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Computational modeling of cancer cell
metabolism along the catabolic-
anabolic axes
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Abnormalmetabolism is a hallmark of cancer, thiswas initially recognizednearly a century ago through
the observation of aerobic glycolysis in cancer cells. Mitochondrial respiration can also drive tumor
progression and metastasis. However, it remains largely unclear the mechanisms by which cancer
cells mix and match different metabolic modalities (oxidative/reductive) and leverage various
metabolic ingredients (glucose, fatty acids, glutamine) to meet their bioenergetic and biosynthetic
needs. Here, we formulate a phenotypic model for cancer metabolism by coupling master gene
regulators (AMPK, HIF-1, MYC) with key metabolic substrates (glucose, fatty acids, and glutamine).
The model predicts that cancer cells can acquire four metabolic phenotypes: a catabolic phenotype
characterized by vigorous oxidative processes—O, an anabolic phenotype characterized by
pronounced reductive activities—W, and two complementary hybrid metabolic states—one
exhibiting both high catabolic and high anabolic activity—W/O, and the other relying mainly on
glutamine oxidation—Q. Using this framework, we quantified gene andmetabolic pathway activity by
developing scoring metrics based on gene expression. We validated the model-predicted gene-
metabolic pathway association and the characterization of the four metabolic phenotypes by
analyzing RNA-seq data of tumor samples from TCGA. Strikingly, carcinoma samples exhibiting
hybrid metabolic phenotypes are often associated with the worst survival outcomes relative to other
metabolic phenotypes. Our mathematical model and scoring metrics serve as a platform to quantify
cancer metabolism and study how cancer cells adapt their metabolism upon perturbations, which
ultimately could facilitate an effective treatment targeting cancer metabolic plasticity.

Whatever traits a cancer cell might exhibit, corresponding metabolic
activities are required to support required biomass production and bioe-
nergetic needs. Understanding cancer metabolism thus provides critical
insights into various hallmarks of cancer1, such as metastasis and immune
suppression. Aerobic glycolysis, termed the Warburg effect, has been often
observed in cancer. The potential benefits of aerobic glycolysis include rapid
ATP synthesis, microenvironment acidification, chromatin remodeling,
and increased resources available for biosynthesis2. Initially, it was believed

that this mode was necessary due to dysfunctional mitochondria. However,
the last two decades have witnessed increasing evidence that mitochondrial
oxidative phosphorylation (OXPHOS) plays an important role in tumor-
igenesis, metastasis, and drug-resistance3. For example, murine breast
cancer 4T1 cells, when entering the blood circulation, exhibit higher
OXPHOS relative to the primary tumor4. Also, BrafV600E-driven tumors
exhibit increased resistance to BRAF inhibitors, accomplished in part by
elevated OXPHOS and mitochondrial biogenesis5. In short, cancer cells
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have been shown to actively use both glycolysis and oxidation in a manner
that is dependent on their environment.

In addition to glucose, fatty acids have emerged as another important
metabolic ingredient for tumorigenesis and cancer progression6. Fatty acids
support rapid tumor cell proliferation by sustaining membrane biosynth-
esis; furthermore, they can serve as an important energy source during
periods ofmetabolic stress, such as hypoxia and lipid depletion. Indeed, fatty
acid oxidation (FAO) has been shown to be essential for triple-negative
breast cancer (TNBC) progression, the most aggressive subtype of breast
cancer, regulated by oncoproteins such as SRC and Myc7,8. Inhibiting FAO
has been proposed to be a therapy for TNBC8,9.

Another critical component of cancer metabolism is the increased
consumption of glutamine10. Glutamine fuels tumor cells by driving the
tricarboxylic acid (TCA) cycle via oxidation, synthesizing fatty acids via
reductive carboxylation, and giving rise to glutathione (GSH) to main-
tain the redox balance. One master regulator of glutamine metabolism is
Myc, which can upregulate glutamine transporters to support glutamine
consumption, upregulate glutaminase at both transcriptional and
translational levels to promote glutamine oxidation and drive de novo
proline synthesis to support biosynthetic processes11. Recent work sug-
gests that limiting cancer progression by reducing glutamine availability
can improve therapeutic outcomes; however, more work is required to
more completely understand cancer resistance to glutamine metabolism
inhibitor therapy, as well as to account for cancer heterogeneity and
metabolic adaptation12,13.

Altogether, cancer cells exhibit metabolic plasticity, which enables
them to combine various metabolic ingredients and different metabolic
modes to meet their biomass and energetic needs. To rationalize cancer
metabolic plasticity, we initially created a model with purely genetic reg-
ulation, focusing on the interplay of twomaster gene regulators ofOXPHOS
and glycolysis - AMPK and HIF-114. We demonstrated that while cells in
general can acquire two stable metabolic phenotypes - OXPHOS (the ‘O’
state) and glycolysis (when oxygen is limited, referred to as the ‘W’ state)-
cancer cells can acquire an additional hybrid metabolic phenotype char-
acterizedbyhighAMPK/highHIF-1 activities, referred toas the ‘W/O’ state.
We subsequently provided a more direct analysis of the ‘W/O’ state by
coupling genetic regulation with three main catabolic pathways: glycolysis,
glucose oxidation, and FAO15. We observed that the ‘W/O’ state exhibits
high TCA/FAO/glycolysis activity. We further identified that TNBC cells,
e.g., MB-MDA-231 and SUM159, exhibit the hybrid ‘W/O’ phenotype at
the population level. Therefore, dual inhibition of both OXPHOS and gly-
colysis in TNBC achieved the best treatment outcome (most pronounced
decrease in cell proliferation and colony formation) relative to inhibiting
only OXPHOS or inhibiting only glycolysis15. This model further suggested
the existence of a metabolic low/low state, characterized by low AMPK/low
HIF-1 and low TCA/FAO/glycolysis. We showed that drug-tolerant mel-
anoma cells acquired such a metabolic low/low state16, which represents a
state of metabolic dormancy where cancer cells reduce their metabolic
activities to survive under stress conditions, such as drug treatment. In
summary, our previous studies reveal cancer metabolic plasticity by iden-
tifying distinct phenotypes (W, O,W/O, low/low) and we have linked these
phenotypes to specific gene regulators and their associated catabolic path-
way activities.

In these previous efforts,we focusedon the catabolic behavior of cancer
cells by considering ATP-producing processes. It is clear, however, that to
obtain a comprehensive understanding of cancer metabolism, we need to
incorporate anabolic processes and study their interplay with the catabolic
processes. In addition, as the experimental evidence of glutamine metabo-
lism in cancer accumulates, we believe it is important to expand our
approach to include various glutamine pathways. Therefore, we present
here a novel metabolic networkmodel (Fig. 1) that explicitly considers both
the catabolic and anabolic modes and includes glutamine metabolism15.
With this comprehensive metabolism model, we provide a more granular
characterization of different cancer metabolic phenotypes by quantifying
both catabolic and anabolic activity.Ourmodel recapitulates the critical role

of Myc in glutamine metabolism and reveals the role of glutamine meta-
bolism in the four metabolic states. Finally, we demonstrate the functional
consequence of the different metabolic states in patient survival prognosis
across cancer types.

Results
The regulatory network of cancer metabolism
We first performed an extensive literature search10,17,18, from which we
constructed a comprehensive metabolic network featuring the uptake,
transportation, and utilization of threemainmetabolic ingredients: glucose,
fatty acids, and glutamine (Fig. 1). This metabolic network contains five
types of regulatory interactions. First, metabolic pathways compete for
commonmetabolic resources. Intracellular glucose can be used in catabolic
processes in the formof glycolysis or glucose oxidation forATPproduction,
or alternatively in anabolic processes for biomass synthesis (creating lipids,
triglycerides, etc.). Intracellular fatty acids can be used in the form of FAO
for ATP production, and/or anabolic processes for synthesizing the plasma
membrane19. Intracellular glutamine can be used in the form of glutamine
oxidation for ATP production, reductive carboxylation for fatty acids
synthesis, orGSHsynthesis for redoxbalance20. Second, the relative activities
of these metabolic pathways are directly modulated by gene regulators
(depicted as red or green ovals in Figs. 1–2). For example, HIF-1modulates
glycolysis by transcriptionally regulating the expression of glycolytic
enzymes21. AMPK, as a key energy sensor, promotes FAO by inhibiting the
lipogenic enzyme acetyl-CoA carboxylase (ACC)22. The oncoprotein Myc
promotes glutamine oxidation by inducing glutaminase (GLS) which con-
verts glutamine to glutamate to fuel the TCA cycle19. Third, metabolic
intermediates (depicted as rectangles in Figs. 1–2) can in turn affect the
activities of the gene regulators. One prominent example is the reactive
oxygen species (ROS). ROS, including both mitochondrial ROS (mtROS)
and NADPH oxidase-derived ROS (noxROS), can stabilize HIF-1 and
activate AMPK23. Fourth, the gene regulators interact with each other. For
example, AMPK and HIF-1 mutually inhibit each other. This mutual
inhibition between AMPK andHIF-1 have been shown inmultiple studies.
AMPK can inhibit HIF-1α by inhibiting the mTOR complex24, via the
phosphorylation of FOXO25 and promotes the phosphorylation and sub-
sequent degradation of HIF-1α26,27. Conversely, HIF-1 directly inhibits the
transcription of AMPK28. In addition, Myc post-transcriptionally enhances
HIF-118. AMPK antagonizes the function of Myc through phosphorylating
the transcription factor FOXO29. Fifth, the gene regulators mediate the
uptake of themetabolic ingredients by directly regulating the corresponding
transporters. For example, HIF-1, AMPK, andMyc can increase the uptake
of glucose via upregulation of the glucose transporter GLUT30. Myc also
promotes the uptake of glutamine via upregulating the glutamine trans-
porter SLC1A531.

