, and the calculated TE from them. The ME-model
significantly outperformed theM-model in all cases (Fig. 3b).As a reference,
pathway-level RNA-Seq and Ribo-Seq are correlated with a PCC of 0.94
(Fig. 3c). In the M-model, several subsystems were predicted with low flux,
causing relevant data points to be more sparse. The PCCs were 0.50 for

Fig. 3 | Correlation between model predictions and multi-omics at the
pathway level. a and bAccumulated counts per million (CPM) for each pathway in
the RNA-Seq (a) and the Ribo-Seq (b) datasets. Only the top 10 largest contributing

pathways in either dataset are highlighted. b Correlation between Ribo-Seq and
RNA-Seq CPM at the pathway level. c Correlation between multi-omics and M-
(iJN1462) or ME-model (iPpu1676-ME) predictions at the pathway level.
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Table 1 | Input and manual curation files and their description

Name Description Type

genome.gb Genome file of P. putida KT2440 (AE015451.219). Obtained from NCBI. Input file

m_model.json M-model file of iJN1462. Obtained from publication1. Input file

RNAs.txt All RNAs, types (mRNA, tRNA, rRNA, etc.), and their products. Obtained from BioCyc20. Input file

TUs.txt Transcriptional units, their locations, and compositions. Obtained from BioCyc20. Input file

genes.txt All genes, types (CDS, RNA, etc.), and their products. Obtained from BioCyc20. Input file

proteins.txt All proteins and their annotation. Obtained from BioCyc20. Input file

sequences.fasta All genes and their nucleotide sequences. Obtained from BioCyc20. Input file

me_metabolites.txt Conversion of non-metabolic metabolites in the M-model into their respective representations in the
ME-model. For example, “ACP_c” in the ME-model becomes G1G01-2027-
MONOMER_mod_pan4p(1).

Manual
curation file

subreaction_matrix.txt Modifications and additions to ME-model subreactions. Most of these are ultimately incorporated in
complex formation or tRNA charging reactions. For example, “mod_acetyl_c” re-defines the
stoichiometry for the acetylation modification of proteins.

Manual
curation file

reaction_corrections.txt Modifies reactions in the M-model based on manual inputs in reaction_corrections.txt. Manual
curation file

metabolite_corrections.txt Modifies metabolites in the M-model before ME-model building using manual inputs in
metabolite_corrections.txt.

Manual
curation file

peptide_compartment_and_pathways.txt Adds protein locations and translocation pathways to an Organism instance from
peptide_compartment_and_pathways.txt.

Manual
curation file

translocation_multipliers.txt Defines the number of pores required for protein translocation using data from
translocation_multipliers.txt.

Manual
curation file

lipoprotein_precursors.txt Adds lipoprotein precursors to an Organism instance using manual inputs from
lipoprotein_precursors.txt.

Manual
curation file

cleaved_methionine.txt Marks proteins for N-terminal methionine cleavage in the ME-model using cleaved_methionine.txt. Manual
curation file

protein_corrections.txt Modifies or adds protein complexes in the ME-model using inputs from protein_corrections.txt. Manual
curation file

sigma_factors.txt Adds sigma factors for transcription regulation in an Organism instance using sigma_factors.txt. Manual
curation file

rho_independent.txt Marks genes with rho-independent transcription termination using rho_independent.txt. Manual
curation file

rna_degradosome.txt Defines the composition of the RNA degradosome using rna_degradosome.txt. Manual
curation file

rna_modification.txt Adds RNA modification enzymes for rRNA or tRNA modifications in the ME-model using
rna_modification.txt.

Manual
curation file

post_transcriptional_modification_of_RNA.txt Defines RNA genes undergoing modifications using post_transcriptional_modification_of_RNA.txt. Manual
curation file

enzyme_reaction_association.txt Associates enzymes with reactions in the ME-model using enzyme_reaction_association.txt. Manual
curation file

reaction_matrix.txt Defines reactions to be added to the ME-model using reaction_matrix.txt. Manual
curation file

orphan_and_spont_reactions.txt Marks reactions as orphan or spontaneous in the ME-model using orphan_and_spont_reactions.txt. Manual
curation file

subsystem_classification.txt Classifies subsystems for Keff estimation in the ME-model using subsystem_classification.txt. Manual
curation file

translocation_pathways.txt Defines translocation pathways and their machinery using translocation_pathways.txt. Manual
curation file

lipid_modifications.txt Defines lipid modification enzymes using lipid_modifications.txt. Manual
curation file

ribosomal_proteins.txt Defines ribosome composition using ribosomal_proteins.txt. Manual
curation file

ribosome_subreactions.txt Defines ribosome subreactions using ribosome_subreactions.txt. Manual
curation file

