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In modeling signal transduction networks, it is common to manually integrate experimental evidence
through a process that involves trial and error constrained by domain knowledge. We implement a
genetic algorithm-based workflow (boolmore) to streamline Boolean model refinement. Boolmore
adjusts the functions of the model to enhance agreement with a corpus of curated perturbation-
observation pairs. It leverages existing mechanistic knowledge to automatically limit the search space
to biologically plausible models. We demonstrate boolmore’s effectiveness in a published plant
signaling model that exempilifies the challenges of manual model construction and refinement. The
refined models surpass the accuracy gain achieved over two years of manual revision and yield new,
testable predictions. By automating the laborious task of model validation and refinement, this
workflow is a step towards fast, fully automated, and reliable model construction.

Network-based dynamic modeling is an effective avenue toward under-
standing the response of biological systems to changes in their environment.
The system is abstracted into an interaction graph (or interaction network),
whose nodes represent the components of the system (e.g., proteins, cells,
neurons, or species) and whose edges represent the directed, causal inter-
actions among them. The dynamic model assigns each node a state variable
and a regulatory function that determines the future state of the node given
the current states of its regulators.

Boolean models are the simplest discrete dynamic models. They are
used to model a variety of biological systems; examples include gene reg-
ulatory networks', neuronal networks™, and ecological and social
communities”’. In Boolean models, the node state variables can take two
values: 0, interpreted as low concentration or low activity, and 1, interpreted
as high concentration or high activity. Boolean models are especially suitable
for biomolecular networks due to the abundance of nonlinear, sigmoidal
regulation in these networks™, and because of these models’ ability to
describe perturbation (e.g., gene knockout) experiments. Through inte-
grating the knowledge of the biology community, Boolean models suc-
cessfully capture key behaviors in the biomolecular system of interest, and
make useful predictions such as identifying master regulators or drug
targets™ (see Supplementary Note 1 for examples). Predictions derived from
Boolean models were verified experimentally in a variety of biological
systems'*"". Multiple methodologies and tools can determine the possible
long-term behaviors of Boolean models'”°. Here, we take advantage of
minimal trap spaces to describe long-term behaviors. A minimal trap space,
also called a quasiattractor, is a minimal set of states that the system can be
“trapped” in and that can be characterized by fixing the values of some

subset of the node state variables (see Supplementary Note 1 for a formal
definition).

Due to recent advances in the analysis of Boolean dynamics'*'*", the
bottleneck in analyzing a biomolecular system is increasingly the time and
effort involved in building the model. When high-throughput assays pro-
vide full state data (i.e., the state of all the relevant components at a given
time), several viable automated Boolean model inference methods can be
used'*. For example, transcriptome data from multiple cell types can be
used to infer gene regulatory network models for cell differentiation
processes”*****. However, high-throughput assays are not the norm in cell
signaling systems, which involve difficult-to-track post-translational mod-
ifications of proteins.

Traditional experiments, still frequently used in functional biol-
ogy, measure a single component in two contexts, for example, in the
presence or absence of a stimulus, or in the presence or absence of
a perturbation of a different component. Compilations of such
experimental perturbation-observation pairs are not equivalent to
high-throughput measurements because certain components are more
studied than others” and because of inconsistencies between reported
results”’. The existing Boolean model inference methods are not suitable
for such piece-wise, incomplete, and uneven data. In such systems,
model construction is done via manual integration of distinct pieces of
experimental evidence (see Supplementary Note 1 for more details of
the modeling process). Although some parts of the model can be
directly constrained by preexisting experiments, usually, many degrees
of freedom remain. Modelers often use a process of trial and error
informed by the insights of domain experts. Keeping the model up to
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Fig. 1 | The outline of the boolmore tool. The
starting model, known biological mechanisms, and a
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to allow the mutation of Boolean functions while
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model predictions using minimal trap spaces and
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date involves the same trial-and-error iteration. An illustrative example
of the time and effort needed for model construction, validation, and
update is the Boolean model of abscisic acid (ABA)-induced stomatal
closure in the model plant Arabidopsis thaliana, which was introduced
in 2006, significantly updated in 2017”’, and refined in 2018-2020"""".