A phenotypic model of cancer metabolism
To develop a tractable mathematical model to simulate the dynamics of
cancer metabolism, we coarse-grained the comprehensive metabolic net-
work (Fig. 1) into a minimal network model that captures the essential
features (Fig. 2). The minimal network model includes three main gene
regulators (AMPK, HIF-1, and MYC), which modulate the uptake and
utilization of the three key metabolic ingredients (glucose, fatty acids, and
glutamine). The minimal network model considers the dynamics of four
metabolites: ROS (both mtROS and noxROS) which mediate the interplay
between AMPK and HIF-1, ATP which regulates AMPK activity, acetyl-
CoAwhich controls the inputs to theTCAcycle, andGSHwhichmodulates
the cellular ROS level. The following metabolic pathways are analyzed:
glycolysis, glucoseoxidation, glutamineoxidation, FAO,GSHsynthesis, and
anabolic processes. For anabolic processes, we mainly considered the pro-
cesses where glucose, fatty acids, and glutamine were not used for ATP
production, but instead, for metabolic intermediate production. For
example, glutamine can be used for glutathione synthesis, essential for
maintaining redox balance and supporting protein synthesis. Fatty acid
synthesis (lipogenesis) is drivenbyboth glucose andglutamine,with glucose
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providing acetyl-CoA through glycolysis and glutamine contributing
through TCA cycle intermediates. These mechanisms represent the ATP-
consuming biomass-generating processes using glucose, fatty acid, and
glutamine supporting the biosynthetic needs of cancer cells. Aswewill show
in the following section, the minimal network model is able to capture
important experimental observations about cancer metabolic plasticity.

Cancer cells can mix and match catabolic and anabolic pro-
cesses and can acquire four different metabolic phenotypes
We first identify all the possible metabolic phenotypes enabled by the reg-
ulatorynetwork (Fig. 2).As overexpressionofMychas oftenbeen associated
with tumor formation, we investigated howdifferent levels ofMyc affect the
dynamics of the regulatory network, especially in the acquisition of different
stable states32. We discovered that when theMyc level is relatively low, cells
mainly acquire two metabolic states—the Warburg state (‘W’, high HIF-1/
low pAMPK) and an OXPHOS state (‘O’, high pAMPK/low HIF-1),
representing the typical metabolism of cancer cells (Fig. 3A). As the level of
Myc increases, the bistability converts to tristability, and a third metabolic
state—“W/O”—characterized by intermediate pAMPK/HIF-1 activity

emerges (Supplementary Fig. 1). For both Fig. 3A and Supplementary Fig. 1,
we maintained the same parameter values provided in the Supplementary
Table 1, except for the Myc level. We found that the critical transition from
bi-stability to tri-stability occurs around Myc = 300 nM. As Myc levels
increase, it alters the regulatory dynamics between AMPK and HIF-1,
leading to changes in the nullcline shapes.We also found, that under certain
conditions this network model can acquire tetra-stability (Fig. 3B). In
addition to theW,O, andW/O states, themetabolic network enables cancer
cells to acquire an additional stable state - the ‘Q’ state, which relies mainly
on glutamine oxidation (as shown in the next section). This demonstrates
the ability of the model to capture complex metabolic behavior, reflecting
themetabolic plasticity of cancer cells, and allowing themto adapt to various
environmental conditions. The ‘Q’ state exhibits both low pAMPK and low
HIF-1 activity, and low glycolysis and glucose/fatty acid oxidation
(Fig. 3B, C). This state is analogous to our previously identified “low/low
phenotype” using a simplified regulatory network without glutamine
metabolism16. We then reveal the metabolic pathway activities of the four
states—W, O, W/O, and Q (Fig. 3C). The “W” state is distinguished by
heightened glycolysis activity (G2), and it exhibits increased anabolic

Fig. 1 | A comprehensive network featuring genetic regulation and glucose, fatty
acid, and glutaminemetabolism in cancer.The ovals represent genes. The red ovals
highlight the two master regulators of metabolism—AMPK and HIF-1. The green
ovals represent oncogenes and the downstream target genes of AMPK and HIF-1.
The orange ovals represent enzyme genes. The yellow rectangles represent

metabolites. The black arrows represent excitatory regulatory links, and the black
bar-headed arrows represent inhibitory regulatory links. The purple solid lines
represent the chemical reactions involved in the metabolic pathways. The purple
dotted lines represent the transportation of metabolites.
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activities, which are attributed to the reductive metabolism of glucose (Gre),
fatty acids (Fre), and glutamine (Qre). The “O” state is characterized by high
catabolic activities including oxidation of glucose (G1), fatty acids (F), and
glutamine (Q1), and notably high GSH synthesis (QSH) to balance the ROS
production. The hybrid “W/O” state is characterized by intermediate levels
of both catabolic and anabolic activities. Finally, the “Q” state is highly

reliant on glutamine oxidation. We will show that the dependence of glu-
tamine oxidation is a robust feature of the “Q” state in the next section.

To identify the robustness of the stable states, we used a parameter
randomization procedure. The overall strategy consists of randomizing the
model parameters for eachsimulationandcollectingall stable state solutions
from all simulations for statistical analysis to identify robust solution

Fig. 2 | A minimal network model of cancer
metabolism. AMPK, HIF-1, and Myc serve as the
master regulators of cancermetabolism and regulate
both catabolic processes (glycolysis, glucose oxida-
tion, glutamine oxidation, and fatty acid oxidation)
and anabolic processes. The intracellular glucose can
be used for glycolysis, glucose oxidation, and ana-
bolic processes. The intracellular fatty acids can be
used for oxidation and anabolic processes. The
intracellular glutamine can be metabolized via glu-
tamine oxidation, synthesis of glutathione (GSH), or
reductive carboxylation. The metabolites generated
in the metabolic pathways, mtROS, noxROS acetyl-
CoA, and ATP, can in turn regulate AMPK and
HIF-1. The black arrows/bar-headed arrows repre-
sent excitatory/inhibitory regulatory links. The
purple dotted lines represent metabolic pathways.
The magenta arrows represent the distribution of
glucose, fatty acid, and glutamine into different
metabolic pathways. The magenta dashed lines
represent fatty acid biosynthesis from glucose or
glutamine.

Fig. 3 | Model predicted association between gene states and metabolic pathway
activities. A Nullclines and steady states in the space of pAMPK and HIF-1 in
normal cells. The red line represents the nullcline where the rate of change of HIF-1
is zero, and the blue line represents the nullcline where the rate of change of pAMPK
is zero. Solid dots represent stable steady states while hollow dots represent unstable
steady states. Each stable state is associated with ametabolic phenotype. Cancer cells
can acquire an OXPHOS phenotype, referred to as the state ‘O’, characterized by
high pAMPK/low HIF-1 activity. This phenotype represents a scenario where cells
optimize energy production through oxidative phosphorylation, which can occur
under specific physiological ormild stress conditions during cancer progression; the
other state is the glycolytic phenotype that is when oxygen is limited, referred to as
the state “W”. B The nullclines and steady states in the phase space of pAMPK and

HIF-1 in cancer cells. Cancer cells can acquire two additional hybridmetabolic states
—the ‘W/O’ state, characterized by intermediateHIF-1 and pAMPKactivity, and the
‘Q’ state, characterized by low pAMPK/HIF-1 but high glutamine oxidation. C Net
ATP production rates of different metabolic pathways for the “O”, “W/O”, “W”, and
“Q” states. Positive rates represent catabolic processes where ATP is produced, while
negative rates represent anabolic processes where ATP is consumed. Compared to
the “W” state, the “O” state exhibits higher activities of glucose oxidation (G1), fatty
acid oxidation (F), glutamine oxidation (Q1), and GSH synthesis (GSH), but lower
activities of glycolysis (G2), reductive glutamine carboxylation (Qre), reductive
glucosemetabolism (Gre), and reductive fatty acidmetabolism (Fre). The hybrid “W/
O” state exhibits intermediate metabolic activities, while the “Q” state relies on high
glutamine oxidation activity.

https://doi.org/10.1038/s41540-025-00525-x Article

npj Systems Biology and Applications |           (2025) 11:46 4

www.nature.com/npjsba


patterns. For each Myc level (0, 300 nM, 1200 nM, and 3000 nM), we
generated 500 random parameter sets, resulting in a total of 2000 test, of
these, only 1812 provided stable solutions (Supplementary Fig. 16), which
were further analyzed. For each set of parameters, we randomly sampled
from a uniform distribution of (75% p0, 125% p0), where p0 is the baseline
value, and calculated the stable state solutions. Then we performed a clus-
tering analysis of the results from all sets of parameters encompassing all
Myc levels, to identify the patterns of the solutions (Fig. 4A). We depicted
the Myc level, metabolic state (which were defined as the overall activity of
glucose oxidation/FAO/glycolysis to be compared with the previous
study15), glucose uptake and ATP production, ATP consumption, and the
net values of ATP related to each cluster of solutions.