generic_dict.txt Defines generic enzyme components using generic_dict.txt. Manual
curation file

amino_acid_trna_synthetase.txt Associates amino acids with tRNA synthetases using amino_acid_trna_synthetase.txt. Manual
curation file

peptide_release_factors.txt Defines peptide release factors using peptide_release_factors.txt. Manual
curation file

initiation_subreactions.txt Defines translation initiation subreactions using initiation_subreactions.txt. Manual
curation file
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RNA-Seq (p = 3.55e−18) and 0.49 for Ribo-Seq (p = 5.50e−17), which
signifies an existent but weak correlation between both datasets. On the
other hand, theME-model showed stronger positive correlationswithPCCs
of 0.71 (p = 2.27e−44) and 0.76 (p = 1.40e−53) for RNA-Seq and Ribo-Seq,
respectively. Notably, despite the stronger correlation between the ME-
model predictions and RNA-Seq and Ribo-Seq, there was only a weak
positive correlation for TE (PCC = 0.46). Therefore, the predicted expres-
sion fluxes by the ME-model are predictive of the observed transcriptome
and translatome but not of the TE. Thus, the predictive capability of
iPpu1676-ME to recapitulate proteome allocation of P. putida KT2440
showcases its potential to be further used to interrogate and optimize the
resource allocation in this organism.

Discussion
Pseudomonas putida KT2440 has broad potential for biotechnological
applications1,2, and several studies have been focusing on optimizing culture
conditions, growth, and metabolic capabilities for this bacterium. While
bioinformatics tools and databases have informed potential pathways in P.
putida38,39, only predictive metabolic models can quantitatively estimate
improvements inmetabolism, growth, product rates, and yields40–42. Similar
to previous studies usingME-models, we here showed the prediction of by-
product secretion11, overflow metabolism15, and prediction of proteome
allocation16.While previousME-model reconstructions havewidely proven
prediction improvements, multi-omics datasets (RNA-Seq and Ribo-Seq)
have not been integrated or contrasted with these simulations. Our trans-
lational prioritization analysis showed significantly high TE for queuosine
biosynthesis alongside core biomass precursor biosynthetic pathways.
Interestingly, this pathway has been reported as a cell division regulator in
other bacteria37. On the other hand, transport and other membrane-
associated functions were found to have low translational prioritization.

The ME-model for P. putida KT2440, iPpu1676-ME, showed sig-
nificant improvements in the predictive capabilities of transcriptome and
translatome over the template M-model, iJN14621. iPpu1676-ME achieved
an outstanding PCCof 0.71 against RNA-Seq and 0.76 against Ribo-Seq. As
a reference, the multi-omics model and analytics (MOMA), a semi-
supervisedmachine learningpipeline, achievedPCCsbetween0.58 and0.85
with RNA-Seq in E. coli across 16 strains43. It is worth noting that the higher
agreement of Ribo-Seq and the predicted proteome allocation by the ME-
model underscores the precision of this sequencing technology in identi-
fying themetabolic goal of anorganism30. Inaddition, it highlights the ability
of a ME-model to predict optimal proteome allocation in a metabolically
diverse organism such as P. putida KT24401,2.

Some limitations affect our analysis. Determination of the active pro-
teome is challenging through sequencing technologies due to various
technical limitations. For example, RNA degradation affects measurements
by RNA-Seq44, and RNA transcription trends do not always carry over to

translation due to translational prioritization effects29,30. On the other hand,
directmeasurement of the proteome through proteomics is hindered by the
difficulty of whole-proteome determinations and the inherent noise inmass
spectrometry data45. On the other hand, Ribo-Seq provides an accurate
representation of translation in vivo29,30. While it cannot detect protein
stability, modification, and folding46, it has been shown to provide a
genome-scale understanding of translational prioritization29,30. Further-
more, we noticed variation between the replicates, which can be due to the
inherent flexibility of the metabolism of P. putida1,2. However, the correla-
tion was strong enough (PCC > 0.9) to ensure there were no significant
outliers in the replicates. Another limitation of this study is that metabolic
models, and thusME-models, are limited tomodeling enzymeswith either a
metabolic or a gene expression function12.However, there is a fraction of the
proteome that can have an alternative function, which can be structural or
still unknown. For example, this fraction has been estimated to be
approximately 36% of the proteome in E. coli12, and it might be the cause of
some of the unexplained variances in our comparison between model
predictions and Ribo-Seq.

Here,we provide amodeling framework alongsidemulti-omic datasets
that were not available to date, yielding an important resource for further
understanding the translational resource allocation in this industrially
relevant microorganism. Overall, we envision that the ME-model and
multi-omic resources brought forward in this work will serve as powerful
tools for the metabolic engineering and optimization of P. putida KT2440.