Our aim is to speed up and automate the trial-and-error process
needed for model construction. Specifically, we consider the problem of
refining and updating an existing baseline model to better agree with
existing perturbation-observation data and also incorporate new data. We
assume that the baseline model’s interaction graph describes the biological
system relatively well, missing perhaps only a few edges. We develop a
genetic algorithm-based workflow to adjust the Boolean functions of the
model in a manner that optimizes the model’s agreement with curated
perturbation-observation results. The workflow, and its implementation in
the tool Boolean model refiner (boolmore), includes multiple ways to
incorporate biological expertise that can limit the genetic algorithm’s search
space to models that agree with biological knowledge. We demonstrate the
effectiveness of our workflow by generating refined models of ABA-induced
stomatal closure that agree significantly better with a compendium of
published experimental results than the previous models.

Results
Outline of the boolmore tool
Our genetic algorithm-based workflow systematically tackles the huge
number of modeling choices that must be considered during model vali-
dation and refinement. Genetic algorithms are a type of heuristic optimi-
zation that produces candidates through stochastic mutation and retains or
eliminates them depending on a fitness score™. In the context of the problem
considered here, the sought-after solution is the optimal refinement of an
existing Boolean model, which consists of a signed interaction graph and the
Boolean functions of each node. Boolmore uses the starting model to build a
large number of mutated offspring models with different Boolean functions.
These offspring models stay consistent with modeler-specified biological
constraints and with the interaction graph, unless the addition of interac-
tions is allowed. Boolmore scores the fitness of each model by comparing the
model’s predictions to a compendium of experimental perturbation-
observation pairs. Boolmore is meant to be used in conjunction with domain
expertise to interpret the refined model and extract new predictions from it.
The previous works, most relevant to our method, involve genetic-
algorithm-based inference of a Boolean model based on a directed network
that integrates prior knowledge of interactions and regulatory
relationships'*~*****. These algorithms take as input information a com-
pendium of steady state values of all the nodes in the unperturbed system,
complemented by steady state values obtained for perturbations. Another
type of relevant prior work develops answer-set-programming methods to
infer a Boolean model” using reachability relationships between initial and

final states (as available for cell differentiation) or to revise an existing
Boolean model to better align with steady state or time course
measurements’ . We summarize in Supplementary Note 2 the goals and
use cases of relevant previous algorithms. We provide a comparison of
boolmore with the algorithms BoNesis™ and Gitsbe™ in our case study.

Here we provide a brief overview of the model refinement process of
boolmore; see the “Methods” section for the details. Boolmore takes three
different types of inputs: (i) the starting model, (ii) known biological
mechanisms, and (iii) a categorized compilation of experiments. The
starting interaction graph is derived from the starting model. The biological
mechanisms are expressed as logical relations, such as “A is necessary for B.”
The experimental results take the form of perturbation-observation pairs.
Each pair describes the observed state of a node (biomolecule) in a certain
context (e.g., in the presence of a signal, or in case of a knockout of another
component). The observations are classified into five categories, including
OFF, ON, and the intermediate category “Some”, which represents obser-
vations of an intermediate level of activation. We provide further inter-
pretation of this category in Supplementary Note 3.

Boolmore repeatedly iterates through the steps depicted in Fig. 1. First,
boolmore mutates the functions of the starting model to form new models,
using a novel representation of monotonic Boolean functions. This repre-
sentation has the advantage that it can easily constrain each mutation to
preserve all the input biological information. For example, the new models
stay consistent with the starting interaction graph, meaning that (i) the
mutations preserve the sign of each edge, (ii) a mutation may delete a
regulation represented by an edge of the starting interaction graph; this
regulation can be later recovered, and (iii) a mutation cannot add a reg-
ulator, unless the user allows the addition of edges to the starting interaction
graph from a user-provided pool. The representation also allows putting
constraints on the mutation, such as preserving the “necessary” logical
relation of certain regulators or locking a function to prevent it from
mutating. Boolmore also generates crossover models in which each node’s
regulatory function is randomly chosen from one of two models.