By analyzing the stable state solutions from parameter randomization
for each Myc value (0, 300 nM, 1200 nM, 3000 nM representing an
increasing level of Myc), four distinct groups of solutions were identified,
corresponding to the four metabolic states - “W”, “O”, “W/O” and “Q”
(Fig. 4A, left panel). The ‘O’ state and the ‘W’ state exhibit opposite patterns
of metabolic activities, as the ‘O’ state exhibits higher overall ATP pro-
duction (as a result of higherATPproduction and lowerATPconsumption)
relative to the ‘W’ state. Notably, the “W/O” state, which was previously
defined as high AMPK/HIF-1/TCA/FAO/glycolysis, now has an improved
characterization - high AMPK/HIF-1/catabolic/anabolic activities and
exhibits the highest glucose uptake rates among the four metabolic phe-
notypes. The ‘Q’ state, which was previously defined as ‘low/low’ state with
low AMPK/HIF-1/TCA/FAO/glycolysis, now has further characterization
of high glutamine oxidation activity (Q1) and high reductive glucose activity
(Gre). We confirmed that almost all the stable state solutions with negative
Z-scores for glucose oxidation, glycolysis, and FAO (as shown in the
Metabolic State one-column heatmap of Fig. 4A), previously categorized as
the ‘low/low’ state in our earlier study16, were found to be in the “Q” state,
characterized by additional features that allow for clearer separation in the
present study. This indicates that cells in the previously defined ‘low/low’ (L/
L) state do not completely shut down all metabolic activities. While these
cells show low activity in both oxidative phosphorylation (OXPHOS) and
glycolysis, they are not metabolically inert. Glutamine serves as a crucial
substrate for the tricarboxylic acid (TCA) cycle, supporting energy pro-
duction and biosynthetic processes. This reliance on glutamine allows L/L
cells to maintain essential metabolic functions and survive under drug
treatment. Our new model highlights that targeting glutamine metabolism
could be a potential strategy to eliminate these drug-tolerant cells and
improve therapeutic outcomes, which might have important implications
for theuse ofmetabolism-based therapies.Wealso showed that an increased
level of Myc led to an increased proportion of the ‘W/O’ state and a
decreased proportion of the ‘Q’ state through the parameter randomization
analysis, indicating an important role of Myc in the acquisition of these
hybrid states. This is illustrated in Fig. 4A, where the top annotation of the
first one-column heatmap shows the distribution of metabolic states at
different Myc levels (0 nM, 300 nM, 1200 nM, and 3000 nM). In addition,
we summarized the ATP fluxes for each stable state (Supplementary Fig. 2)
highlighting consistentmetabolic outputs across all clusters after parameter
randomization and the unique metabolic signature for each one.

Next, we tested our hypothesis that the activities of the two master
regulators, pAMPK and HIF-1, can distinguish between the four metabolic
states. By mapping all solutions onto the pAMPK/HIF-1 axes, we clearly
distinguished among the four states, with the ‘Q’ state exhibiting a notably
low pAMPK/low HIF-1 signature (Fig. 4B). We further visualized the dif-
ferences between these four metabolic states using principal component
analysis (PCA). By projecting all solutions onto the first two principal
components (PC1 and PC2) (Fig. 4C), we found that PC1, characterized by
high loadings of glucose oxidation (G1) and fatty acid oxidation (F), pri-
marily separates catabolic from anabolic variables, distinguishing between
the (‘W’, ‘O’), and (‘W/O’, ‘Q’) states (Fig. 4D). PC2, on the other hand,
characterized by the high loading of glutamine oxidation (Q1), resolves
between the ‘W/O’ and the ‘Q’ states (Fig. 4E). This metabolic shift enables
cancer cells to adapt and meet their energy requirements, sustaining their

functions33. Studies byWang et al.34 and Li et al.35 emphasize the critical role
of glutamine in cancer cell survival and proliferation, especially under
nutrient-limited conditions.

Our parameter randomization analysis shows that evenupon relatively
large perturbation to themodel parameters, the characterization of the four
metabolic phenotypes is robust. These results recapitulate many classical
experimental observations, such as the ‘O’ state relying on OXPHOS and
exhibitingahighnetvalueofATP,with the ‘W’ state,with lower efficiency in
ATP production, exhibiting increased glucose influx.

Model-predicted associations between gene activity and meta-
bolic pathway activity are confirmed in patient samples
To enable the testing of the model-predicted association between gene
activity and metabolic pathway activity in each of the four metabolic states
(“W”, “O”, “W/O”, and “Q”), we created scoring metrics for both gene
regulators andmetabolic pathways. To quantifymetabolism,we applied our
previously developed AMPK and HIF-1 signatures14, glycolysis and FAO
signatures15, together with newly developed scoring metrics for Gre, Q1,
GSH,Qre, Rnox, Rmt, Fre, andMYC.The full list of genes for thesemetrics can
be found in SupplementaryTable 2. For Fre andMYC,we followed thePCA-
based method14 to obtain the most relevant genes that contribute to the
pathway activity. The scoring metric for metabolic pathways was deter-
mined by themean expression of the Z-score of pertinent genes within each
pathway. Then, we analyzed the RNA-seq data of patient samples of mul-
tiple cancer types from The Cancer Genome Atlas Program (TCGA).

We first applied clustering analysis, taking into consideration all the
genes of interest from the different anabolic and catabolic pathways (Sup-
plementary Table 2) in our model, to classify the patient samples into “W”,
“W/O”, “O”, and “Q” states. Then we quantify the gene or metabolic
pathway activity of the samples in each state. For example, based on the
metabolic gene expression, the hepatocellular carcinoma (LIHC) patient
samples can be classified into four groups, corresponding to the “W”, “W/
O”, “Q”, and “O” states (Fig. 5A). These four metabolic groups were also
distinguishable according to their HIF-1 and pAMPK values: high HIF-1
and low pAMPK, intermediate HIF-1 and intermediate pAMPK, low
HIF-1, and high pAMPK, and finally, lowHIF-1 and low pAMPK (Fig. 5B).
We include 15 one-column heat maps that illustrate the state of each
evaluated metabolic parameter—for MYC, HIF-1, AMPK, glycolysis, glu-
cose oxidation, FAO, glutamine oxidation, glycolysis, glucose reduction,
GSH, glutamine reduction, FA reduction, ROS mitochondrial, ROS
NADPH, overall catabolic, and overall anabolic activities, respectively, we
also included some of the phenotypic data of cancer: TNM stage,metastasis
stage, lymphnode stage, and tumor stage.Next,we evaluated thepredictions
of our model related to the unique characterizations of the four metabolic
states. Themodel posits that themetabolic states “W” and “Q” demonstrate
diminished glycolysis and fatty acid oxidation activities in comparison to
the ‘O’ and ‘W/O’ states. This proposition aligns well with the analysis
derived from the RNA-seq data of LIHC samples (Fig. 5B). Furthermore,
our model indicates that, in contrast to the ‘O’ and ‘W/O’ states, both the
“W” and “Q” states display reduced catabolic activity. This is evidenced by
the differences in ATP production (Fig. 4A). In the context of LIHC, this
difference is also discernible by the catabolic score, primarily characterized
by decreased glucose oxidation and FAO. The ‘W’ state exhibits a higher
anabolic activity relative to the ‘Q’ state. It is important to note that this
anabolic state is characterized by glycolysis, HIF-1, and reductive activities
(Fre, GSH, Qre) (Fig. 4A). This observation has been corroborated by the
analysis of LIHCpatient samples (Fig. 5). Thus, ourmodel doesa good jobof
accounting for LIHC data.

To further analyze and corroborate the differences in the clusters we
performed pathway enrichment analysis and filtered the results of the
analysis to obtain only those related tometabolism (Supplementary Fig. 15).
Across all clusters, the Ribosome pathway is highly enriched, indicating a
common increase in protein synthesis. The consistent enrichment of Car-
bon Metabolism and Glycolysis/Gluconeogenesis pathways reflects the
importance of these pathways in supporting the metabolic flexibility and
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Fig. 4 | Clustering analysis of stable state solutions. A The primary heatmap
displays four clusters of data derived fromdifferentMyc values (0, 300 nM, 1200 nM,
3000 nM). Each row in this heatmap represents a stable-state solution, and each
column represents one variable in themodel. The proportions of eachMyc group are
shown in the first one-column heatmap, with a summary annotation at the top
presenting the proportion of each Myc level within each cluster in a boxplot format
(from left to right: “Q”, “W”, “O”, and “W/O”). The second one-column heatmap,
labeled ‘Metabolic State’, corresponds to rows indicating whether steady states are
active or inactive based on their glucose oxidation, glycolysis, and fatty acid oxi-
dation values having Z-scores greater or less than 0, respectively. The third one-
column heatmap shows the glucose uptake rates and the average for each cluster on
the top, units expressed in µM/s. The subsequent one-column heatmaps, labeled
‘ATP Prod’, ‘ATP Cons’, and ‘ATP Overall’, illustrate the total ATP production,
consumption, and net ATP for each row, taking into account both anabolic and
catabolic processes.BAplot of pAMPK vsHIF-1 illustrates the relationship between
pAMPK andHIF-1 levels across all generated steady states.CA scatter plot showing

the results of a principal component analysis (PCA). Each point in the plot repre-
sents a steady state, plotted according to its scores on the first two principal com-
ponents (PC1 and PC2) of the output element values in the minimal regulatory
network. Different clusters are indicated by different colors, providing a visual
representation of the grouping of steady states in the reduced-dimensional space of
the PCA. Both plots (B,C) show the state annotations for the ‘L/L’ cluster, indicating
the position of the Low Metabolic State. These are considered low due to their
glucose oxidation, glycolysis, and Fatty acid Oxidation values having Z-scores less
than 0, respectively. Bar plots showcasing the loading variables PC1(D) and PC2 (E)
derived from the PCA. The variables are ranked based on their loading values,
signifying their contribution to each principal component. Variable abbreviations:
glutathione synthase (GSH), HIF-1 (h), glycolysis (G2), noxROS (Rnox), glucose
uptake (G0), reductive fatty acids (Fre), reductive glucose (Gre), glutamine uptake
(Q0), fatty acids uptake (F0), pAMPK (A), rate of acetyl-CoA for mitochondrial
respiration (C0), FAO (F), reductive glutamine (Qre), glucose oxidation (G1),
mitochondrial ROS (Rmt), glutamine oxidation (Q1).
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Fig. 5 | The association between gene activity and metabolic pathway activity.
AHeatmap of RNA-seq data from liver hepatocellular carcinoma (LIHC). Each row
represents a patient sample, and each column represents the expression of selected
genes, which are divided according to their metabolic or anabolic activities. Four
distinct clusters can be identified in the heatmap, corresponding to the four states
identified in the metabolism model. The adjacent one-column heatmaps represent
the scores for Myc, HIF-1, AMPK, glucose oxidation, FAO, glutamine oxidation,
glycolysis, glucose reduction, GSH, glutamine reduction, FA reduction, ROS

mitochondrial, ROS NADPH, overall catabolic, and overall anabolic activities,
respectively. We also included some of the phenotypic data of cancer: TNM stage,
metastasis stage, lymph node stage, and tumor stage. B Box plots summarizing and
showing the differences in the scores according to each identified cluster in the LIHC
data. For the box plots, a t-test was used to test the significance of each pair of clusters.
Significance levels are indicated as follows: *, P < 0.05; **, P < 0.01; ***, P < 0.001;
****, P < 0.0001.
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plasticity of cancer cells. The enrichment of Fatty Acid Degradation and
FattyAcidMetabolismpathways in “W/O”, “Q”, and “O” clusters highlights
the role of fatty acids in thesemetabolic states and alignswith the FAO score
(Fig. 5B). Lastly, the enrichment ofGlutathioneMetabolism in “Q” supports
redoxbalance andoxidative stressmanagement,which are crucial for cancer
cell survival and proliferation.