Methods
Reconstruction and simulation of the ME-model
The ME-model of P. putida KT2440, iPpu1676-ME, was reconstructed
using coralME18, with the available genome AE015451.219, M-model
(iJN14621), and BioCyc20-derived annotation files as inputs. Input manual
curationfiles of iPpu1676-MEare explained inTable 1. The code and scripts
in this work were developed and run in Python 3.10, COBRApy47 version
0.26.3, and coralME version 1.1.5. Simulations were performed using the
Quad MINOS software courtesy of Prof. Michael A. Saunders at Stanford
University48. The Quad MINOS solver was compiled under Ubuntu 22.04
with gfortran version 5 and Python 3.10 (pip 22.3.1, wheel 0.38.4, numpy
1.21.6, scipy 1.7.3, cython 0.29.32, and cpython 0.0.6). Flux distributions
were calculated with a binary search algorithm that looks for themaximum
possible growth rate that is feasible.

Computations were performed on a 64-bit Ubuntu 22.04.3 LTS
(Jammy Jellyfish); AMD Ryzen 9 7900X@4.70 GHz (12 cores, 24 threads);
4 × 32 GB 6000MHz DDR5 RAM. It is worth noting that iPpu1676-ME is
one of the largestME-models available. As a reference, theE. coliME-model
contains 1678 genes12.As such, optimizing iPpu1676-ME typically takesfive
minutes in the computer described here. This is several orders ofmagnitude
longer than the associated M-model, iJN14621 (~72ms). While this

Table 1 (continued) | Input and manual curation files and their description

Name Description Type

elongation_subreactions.txt Defines translation elongation subreactions using elongation_subreactions.txt. Manual
curation file

termination_subreactions.txt Defines translation termination subreactions using termination_subreactions.txt. Manual
curation file

transcription_subreactions.txt Defines transcription subreactions and their associated enzymes using
transcription_subreactions.txt.

Manual
curation file

special_trna_subreactions.txt Defines special tRNA subreactions such as tRNA-Sec synthesis using special_trna_subreactions.txt. Manual
curation file

special_modifications.txt Defines special protein modifications in the ME-model using special_modifications.txt. Manual
curation file

excision_machinery.txt Defines excision machinery using excision_machinery.txt. Manual
curation file

folding_dict.txt Defines protein folding pathways using folding_dict.txt. Manual
curation file
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computation time still allows for most analyses performed in metabolic
modeling, it can hinder its application in large-scale sampling of conditions,
e.g., simulating a bioreactor.

Gene essentiality predictions
Gene essentiality was predicted in iPpu1676-ME by closing (setting upper
and lower bounds to zero) the translation reaction of a gene and testing for
ME-model feasibility. Feasibility is tested at a growth rate of 10−3 with the
QuadMINOS solver in quad-precision and a tolerance of 10−16.

Flux variability analysis
Flux variability analysis (FVA) was performed using the built-in method
model.fva() in coral ME. In order to generate comparable datasets between
the M- and the ME-models, we cast the M-model into an ME-model
instance (function from_cobra()). The FVA in both models was performed
using the QuadMINOS solver in quad-precision and a tolerance of 10−16.

Culture and sequencing of P. putida KT2440
Apreculture of Pseudomonas putidaKT2440was grown in 5mL of liquid 1×
M9 medium (Sigma Aldrich, M6030) with 30mM glucose under oxic con-
ditions at 37 °C for 2 days. The optical density at 600 nm (OD600) was mea-
sured to assess carrying capacity using theMolecularDevices SpectraMaxM3
Multi-ModeMicroplate Reader (VWR, cat # 89429-536). The preculture was
diluted in triplicate to an OD600 of 0.1 in 25mL of 1x M9 medium and
incubated under oxic conditions at 37 °C in a shaking incubator, with optical
densitymeasuredhourly. Sampleswereharvestedbycentrifugationandpellets
were saved for multi-omics analysis as detailed below (RNA-, and Ribo-Seq).

Transcriptomic (RNA-Seq) sample preparation
RNA was extracted from P. putida replicates using the RNeasy mini kit
(Qiagen), with rRNA removal performed using the QIAseq FastSelect-5S/
16S/23S kit (Qiagen). RNA-Seq libraries were constructed using the KAPA
RNAHyperPrep kit (Roche) and barcodedwith TruSeq indexes (Illumina).
Amplification was monitored in real-time using SYBR-Green and halted
upon reaching the amplification plateau.