Second, boolmore generates the predictions of the models by calcu-
lating the minimal trap spaces of each model under each setting, and
identifying nodes that are ON, OFF, or oscillate. The averages of each node’s
values over minimal trap spaces are taken as the model prediction. Third,
boolmore computes the model’s fitness score by quantifying the agreement
of the model predictions with the perturbation-observation results. To
improve the alignment of biological relevance with scoring, the perturba-
tions are grouped hierarchically, and the scoring of a perturbation-
observation pair takes into account the perturbations at previous levels of
the hierarchy. For example, for a model to get a nonzero score on the result
of a double perturbation experiment, it must also agree with the observa-
tions of the constituent single perturbations. Finally, boolmore keeps the
models with the top fitness scores, while also preferring models with fewer
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Fig. 2 | Results of benchmark studies using an ensemble of 40 published Boolean
models. A Illustration of the accuracy improvement on the training set (80% of the
artificial experiments) over the iterations of the algorithm. The blue circles represent
the highest accuracy obtained at each iteration, averaged over 200 independent runs,
with the error bars representing the standard deviation over the runs. B For each
model, the average accuracy on the training set (80% of artificial experiments) of five
starting model variants is shown in orange, and the average accuracy of the five
refined models is shown in blue. Error bars represent the standard deviation across

Average Accuracy (%)

the five replicates. The names of each model and their accuracies are listed in
Supplementary Table 1. Orange and blue dashed lines indicate the average accuracy
of the starting models (49%) and the refined models (99%), respectively. C The
average accuracies on the validation set (20% of artificial experiments) of the five
starting model variants (orange) and the five refined models (blue). Boolmore had no
information on the validation set in its model refinement process, but was still able to
improve the accuracy greatly, from 47% on average to 95% on average.

added edges. Boolmore contains multiple tunable parameters, including the
mutation probability and the number of models generated in each step,
which the users can freely customize. We present a parameter analysis in
Supplementary Note 4.

Benchmark analysis

As is common practice in network inference, we first demonstrate the
performance of boolmore through in-silico benchmark studies. We used 40
published Boolean models from the Cell collective repository”’; this sample
included all models with 30 or fewer variables. For each model, we generated
artificial experiments, each consisting of a perturbation (fixing the state of a
set of nodes) and the observation of the state of a different node. We used
80% of the artificial experiments as a training set to refine an initial model
that had the same interaction graph as the actual model but its regulatory
functions were randomly selected. The remaining 20% of the artificial
experiments were used as a validation set to test the predictive power of the
refined model. We describe the details of these benchmark studies in the
“Methods”.

We found that the starting models had on average a 49% accuracy on
the training set, and boolmore improved the models to 99% accuracy on
average (Fig. 2). Notably, boolmore also increased the accuracy of the models
on the validation set from 47% on average to 95% on average. This indicates
that boolmore does not overfit the training set and that the refined models
give valid predictions.

Improving the ABA-induced stomatal closure model

To go beyond simple benchmarks and use our approach to search for new
biological insights, we apply our method in a case study. We selected a
system that is representative of the challenges inherent in constructing a
Boolean model of a complex biological phenomenon and keeping it up-to-
date with current literature. Specifically, we analyzed a group of Boolean
models, each aiming to integrate the mechanisms through which the

hormone ABA leads to the closure of plant stomata. The biological details of
this process are provided in Supplementary Note 5. The first model of ABA-
induced closure, published in 2006 by Li et al.”*, included 42 nodes. This was
expanded to 81 nodes in 2017 by Albert et al.”. An alternative expansion to
60 nodes was published in 2018 by Waidyarathne and Samarasinghe™. The
2017 model was refined in 2019 by the addition of a new edge and a
simultaneous attractor-preserving reduction to 49 nodes”. We decided to
use the 2017 model (whose node names are given in Supplementary Table 2)
as the basis of model refinement, as it is the most comprehensive and its
analysis included a thorough comparison with 112 perturbation-
observation pairs. The reported accuracy of the 2017 model was
95/112 = 85%.

Despite its overall high accuracy, the 2017 model also exhibited two
important weaknesses. First, 13 nodes were shown experimentally to lead to
closure when perturbed by external interventions. The 2017 model failed to
recapitulate nine of these observations according to the simulation-based
criteria used at the time. Second, plant stomata reopen after the removal of
the ABA signal, enabling the plant to resume photosynthesis. This rever-
sibility of stomatal closure is not captured by the model.