Moving to the lung adenocarcinoma (LUAD) dataset, the LUAD
samples also exhibit four distinct metabolic states - “W”, “O”, “W/O”, and
“Q” based on the metabolic gene expression (Fig. 6A) and can also be
discriminated against based on their pAMPK and HIF-1 activity (Fig. 6B).
The LUAD samples in the “W” and “Q” states exhibit the expected low
catabolic activity. This low activity is anticipated based on the metabolic
characteristics defined in ourmodel. Thesemetabolic profiles are supported
by our model’s predictions and validated by RNA-seq data analysis from
LUAD samples, which show reduced catabolic activity in these states
compared to others. In contrast, samples in the “O” state align with our
model-predicted characterization of high catabolic activity,while samples in
the “W/O” state exhibit both high anabolic and high catabolic activity. The
results for many other cancer types can be found in the SI (Supplementary
Figs. 3–9). In general, samples in the “W/O” state exhibit both high anabolic
and high catabolic activity. samples in the “Q” state exhibit high glutamine
oxidation, except for the melanoma case (Supplementary Fig. 4). For breast
invasive carcinoma, tumors can be subclassified into different subtypes,
namely luminal A, luminal B, HER2+, and basal-like. We show that the
breast invasive carcinoma samples exhibit consistent characterization for
the four metabolic states (Supplementary Fig. 8B). We further analyzed the
relationship between the metabolic states and the cancer subtypes. Inter-
estingly, we found that basal-like and HER2+ make up most of the “W”
state, which shows the highestMYC and high glucose consumption activity
in comparisonwith samples in othermetabolic states. Finally, we conducted
a correlation analysis between the different metabolic scores (Supplemen-
tary Fig. 10). In the LIHC dataset, the analysis reveals that MYC activity is
strongly associated with hypoxic scores and negatively correlated with
AMPK and FAO activities. This highlights MYC’s role in promoting ana-
bolic processes while reducing catabolic activities. The LUAD dataset fol-
lows a similar trend (Supplementary Fig. 10B). Conversely, in the leukemia
dataset (Supplementary Fig. 10E), the MYC score shows a strong positive
correlation with the Glut Oxidation score and moderate positive correla-
tions with the FAO andG1 scores. This indicates thatMYC is closely linked
with glutamine oxidation and fatty acid oxidation in leukemia cells. These
comparisons highlight the dynamic nature of metabolic and genetic inter-
actions in a tissue-specific way. All told, we confirmed the basic findings of
our model-predicted metabolic characterization by analyzing the RNA-seq
data of patient samples from TCGA.

Quantification of glutamine metabolic activities
One novelty of the current metabolism model is the incorporation of glu-
tamine metabolism and its master regulator—MYC. We next focus on
studying the consumption of glutamine when cancer cells acquire different
metabolic phenotypes. To relate to our previous characterization of the
metabolic states15, we performed a clustering analysis of the stable state
solutions based solely on the pAMPK and HIF-1 levels, and then deter-
mined the distribution of glutamine uptake (Q0) in each cluster (Fig. 7A).
Ourmodel suggests that in all fourmetabolic states, increasedMYC level led
to increaseduptakeof glutamine (Fig. 7B).Tovalidate thismodelprediction,
we assessed the predicted glutamine pathway activities of the “W”, “W/O”,
“Q”, and “O” states.We applied a previously defined glutaminemetabolism
gene signature (GMGS, focusing on glutamine uptake)36 and our definedQ0

signature (Supplementary Table 2) to the breast cancer samples and 45
corresponding adjacent normal tissue samples for comparison. Notably,
while the GMGS and the Q0 score share four genes, the Q0 signature
includes additional genes that are involved in the transport of glutamine and
derivatives (e.g., glutamate) into the mitochondria (e.g., SLC25A22,
SLC25A13, SLC25A12). We showed that relative to normal cells, cancer
cells exhibit a much higher glutamine uptake rate (Q0) (Fig. 7C bottom,

p < 0.0001). We found no significant difference between the GMGS sig-
natures of tumor and normal samples (Fig. 7C top).We then segregated the
45 tumor samples based on the pAMPK/HIF-1 signatures into four groups.
By both GMGS and our Q0 signature, we show that the samples in the “W”
state exhibited significantly higher GMGS relative to the samples in the “O”
and “W/O” states. The result suggests that the “W” state has amore efficient
uptake of glutamine (Fig. 6D). Interestingly, we showed that samples in the
“Q” state also exhibit enhancements of glutamine uptake relative to the ‘O’
state (Fig. 7D, bottom). In a similar way we also demonstrated that genes
related to glucose and fatty acids uptake are alsoupregulated inbreast cancer
(Supplementary Fig. 11).

As ourmodel predicts a critical role ofMyc in glutamine uptake rate in
all metabolic phenotypes, we next evaluate how MYC activity is correlated
with glutamine metabolic pathway activity. We found that there is a sig-
nificantly positive correlation between the MYC score and the Q0 score
(r = 0.78, p < 0.001) (Fig. 7E-1), indicating that MYC significantly upregu-
lates the glutamine uptake rate, aligning with our model expectation
(Fig. 7B). Consistent results have been shown by the significant correlation
between MYC and the GMGS signature (Fig. 7E2) (r = 0.56, p < 0.0001).
Furthermore, we observed a strong correlation between theMYC score and
the glutamine oxidation score (Fig. 7E3) and reductive glutamine metabo-
lism score (Fig. 7E4), suggesting an important role of Myc in different
aspects of glutamine metabolism.

To quantify the activity of various glutamine-related metabolic path-
ways in the fourmetabolic states, we developed gene signatures for different
metabolic pathways using involved genes. These genes can be categorized
into three types—(1) enzyme genes involved in glutamine oxidation in
mitochondria (e.g., GLS, GLS2, GOT2, GLUD1 and GPT2) (2); enzyme
genes used in anabolic processes of glutamine (e.g., ASNS for asparagine
synthesis, GFPT1 for hexosamine synthesis, PPAT for purine synthesis),
and (3); transporter genes that import glutamine (e.g., SLC38 A1/2 and
SLC1A5). Then we analyzed the RNA-seq data of liver hepatocellular car-
cinoma (LIHC) and lung adenocarcinoma (LUAD) patient samples from
The Cancer Genome Atlas Program (TCGA) to test the model-predicted
characterization of glutamine metabolism in each of the four metabolic
states (Supplementary Figs. 12–13). After applying clustering analysis and
classifying the patient samples into “W”, “W/O”, “O”, and “Q” states, we
quantified the expression of the glutamine metabolism genes among these
fourmetabolic states.We found that for both LIHC andLUADsamples, the
samples in the state “O” and “W/O” states exhibit pronounced expression in
most of the glutamine oxidation genes (GLS2, GOT2, and GPT2). The
samples in the “W” or ‘W/O” state exhibit a pronounced GLS expression,
while the samples in the “O” state exhibit a pronounced GLS2 expression.
The inverse association between GLS and GLS2 expression has been
reported before, and GLS is often over-expressed in cancer, while GLS2 is
regarded as a tumor suppressor37. The tumor samples in groups “W” and
“Q” exhibit higher gene expression involved in amino acid/nucleotide
synthesis (ASNS, GFPT1, and PPAT). The tumor samples in group “W”
exhibit higher glutamine update (SLC38A1, SLC1A5) relative to samples in
the “O”, “Q”, and “W/O” states, which is consistent with our findings by
applying our Q0 or the GMGS signature (Fig. 7D). In summary, the “W”
state exhibits high glutamine uptake and high anabolic processes involving
glutamine, the “W/O” and the ‘O’ state exhibits high glutamine oxidation,
whereas “Q” has genes high in glutamine oxidation and biosynthesis.