Translatomic (Ribo-Seq) sample preparation
The preparation of Ribo-Seq samples utilized a protocol adapted from
previously described methods designed for axenic bacterial cultures33,49.
Briefly, the bacterial cultures were treated with chloramphenicol and pel-
leted. At this point, we modified this protocol to address the chlor-
amphenicol resistance of Pseudomonas putidaKT2440 by resuspending the
pellet in RNAlater and flash-freezing in liquid nitrogen. Samples were
thawed, pelleted, and RNAlater removed, before proceeding to mechanical
bacterial lysis. Bacterial lysis was performed in the presence of a lysis solu-
tion containing additional chloramphenicol and Guanosine-5′-[(β,γ)-
imido] triphosphate (GMPPNP) to inhibit protein elongation. Lysates were
treated with MNase and DNase to digest nucleic acids that were not pro-
tected by ribosomes. Monosomes were recovered using RNeasy mini spin
size-exclusion columns (Qiagen) and RNA Clean & Concentrator-5 kit
(Zymo). rRNA was removed with the QIAseq FastSelect-5S/16S/23S kit
(Qiagen), andMetaRibo-Seq libraries were constructed using the NEBNext
Small RNA Library Prep set for Illumina. Amplification was followed in
real-time with SYBR-Green and stopped upon plateau plateau, and PCR
products were purified with the Select-a-size DNA Clear & Concentrator
kit (Zymo).

Sequencing
Library quantity and average size were assessed with the 4200 TapeStation
System (Agilent). Library concentrations were quantified using the Qubit
dsDNA HS Assay kit and QuBit 2.0 Fluorometer (Invitrogen). Sequencing
was performedbyUCSDIGMon the IlluminaNovaSeq S4, PE100 platform
with a minimum sequencing depth of 50 million reads for transcriptomic
samples and 100 million reads for translatomic samples.

Sequence alignment and post-processing of RNA-Seq and
Ribo-Seq
Paired-end read sequencing files from RNA-Seq and Ribo-Seq (FASTQ
format) were processed using Python 3.7. Reads were trimmed using
trim_galore version 0.6.10 (Cutadapt version 2.6)50. Reads were aligned to
the genomeofP. putidaKT2440usingbowtie2 version2.2.551. ForRibo-Seq,
single-end read sequence alignment was performed since read length is
short enough that both directions are redundant. For RNA-Seq, reads
aligning to ribosomal RNAwere discarded. Raw read countswere estimated
using Woltka version 0.1.552, with the built-in function “classify”. Finally,
cross-sample analyses in this work were performed using the counts per
million (CPM) normalization of read counts, as shown in Eq. (1).

CPM ¼ Raw read count
P

Raw read counts in sample
*106 ð1Þ

Statisticalanalysisof translationalprioritization frommulti-omics
Translational prioritization was inferred from calculating translational
efficiency (TE) (Eq. (2))30,35,36, and significance was calculated using the
Mann–Whitney U test. Higher translational prioritization was determined
if TE ≥ 1.0 and p < 0.05 in a right-tailedMann–WhitneyU test, while lower
was determined if TE ≤ 1.0 and p < 0.05 in a left-tailed Mann–Whitney U
test. The test was performed using scipy.stats.mannwhitneyu package of
scipy version 1.11.153.

TE ¼ Ribo� Seq CPM
RNA� Seq CPM

ð2Þ

Benchmarking analysis of model predictions with multi-omics
Benchmarking of the models (M- and ME-models) predictions was per-
formed with a correlative analysis between the pathway activity inferred
from RNA-Seq and Ribo-Seq and the predicted pathway fluxes in the
M-model (iJN14621) and theME-model (iPpu1676-ME). ForRNA-Seqand
Ribo-Seq, gene-level CPM data were grouped and summed by annotated
subsystem in the ME-model. For M-model predictions, the reaction fluxes
were grouped and summed by annotated subsystem in the M-model. For
ME-model predictions, protein translation fluxes were grouped and sum-
med by annotated subsystem in theM-model.We then log-transformed the
fluxes as log10(f+ 1), where f is the combined flux of a subsystem. The data
in all three samples was used in the regression to maintain maximal sta-
tistical power. Then, linear regression was performed with the statsmodels
version 0.14.1, which returned the regressed linear model and 95% con-
fidence interval. The Pearson correlation coefficient (PCC) and significance
(p-value) were calculated using scipy.stats.pearsonr of scipy version 1.11.1.

Data availability
Data is provided within themanuscript and in supplementary information.
Additionally, all data in this work, except for the raw sequencing files, are
available in the GitHub repository at https://github.com/jdtibochab/
pputidame. The code and data have been deposited in Zenodo (https://
doi.org/10.5281/zenodo.14984894). Raw RNA-Seq and Ribo-Seq files have
been deposited in the Sequence Read Archive (SRA) under BioProject
PRJNA1238387.

Code availability
All code used in this work is available in the GitHub repository at https://
github.com/jdtibochab/pputidame. The code and data have been deposited
in Zenodo (https://doi.org/10.5281/zenodo.14984894).
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