Themetabolic state of patient samples is significantly correlated
with survival outcomes
Finally, we proceeded to examine the relationship between the metabolic
state of patient samples with the overall survival. For the LIHC patient
samples (Fig. 8A), the ‘Q’ state was associated with the poorest survival
outcome. Further inspection of the heatmap revealed that this particular
cluster was characterized by elevated MYC activity, high glutamine oxida-
tion activity, and high reductive glucose activity (Fig. 5A, B). By correlating
this clusterwithphenotypicdata in theheatmap (Fig. 5A), itwas evident that
clusters ‘W’ and ‘Q’ had a higher proportion of patients in advanced stages
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Fig. 6 | The association between gene activity and metabolic pathway activity.
A Heatmap of RNA-seq data from lung adenocarcinoma (LUAD). Each row
represents a patient sample, and each column represents the expression of selected
genes, which are divided according to their metabolic or anabolic activities. Four
distinct clusters can be identified in the heatmap, corresponding to the four states
identified in the metabolism model. The adjacent one-column heatmaps represent
the scores Myc, HIF-1, AMPK, glucose oxidation, FAO, glutamine oxidation, gly-
colysis, glucose reduction, GSH, glutamine reduction, FA reduction, ROS

mitochondrial, ROS NADPH, overall catabolic, and overall anabolic activities,
respectively. We also included some of the phenotypic data of cancer: TNM stage,
metastasis stage, lymph node stage, and tumor stage. B Box plots summarizing and
showing the differences in the scores according to each identified cluster in the
LUAD data. For the box plots, a t-test was used to test the significance of each pair of
clusters. Significance levels are indicated as follows: *, P < 0.05; **, P < 0.01; ***,
P < 0.001; ****, P < 0.0001.
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(greater than stage II) than the rest of the clusters. This suggests that clusters
associated with the poorest survival outcomes also have a higher proportion
of patients in advanced stages. This correlation highlights the critical role of
advanced TNM stages in predicting poor survival outcomes.

The melanoma patient samples also exhibited the poorest survival
outcome when associated with the “Q” state (Fig. 8B). Our previous study
showed that the drug-tolerantmelanoma cells exhibit low glucose/fatty acid
metabolic activity, thus being characterized as the ‘low/low’ phenotype16.
Altogether, these drug-tolerant melanoma cells, which are associated with
the ‘Q’ state, probably rely on glutamine for survival. Regarding the TNM
stage inmelanoma, clusterQhas ahigherpercentageofpatients in advanced
stages. Specifically, this cluster represents almost 50% of patients with a
more advanced primary tumor stage, with 40% of patients in the T4b stage.
This indicates a significant correlation between the ‘Q’ state and advanced
melanoma stages.

We further observed that colorectal adenocarcinoma and leukemia
exhibited the most unfavorable prognosis when in a hybrid ‘W/O’
(Fig. 8C, D). This finding underscores the efficacy of our model in
identifying metabolic states, especially the ‘W/O’ or ‘Q’ states that cor-
relate with poor survival and are associated with advanced TNM scores.
For the LUADdataset (Fig. 8E), the “O” state was associated with the best
survival result, and both the LUADdataset and the kidney cancer showed
the worst outcome with the ‘W’ cluster having the highest MYC score
value (Fig. 6 and Supplementary Fig. 6). Intriguingly, our analysis of the
prostate cancer samples (Supplementary Fig. 14A) revealed a distinct
pattern. The most favorable prognosis was associated with the “Q”

cluster. This particular cluster stands out from the rest of the cancer
datasets due to a notable reduction in the MYC score (Supplementary
Fig. 7). This reduction appears to confer a survival advantage to the “Q”
state, thereby underscoring the significant impact of MYC on survival
outcomes. The rest of the cancers analyzed in this study, lung squamous
cell carcinoma and breast invasive carcinoma, did not show any sig-
nificant differences after being categorized by the four distinct pheno-
types and analyzing the survival curves for each state (Supplementary
Figs. 14B, C). In short, there is some evidence that everything else being
equal, hybrid states seem to be the most aggressive. But, as we have seen
for prostate cancer, other factors (such asMyc levels) are also critical and
can overcome the purely metabolic effects.

Discussion
Cancer cells demonstrate remarkable metabolic versatility by utilizing a
variety of nutrients such as glucose, fatty acids, and glutamine for both
catabolic and anabolic processes. These metabolic pathways not only gen-
erate ATP but also produce intermediates essential for biosynthesis, sup-
porting rapid cell proliferation.This versatility of cancermetabolismenables
cancer cells to thrive in diverse microenvironments and contributes to their
resistance against therapeutic interventions38. To shed light on cancer
metabolic versatility, we have developed a comprehensive mathematical
model that, for the first time, integrates three indispensable metabolic
ingredients (glucose, fatty acids, and glutamine) and captures the complex
interplay of nutrient uptake and utilization and the dynamic shifts between
energy production and biomolecule synthesis.

Fig. 7 | Model-predicted glutamine uptake and expression values for genes
encoding glutamine-utilizing enzymes. A Clustering analysis of stable state solu-
tions illustrating the relationship between the Glutamine uptake (Q0) levels and the
states of pAMPK (A) and HIF-1 (h), the first one-column heat map indicates the
Myc level (0, 300 nM, 1200 nM, 3000 nM) found in each state, the second one-
column heat map shows the glutamine uptake activity for each identified state and
the overall summarized at the top. B Glutamine uptake identified in each cluster
partitioned by Myc value. C Both the previously published glutamine metabolism
gene signature (GMGS)36 and our glutamine uptake signature (Q0) were applied to a

normal versus breast cancer dataset consisting of 45 normal tissue samples and 45
breast cancer samples53.D Tumor samples were categorized into “W” (n = 13), “O”
(n = 12), “W/O” (n = 6), and “Q” (n = 14) signatures to show the difference between
the GMGS (top) and Q0 (bottom). E Set of scatter plots comparing Q0 Score (E1),
GMGS (E2), Oxidative Glut Score (E3), and Reductive Glut Score (E4), with the
MYC Score. The regression line, confidence interval, and Pearson correlation
coefficient are included. T-test was used to test the significance *, P < 0.05; **,
P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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Throughmodeling, we demonstrated that cancer cells can achieve four
main metabolic states, ‘W’, ‘O’, ‘W/O’, and ‘Q’, characterized by both gene
activity (AMPK/HIF/MYC) and metabolic pathway activity. We show that
the ‘O’ state, that was characterized by high AMPK and high OXPHOS, is
high in overall catabolic activity, while the ‘W’ state, that was characterized
by high HIF-1 and high glycolysis, is high in overall anabolic activity. We
providefiner resolution for the hybrid ‘W/O’ state and the low/low state.We
show that the hybrid ‘W/O’ state exhibits both high catabolic (glucose
oxidation and fatty acid oxidation, not glutamine oxidation) and high
anabolic activities (reductive fatty acid and reductive glutamine, but not
glucose). We show that the previously defined ‘low/low’ state, while exhi-
biting low overall catabolic/anabolic activity relative to the rest states,
exhibits pronounced glutamine oxidation activity (therefore we refer to this
state as ‘Q’ in this manuscript) and reductive glucose metabolism. Our
model recapitulates the critical role of Myc in glutamine metabolism. The
model suggests higher levels ofMyc upregulate glutamine uptake in all four
metabolic states and promote both glutamine oxidation and reductive
glutamine metabolism.

These predicted metabolic characterizations have been confirmed by
analyzing RNA-seq data in patient samples from TCGA. Moreover, the
model delineated the association between gene activity and metabolic
pathway activity, which has also been verified by analyzing the patient
sample data. Furthermore, we evaluated the functional consequences of
different metabolic states of patient samples. We observed that patient
samples characterized asmetabolic hybrids exhibit theworst overall survival
outcomes relative to samples with other metabolic states in hepatocellular
cancer, colorectal adenocarcinoma, melanoma, and leukemia. One limita-
tion of the current study is thatMyc was treated as an input to the network.
In the future, integrating the detailed feedback from other gene regulators
and metabolic intermediates toMYCwould improve our understanding of
the effect of Myc. In summary, our integrated modeling-data analysis
approach provides a holistic understanding of cancer metabolism and an
extendable framework for including additional biological factors.

A promising direction would be to enhance the current metabolism
model by coupling itwithother biological processes that consumeATPand/
or biomass in cancer cells. This could be done by determining the

Fig. 8 | Survival curves stratified by metabolic states. Survival curves for liver
hepatocellular carcinoma (A), melanoma (B), colorectal adenocarcinoma (C), leu-
kemia (D), lung adenocarcinoma (E), and kidney carcinoma (F) datasets. Each
dataset was separated into the four metabolic states—‘O’, ‘W’, ‘W/O’, and ‘Q’. Each
row in the figure indicates the metabolic state associated with the worst outcome for

each cancer dataset. The survival curves were estimated using the Kaplan-Meier
method and compared using the log-rank test. Pairwise comparisons of survival
distributions stratified by metabolic state are displayed above the survival curve for
each pair of metabolic states. Significance levels are indicated as follows: *, P < 0.05;
**, P < 0.01; ***, P < 0.001.
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parameters in the currentmodel as functionsof additional processes, such as
cell migration and division. This would be an improvement on the current
modular modeling of the cancer process. For instance, the epithelial-
mesenchymal transition (EMT) influences how cells acquire migratory and
invasive properties. By incorporating EMT into our metabolismmodel, we
can simulate how EMT affects nutrient utilization, and vice versa, how
changes inmetabolism affect EMT39. Thiswould help identify critical points
of intervention where targeting metabolic adaptations and EMT dynamics
concurrently may yield synergistic therapeutic benefits. Another important
unresolved question is how cell metabolism regulates tumor dormancy,
which places patients at risk of metastatic relapse for the remainder of their
lives. It has been observed that whether tumor cells are proliferative or
quiescent can result from a ‘tug of war’ between oxidative stress and anti-
oxidative response. Coupling the metabolism model with the molecular
networks regulating tumor dormancy processes should yield significant
insights40. One speculation is there may be a connection between the “Q”
state which exhibits low activities of many metabolic processes (aside from
glutamineoxidation), and tumordormancy.Anotherpromisingdirection is
to extend the metabolism model from the intracellular level to intercellular
cells by considering the competition for resources between cancer cells and
immune cells41. Altogether, our metabolismmodel serves as a valuable tool
for identifying potential metabolic vulnerabilities and designing targeted
interventions to effectively disrupt metabolism relevant processes in can-
cer cells.

Methods
The model focuses on three master regulators of metabolism: HIF-1 and
Myc (transcription factors), andAMPK(a protein kinase). In themodel, the
HIF-1 and pAMPK (the active form of AMPK) are variables, while theMyc
is an input. The outputs of the model are the levels of regulatory proteins
(HIF-1, pAMPK, etc.), the level of metabolites (ATP, GSH, etc.) and the
metabolic pathway rates (glucose oxidation rate, glycolysis, etc.) at stable
steady states. As the effect of pAMPK on HIF-1 and metabolic enzymes/
transporters ismainlymediated through its three downstream transcription
factors—CREB, FOXO, and PGC-1α, the activity ofAMPK can be regarded
as a ‘proxy’ of these transcription factors. (A similar idea has been used to
develop a pAMPK signature, i.e., evaluating AMPK activity by quantifying
the expression of the downstream genes of CREB, FOXO, and PGC-1α). To
model the effects of transcriptional regulation, we used the shifted Hill
functiondeveloped inLuet al. (2013)42. The regulationofpAMPKis amixof
the production/degradation of its precursor AMPK and the activation/
deactivation kinetics occurring via phosphorylation. As we are mainly
concerned with steady-state behavior, there should be a simple linear
relationship between AMPK and pAMPK levels, and therefore, transcrip-
tional control of AMPK will be equivalent to transcriptional control of
pAMPK. This relationship will depend on other variables in the model; for
simplicity, we have opted to treat these dependencies via a Hill function
assumption. Our previous two studies on modeling metabolism - Yu et al.
(2017)14 and Jia et al. (2019)15 can be referred to for more details.

The steady state solutions of the model can be categorized into anabolic
and catabolic. Anabolic parameters include glutathione synthase (GSH),
involved in the synthesis of glutathione, HIF-1 (h), glycolysis (G2), which,
although traditionally catabolic, is considered anabolic in cancer cells because
it provides intermediates for biosynthetic pathways43–45; noxROS (Rnox),
reactive oxygen species derived from NADPH oxidase, involved in anabolic
signaling; reductive fatty acids (Fre), representing the reductive biosynthesis of
fattyacids; andreductiveglucose (Gre), representing the reductivebiosynthesis
of glucose-derived metabolites. Catabolic parameters include FAO (F), fatty
acidoxidation, a process that breaks down fatty acids toproduceATP; glucose
oxidation (G1), representing the oxidative breakdown of glucose in the TCA
cycle; mtROS (Rmt), reactive oxygen species derived from mitochondrial
respiration, indicative of catabolic activity; reductive glutamine (Qre), a
metabolicprocess that convertsα-ketoglutarate to citrate; glutamineoxidation
(Q1), representing the oxidative breakdown of glutamine in the TCA cycle;
and pAMPK (A), a key energy sensor that regulates both anabolic and

catabolic processes, here is considered a catabolic parameter in the model
based on its predominant role in energy stress conditions. Both reductive Qre

and Q1 are classified as catabolic parameters in this model because they
involve the breakdown of glutamine into smaller metabolic intermediates,
supporting rapid proliferation and survival. In both pathways, glutamine is
deaminated to glutamate and further converted to α-ketoglutarate (α-KG), a
key TCA cycle intermediate. This nutrient breakdown process is inherently
catabolic, as it extracts carbon and nitrogen from glutamine for cellular
metabolism. While Q1 supports energy production through the oxidative
TCAcycle,Qre channelsα-KG into reductive carboxylation toproduce citrate,
which fuels biosynthesis such as lipogenesis.DespiteQre’s anabolic outcomes,
its reliance onupstreamglutamine catabolismaligns bothpathways under the
‘catabolic’ classification, reflecting their shared role in breaking down gluta-
mine to sustain cellular demands45,46. Lastly, we also included uptake para-
meters: glutamine uptake (Q0), representing the rate at which glutamine is
taken up by the cell; glucose uptake (G0), representing the rate at which
glucose is taken up by the cell; fatty acids uptake (F0), representing the rate at
which fatty acids are taken up by the cell; and the rate of acetyl-CoA being fed
for mitochondrial respiration (C0), indicating the rate at which acetyl-CoA is
used in the TCA cycle for ATP production.

To simulate the temporal dynamics of the regulatory proteins pAMPK
and HIF-1, as well as the temporal dynamics of metabolites mtROS and
noxROS, we devise the following equations (eqs. 1–5).

_Rmt ¼ gRmt
� γG1

G1 þ γFF þ γQ1
Q1

� �
� kRmt

�Rmt � Hsþ A;A0
Rmt

; λA;Rmt
; nA;Rmt

� ��
þγGSHQGSH

�
ð1Þ

(eq. 1) represents the temporal dynamics of mitochondrial reac-
tive oxygen species (mtROS) (Rmt). gRmt

is the basal production rate of
mtROS, ðγG1

G1 þ γFF þ γQ1
Q1Þ represents the increase of mtROS

production due to glucose oxidation (G1), FAO (F) and glutamine
oxidation (Q1). Notably, the two parameters γG1 and γF have fixed ratio
2/9 because the ratio of the amount of acetyl-CoA entering TCA
generated by glucose oxidation and FAO is 2/9. kRmt

represents the
basal degradation rate of mtROS and the shifted Hill function (1)
HsþðA;A0

Rmt
; λA;Rmt

; nA;Rmt
Þ represents the deoxidation effect of AMPK.

γGSHGGSH represents the antioxidation effect of glutathione (GSH) due
to the GSH synthesis pathway (QGSHÞ.

_Rnox ¼ gRnox
�Ccomp

Rnox
g0;H; gH;Rnox

;H0
Rnox

; nH;Rnox
;A; gA;Rnox

;A0
Rnox

; nA;Rnox

� �
�kRnox

�Rnox � QGSH

ð2Þ

(eq. 2) represents the temporal dynamics of NADPHOxidase-derived
Reactive Oxygen Species (noxROS) (Rnox). gRnox

is the basal production rate
of noxROS, Ccomp

Rnox
ðg0;H;H0

HRnox
; nHnox

; g1;A;A0; g2; nAnox
Þ represents the

competitive regulationofnoxROSproductionbyAMPK(A) andHIF-1 (H)
and kRnox

represents the basal degradation rate of noxROS. γGSHGGSH
represents the antioxidant effect of GSH due to the GSH synthesis pathway
(GGSHÞ. In Eq. 2, the model assumes that AMPK and HIF-1 competitively
regulate noxROS through both direct and indirect pathways. HIF-1
increases noxROS by targeting NOX and reduces mtROS by lowering
OXPHOS and increasing glycolysis. Conversely, AMPK boosts mtROS
throughOXPHOS and enhancesmtROS scavenging via the AMPK-FOXO
pathway, while also inhibiting noxROS production in the cytosol by reg-
ulating NOX. Both mtROS and noxROS stabilize HIF-1α and activate
AMPK, creating a feedback loop and influencing cancer cell metabolism25.
Supporting evidence includes the role ofAMPKandHIF-1 as key regulators
of OXPHOS and glycolysis, respectively, with ROS mediating their
interplay14. Additionally, RAS, MYC, and c-SRC modulate the balance of
glycolysis and OXPHOS15. AMPK activation leads to HIF-1α degradation,
inhibiting its activity26. AMPK down-regulates HIF-1 by inhibiting mTOR,
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while HIF-1 inhibits AMPK transcription24,28)

RT ¼ Rmt þ Rnox ð3Þ

(eq. 3) represents the total level of ROS (RT ), which is the sum of
mtROS (Rmt) and noxROS (Rnox).

_A ¼ gA � Hsþ RT ;R
0
T;A; λRT ;A

; nRT ;A

� �
�Hs� H;H0

A; λH;A; nH;A

� �
�Hs� XATP;X

0
ATP;A; λXATP ;A

; nXATP;A

� �
� kAA

ð4Þ

(eq. 4) represents the temporal dynamics of phosphorylated AMPK
(pAMPK) (A). gA is the basal production rate of pAMPK,
HsþðRT ;R

0
T;A; λRT ;A

; nRT ;A
Þ represents the excitatory regulation on pAMPK

productionbyROS(RT ),H
s�ðH;H0

H;A; λH;A; nH;AÞ represents the inhibitory
regulation on pAMPK by HIF-1 (H), Hs�ðXATP;X

0
ATP;A; λXATP ;A

; nXATP ;A
Þ

represents the inhibitory regulation on pAMPK by ATP (XATP) and kA
represents the basal degradation rate of AMPK.

_H ¼ gH �Hs� A;A0
H ; λA;H ; nA;H

� �� kH � H � Hs� G2;G
0
2;H ; λG2 ;H

; nG2;H

� �

�Hs� RT ;R
0
T;H ; λRT ;H

; nRT ;H

� �
�Hs� M;M0

M;H ; λM;H
; nM;H

� � ð5Þ

(eq. 5) represents the temporal dynamics of HIF-1 (H). gH is the basal
production rate of HIF-1,Hs� A;A0

H ; λA;H ; nA;H
� �

represents the inhibitory
regulation on HIF-1 production by pAMPK, kH represents the basal degra-
dation rate of HIF-1, the shifted Hill functionsHs�ðG2;G

0
2;H ; λG2;H

; nG2;H
Þ,

Hs�ðRT ;R
0
T;H ; λRT ;H

; nRT ;H
Þ andHs�ðM;M0

M;H ; λM;H
; nM;HÞ represent the

stabilization ofHIF-1 by the glycolytic activity (G2), ROS (RT Þ andMyc (M).

Since the chemical reactions in the metabolism processes are much
faster than the genetic regulations, we assume the metabolites and the
pathways are in the equilibriumstate at a certain levelof pAMPKandHIF-1.
To capture the dynamics of metabolic flux, we derive the following equa-
tions (eqs. 6–16).

G0 ¼ gH;G0
�Hsþ H;H0

G0
; λH;G0

; nH;G0

� �
þ gA;G0

� Hsþ

A;A0
G0
; λA;G0

; nA;G0

� �
þ gM;G0

� Hsþ M;M0
G0
; λM;G0

; nM;G0

� � ð6Þ

(eq. 6) represents the glucose uptake rate ðG0Þ. Since HIF-1,
pAMPK, and Myc can enhance the glucose uptake, one assumption is
the maximum glucose uptake rate (G0) is determined by the HIF-1,
pAMPK, and Myc levels. gH;G0

HsþðH;H0
G0
; λH;G0

; nH;G0
Þ represents the

regulation of glucose uptake by HIF-1, gA;G0
HsþðA;A0

G0
; λA;G0

; nA;G0
Þ

represents the regulation of glucose uptake by pAMPK and

gM;G0
Hsþ M;M0

G0
; λM;G0

; nM;G0

� �
represents the regulation of glucose

uptake by Myc.

Q0 ¼ gM;GGln;0
�Hsþ M;M0

Q0
; λM;Q0

; nM;Q0

� �
ð7Þ

(eq. 7) represents the glutamine uptake rate (GGln;0). As Myc can
enhance glutamine update, one assumption is the maximum glutamine
uptake rate (GGln;0) is determined by the Myc levels.

F0 ¼ gF0
�Hsþ A;A0

F0
; λA;F0 ; nA;F0

� �
ð8Þ

(eq. 8) represents the fatty acid uptake rate ðF0Þ.

C0 ¼ gA;C0
�Hsþ A;A0

C0
; λA;C0

; nA;C0

� �
ð9Þ

(eq. 9) represents the maximum utilization rate of acetyl-CoA for
mitochondrial respiration ðC0Þ. Since the rate of acetyl-CoA entering
the TCA cycle is limited by the mitochondrial activity that is deter-
mined by the pAMPK, one assumption here is the maximum utiliza-
tion rate of Acetyl-CoA (C0) is determined by the pAMPK levels. The
shifted Hill function gA;C0

HsþðA;A0
C0
; λA;C0

; nA;C0
Þ represents the reg-

ulation of pAMPK on the utilization of Acetyl-CoA for mitochondrial
TCA cycle.

The glucose uptake rate (G0) and the utilization rate of Acetyl-CoA
(C0) for TCA cycle restrict the activities of three metabolic pathway—
glucose oxidation (G1), glycolysis (G2), and FAO (F).

G ¼ G1 þ G2 þ Gre ð10Þ

(eq. 10) represents the glucose consumption rate ðGÞ, which is
equal to the sum of the glucose oxidation rate (G1), and glycolysis rate
(G2), and the reductive glucose metabolic rate (Gre) (mainly repre-
senting fatty acid synthesis rate from glucose), since glucose is shared by
these pathways.

Q ¼ Q1 þ QGSH þ Qre ð11Þ

(eq. 11) represents the total glutamine consumption rate (Q), which is
the sum of glutamine oxidation rate (Q1) and glutathione (GSH) synthesis
rate (QGSH) and the reductive glutamine metabolic rate (Qre) (mainly
representing fatty acid synthesis rate from glutamine), since intracellular
glutamine is shared by these three pathways.

F ¼ F1 þ Fr � γG;F � Gr � γG;Q � Qre ð12Þ

(eq. 12) represents the total fatty acid consumption rate (F), which is
the sum of the FAO rate ðF1Þ, and the reductive fatty acid metabolism (Fr)
minus the contributions of reductive glucose metabolic rate (Gre) (con-
sidered the efficiency of glucose-derived carbon incorporation into fatty
acids) and the reductive glutamine metabolic rate (Qre) (considering the
efficiency of glutamine-derived carbon incorporation into fatty acids.)

C ¼ 2 � G1 þ 9 � F ð13Þ

(eq. 13) represents the production rate of Acetyl-CoA for mitochon-
drial respiration ðCÞ. The generated Acetyl-CoA that can enter the TCA
cycle for ATP production is determined by glucose oxidation rate (G1) and
FAO rate (F). 2 molecules of acetyl-CoA are produced by one glucose
oxidation process, and 9 molecules of acetyl-CoA are produced in 1 FAO
process, in which we assume the average carbon atoms contained in each
fatty acid is 18 (Supplementary Table 1).

G1 ¼ gG1
Hs� G;G0; λG;G1

; nG;G1

� �
Hs� C;C0; λC;G1

; nC;G1

� �
ð14Þ

G2 ¼ gG2
Hs� G;G0; λG;G2

; nG;G2

� �
Hsþ H;H0

G2
; λH;G2

; nH;G2

� �
ð15Þ

Gre ¼ gGr
� Hs� G;G0; λG;Gre

; nG;Gre

� �
�Hs� A;A0

Gre
; λA;Gre

; nA;Gre

� �

�Hsþ M;M0
Gre
; λM;Gre

; nM;Gre

� �
ð16Þ

F1 ¼ gF1
�Hs� F; F0; λF;F1

; nF;F1

� �
�Hs� C;C0; λC;F ; nC;F

� �
�Hsþ A;A0

F ; λA;F ; nA;F
� � �Hs� H;H0

F ; λH;F ; nH;F

� � ð17Þ

Fr ¼ gFr �H
s� F; F0; λF;Fr

; nF;Fr

� �
� Hs� H;H0

F2
; λH;F2

; nH;F2

� �
ð18Þ
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(eqs. 12–18) represent the glucose oxidation rate ðG1Þ, the glycolysis
rate (G2), the reductive glucose metabolic rate (Gre), the FAO rate ðF1Þ, and
the reductive fatty acid metabolism (Fr) respectively.

The negative shifted Hill functions Hs�ðG;G0; λG;G1
; nG;G1

Þ,
Hs�ðG;G0; λG;G2

; nG;G2
Þ and Hs�ðG;G0; λG;Gre

; nG;Gre
Þ represent the com-

petition of glucose oxidation (G1), glycolysis (G2), and reductive glucose
metabolism(Gre) onglucoseutilization.The thresholdG0, that is the glucose
uptake rate, in these three shiftedHill functions adds a restriction onG1,G2
andGre since ifG >G0, that means the glucose utilization rate is larger than
the glucose uptake rate, these negative shifted Hill functions will decrease
G1, G2, and Gre thus decrease G.

The negative shifted Hill functions Hs�ðC;C0; λC;G1
; nC;G1

Þ and
Hs� C;C0; λC;F ; nC;F

� �
representing the competition of glucose oxidation

(G1) and FAO ðFÞ on acetyl-CoA production. The threshold C0, that is the
limitingutilization rate of acetyl-CoA formitochondrial respiration, in these
two shifted Hill functions adds restriction on bothG1 and F since if C >C0,
that means the produced acetyl-CoA is beyond the limiting utilization rate
of acetyl-CoA for mitochondrial respiration, these negative shifted Hill
functions will decrease both G1 and F thus decreasing C.

HsþðH;H0
G2
; λH;G2

; nH;G2
Þ in (eq. 11) represents the regulation of

glycolytic activity by HIF-1. Hsþ A;A0
F ; λA;F ; nA;F

� �
in (eq. 12) represents

the regulation of FAO by AMPK.Hs�ðA;A0
Gre
; λA;Gre

; nA;Gre
Þ represents the

inhibition of fatty acid synthesis by AMPK.

Q1 ¼ gQ1
�Hs� Q;Q0; λQ;Q1

; nQ;Q1

� �
� Hsþ M;M0

Q1
; λM;Q1

; nM;Q1

� �

�Hs� H;H0
Q1
; λH;Q1

; nH;Q1

� � ð19Þ

QGSH ¼ gQGSH
� Hs� Q;Q0; λQ;QGSH

; nQ;QGSH

� �
� Hs� A;A0

QGSH
; λA;QGSH

; nA;QGSH

� �

�Hs� M;M0
QGSH

; λM;QGSH
; nM;QGSH

� �

ð20Þ

_GGSH ¼ QGSH � kGSH � GGSH ð21Þ

Qre ¼ gQr
� Hs� Q;Q0; λQ;Qre

; nQ;Qre

� �
�Hsþ M;M0

Qre
; λM;Qre

; nM;Qre

� �

�Hsþ H;H0
Qre
; λH;Qre

; nH;Qre

� �
�Hs� A;A0

Qre
; λA;Qre

; nA;Qre

� � ð22Þ

(eqs. 19–22) represents the glutamine oxidation rate (Q1), the glu-
tathione synthesis rate (QGSH), the glutathione dynamics (GGSH), and the
reductive glutamine metabolic rate (Qre) respectively.

The negative shifted Hill functions Hs�ðQ;Q0; λQ;Q1
; nQ;Q1

Þ,
Hs�ð;Q0; λQ;QGSH

; nQ;QGSH
Þ and Hs�ðQ;Q0; λQ;Qre

; nQ;Qre
Þ represent the

competition of glutamine oxidation (Q1), glutathione synthesis pathway
ðQGSHÞ and reductive glutaminemetabolism (Qre) on glutamine utilization.
The threshold Q0, that is the glutamine uptake rate, in these three shifted
Hill functions adds restriction on Q1, QGSH and Qre, since if Q >Q0, that
means the glutamine utilization rate is larger than the glutamine uptake rate,
these negative shifted Hill functions will decrease Q1, QGSH and Qre thus
decreasing Q.

HsþðM;M0
Q1
; λM;Q1

; nM;Q1
Þ represents the up-regulation of glutamine

oxidation byMyc.Hs�ðH;H0
Q1
; λH;Q1

; nH;Q1
Þ represents the down-regulation

ofglutamineoxidationbyHIF-1.Hs�ðM;M0
QGSH

; λM;QGSH
; nM;QGSH

Þ represents
the inhibition of glutathione synthesis by Myc. HsþðM;M0

Qre
; λM;Qre

; nM;Qre
Þ

represent the up-regulation of reductive glutamine metabolism by Myc.
�HsþðH;H0

Qre
; λH;Qre

; nH;Qre
Þ represents the up-regulation of reductive glu-

tamine metabolism by HIF-1. Hs�ðA;A0
Qre
; λA;Qre

; nA;Qre
Þ represents the

down-regulation of reductive glutamine metabolism by AMPK.

G1;ATP ¼ 29 � G1 ð23Þ

G2;ATP ¼ 2 � G2 ð24Þ

Q1;ATP ¼ 24 � Q1 ð25Þ

F1;ATP ¼ 106 � F ð26Þ

(eqs. 23–26) represent the production rates of ATP glucose oxidation
(G1;ATP) and glycolysis (G2;ATP), glutamine oxidation (Q1;ATP), and FAO
(F1;ATP), respectively. The constants for ATP production for Eqs. 23–26 are
well-established in thebiochemical literature.Complete oxidationof glucose
through glycolysis, the TCA cycle, and oxidative phosphorylation typically
yields approximately 29-32 ATP molecules. In contrast, glycolysis alone
produces a net gain of 2 ATPmolecules per glucose molecule47,48. The ATP
yield from glutamine oxidation is based on its entry into the TCA cycle,
where it contributes toATPproduction. This process yields an estimated 24
ATP molecules per glutamine molecule, reflecting the metabolic pathways
involved49,50. For fatty acid oxidation, the constant ATP production is
derived from the oxidation of a typical fatty acid, such as palmitate. This
process yields approximately 106 ATP molecules51

F2;ATP ¼ 7 � F2 ð27Þ

Gre;ATP ¼ ð15� 2Þ � Gre ð28Þ

Qre;ATP ¼ 15 � Qre ð29Þ

QGSH;ATP ¼ 2 � QGSH ð30Þ

(eqs. 27-30) represent the ATP consumption rates of reductive fatty
acid (F2;ATP), reductive glucose (Gre;ATP), and reductive glutamine (Qre;ATP)
metabolism and GSH synthesis QGSH;ATPÞ, respectively. The constants for
ATP consumption (Eqs. 27–30) in reductive fatty acid, glucose, and gluta-
mine metabolism, as well as GSH synthesis, are based on the energy
requirements for these biosynthetic processes. For instance, the synthesis of
palmitate from acetyl-CoA requires 7 ATP molecules. Additionally, each
molecule of glutathione synthesized requires 2 ATPmolecules, one for each
step in the process51,52

XATP ¼ G1;ATP þ G2;ATP þ Q1;ATP þ F1;ATP � F2;ATP

�Gre;ATP � Qr;ATP � QGSH;ATP
ð31Þ

(eq. 26) represents the net total production rate of ATP (XATP).
The definition of the shifted Hill function and the function Ccomp

Rnox

representing the competitive regulation of noxROS by AMPK and HIF-1
are as follows.

The shifted Hill function (1) Hs X;X0; λ; n
� �

is defined to be

Hs X;X0; λ; n
� � ¼ 1þλ X

X0

� �n

1þ X
X0

� �n , where X represents the level of the reg-

ulator, X0 represents the threshold, λ represents the fold-change, and n

represents the Hill coefficient.

Hsþ X;X0; λ; n
� � ¼ 1þλþ X

X0

� �n

1þ X
X0

� �n , where λþ > 1, representing the exci-
tatory regulation.

Hs� X;X0; λ; n
� � ¼ 1þλ� X

X0

� �n

1þ X
X0

� �n , where λ� < 1, representing the inhi-
bitory regulation.
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The competitive regulations of noxROS by AMPK and HIF-1 (Ccomp)
(2) are defined as follows:

Ccomp
Rnox

g0;H; gH;Rnox
;H0

Rnox
; nH;Rnox

;A; gA;Rnox
;A0

Rnox
; nA;Rnox

� �

¼
g0þgH;Rnox

H
H0
Rnox

� �nH;Rnox

þgA;Rnox
A

A0
Rnox

� �nA;Rnox

1þ H
H0
Rnox

� �nH;Rnox

þ A
A0
Rnox

� �nA;Rnox

;

where g0 ¼ 1 representing the basal noxROS production,

gH;Rnox

H
H0

Rnox

� �nH;Rnox

represents the regulation of noxROS production by

HIF-1, and gA;Rnox

A
A0
Rnox

� �nA;Rnox
represents the regulation of noxROS pro-

duction by AMPK.

We used MATLAB (R2023b) to compute and plot the nullclines.
First, we uploaded the baseline model parameters presented in Supple-
mentary Table 1. For each combination of AMPK and HIF-1 levels, we
calculated the ATP production and reactive oxygen species (ROS) levels.
The results were stored and used to plot nullclines using the contour
functions. These nullclines were then analyzed to find fixed points,
which were categorized into stable and unstable states and visualized.
This comprehensive approach helps in understanding the dynamic
interactions between key regulatory proteins and metabolic processes in
cancer cells.

Data analysis
PanCancer Atlas data, including the clinical data were downloaded fromThe
cBio Cancer Genomics Portal (cBioPortal, https://www.cbioportal.org/),
which includes RSEM-normalized expression data. The analyzed cancers
were hepatocellular carcinoma (LIHC), breast invasive carcinoma (BRCA),
kidney renal clear cell carcinoma (KIRC), lung adenocarcinoma (LUAD),
lung squamous cell carcinoma (LUSC), colorectal adenocarcinoma (COAD),
skin cutaneous melanoma (SKCM), acute myeloid leukemia (LAML), and
prostate adenocarcinoma (PRAD).Wealso analyzedmicroarraydata from45
breast cancer samples and their paired adjacent benign tissue samples53. The
gene expression levels for each tumor type were first normalized to ensure
comparability across different samples. This study does not include infor-
mation on normal tissue samples from the PanCancer Atlas. Normalization
was performed using the Z-score method, where the expression level of each
genewas transformed to have amean of zero and a standard deviation of one.

To develop the scoring metric, we used the previously evaluated HIF-1,
AMPK, glucose oxidation, glycolysis, and FAO scores developed by Yu et al.,
and Jia et al.14,15. For the generation of the rest of the signatures, we used the
information obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov),
PANTHER Pathway, and Reactome pathway. These databases were used to
identify pathways related to eachprocess. For example, thekeywords toobtain
relevant genes to each molecule of interest in the anabolic sense were: “bio-
synthesis”, “biosynthetic”, “synthesis”, “de novo”, “anabolism”, “formation”,
“-genesis”, “reduction”. The scoring metrics were determined by calculating
themean expression of theZ-score of pertinent geneswithin eachpathway. In
our analysis, the fatty acid reduction process was further delimited using the
approach followed by Jia et al.15 where we performed PCA on the gene
expression data fromwhich the first principal components (PC1s) were used
to quantify the activity, this ensures that only the genes that have more
variability in the signature account in the data set. The anabolic and catabolic
activity scores are the agglomeration of all the gene sets associated with ana-
bolic and catabolic processes, respectively (Supplementary Table 2). The
normalized expression levels were then averaged to calculate the overall
anabolic and catabolic activity scores.K-means clustering analysiswas applied
to classify patient samples into the four metabolic states: Warburg (W),
OXPHOS (O), hybrid (W/O), and glutamine-dominant (Q). Clustering was
based on gene expression in anabolic and catabolic pathways. For the

metabolic state labeling, for each cluster, we calculated the centroid by com-
puting themeanvaluesofAMPKandHIF-1scores,Thesecentroidswere then
categorized into a four-quadrant plot, each one representing a distinct
metabolic state: high AMPK—low HIF-1: Assigned to the “O” (OXPHOS)
state; highAMPK—highHIF-1:Assigned to the “W/O” (Warburg/Oxidative)
state; low AMPK—low HIF-1: Assigned to the “Q” (Glutamine) state; low
AMPK—high HIF-1: Assigned to the “W” (Warburg) state.

Data analysis andvisualizationwereperformedusing severalRpackages.
Heat maps and clustering analyses were conducted using the ‘Complex-
Heatmap’ package54. The ‘ggplot2’ package was utilized for data visualization,
and the ‘ggpubr’packagewas employed for statistical analysis, including the t-
test. For the Kaplan-Meier plots, patient data were categorized based on the
results of the clustering analysis. The overall survival analysis was conducted
using the log-rank test. The ‘survival’ package55 was used for survival analysis,
and the ‘survminer’ package56 was used to create the Kaplan-Meier plots.We
conducted KEGG pathway enrichment analysis for each cluster in the LIHC
data set using the clusterProfiler, edgeR, and org.Hs.eg.db packages in R.We
extracted the top genes by average expression, filtering based on average log
CPM greater than 5 andmapping to Entrez IDs. KEGG enrichment analysis,
specifically Over-Representation Analysis (ORA), was performed for each
cluster, and the results were filtered using keywords such as “glucose”, “glu-
tamine”, “fatty acid”, “glycolysis”, “ROS”, “AMPK”, “HIF-1”, “ATP”, “GSH”,
“Myc”, “Metabolism”, “Cellular Processes”, and “Genetic Information Pro-
cessing”. The filtered results were converted to data frames, combined, and
visualized using a bar plot to illustrate pathway enrichment by cluster.

Data availability
All of the data sets used in this research are publicly available in cBioCancer
Genomics Portal (cBioPortal, https://www.cbioportal.org/).

Code availability
Code to reproduce the nullclines and find steady states for pAMPK and
HIF-1 levels is available at: https://github.com/TAMUGeorgeGroup/
Cancer_Metabolism.git.
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