Two follow-up publications aimed to address each of these two
weaknesses of the 2017 model by making parsimonious hypotheses.
Maheshwari et al.”” hypothesized in 2019 and experimentally confirmed
the existence of an additional edge, thereby recapitulating five of the nine
experimental observations of closure that were not captured by the 2017
model. A second follow-up to the model in 2020 identified that the
source of the irreversibility of stomatal closure in the model is the
assumption of self-sustained activity of four nodes. The 2020 model
achieved reversible closure and preserved the 2019 model’s success in
capturing the five experimental observations of closure. We describe the
2017 model and its two follow-ups in more detail in Supplementary Note
5. We emphasize that both of these improvements were proposed after an
in-depth analysis of the 2017 model's weaknesses and individual
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Table 1 | The experimental value of Closure in response to interventions in the absence of ABA and the corresponding

predictions of four models

Intervention ROS CalM NO pHc PA  8ncGMP cADPR AtRAC1 InsP3  S1P
CA CA CA CA CA CA CA KO CA CA
Experimental
Some/ Some/ Some/ Some/ Some/ Some/
results of ON ON ON ON ON Some ON ON ON ON
Closure
Albert 2017 1 0.5 0 0 0 0.5 0.5 0.5 0.5 0
Maheshwari
2019 1 1 0 0 0 - 1 1 1 0
GA 1-A 1 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0
GA 1-B 1 1 0.5 0 0 0.5 0.5 0.5 0 0.5
Relevant
perturbation-| gy 74 6 41 34 14 10 10 8 8
observation
pairs

“CA” refers to constitutive activation or supply, which is implemented in the model by fixing the node in the ON state, “KO” refers to knockout, implemented by fixing the node in the OFF state. The interventions are
listed in the decreasing order of the number of relevant perturbation-observation pairs, indicated in the last row. The model entries indicate the categorization from lack of closure (0) to closure (1) described in the
Methods. To aid the comparison of the models in recapitulating the experimentally observed closure responses, the background of each entry is color-coded as white (agreement), yellow (partial agreement), or red

(disagreement).

exploration of many hypotheses to address these weaknesses while pre-
serving the strengths of the model.

We aimed to refine the 2017 model such that it reproduces the inter-
ventions that lead to stomatal closure and exhibits reversible closure.
Importantly, we aimed to do this without including these criteria as explicit
constraints of the refinement algorithm. We undertook an extensive search
of the experimental literature and expanded the number of
perturbation-observation pairs to 505 (listed in Supplementary Table 3).
Noting that the 2017 model had an erroneous edge, recognized in a later
publication”, we considered two starting models, baseline A and baseline B,
which correct the model in two different ways. The key difference between
the two models is that in the presence of ABA, the baseline model A features
the oscillation of multiple nodes, driven by transients in the elevation of the
cytosolic Ca”" level, while baseline model B defines an abstract node “Ca*",
osc” and leads to a fixed state for all nodes. Supplementary Note 6 provides a
more detailed description of the two baseline models. In our application of
boolmore on either baseline model, we adopted specific constraints for the
regulatory functions of 26 nodes and specific criteria for allowing 13 addi-
tional, experimentally-supported edges, as we describe in Supplementary
Note 7. The algorithm added 8 edges from the pool, which we describe later
as new predictions.

It took roughly 10 h to go through 100 iterations of the algorithm and
generate 10,000 models on a PC with an AMD Ryzen 5 3600 6-Core CPU at
3.8 GHz. The majority of the computation time was spent on model eva-
luation; the evaluation of each model took roughly 7 s on average.

The application of boolmore significantly improved both baseline
models. We will refer to the model obtained after applying boolmore to
baseline model A as genetic-algorithm (GA)1-A and the model obtained
after refining baseline model B as GA1-B. We indicate the regulatory
functions of the GA1-A and GA1-B models in Supplementary Note 8. Our
first specific model refinement goal was to reach better agreement with the
experimental interventions that cause closure in the absence of ABA but
were not recapitulated by the 2017 model.

Better agreement with experimental interventions that yield closure.
Table 1 summarizes these experimental observations and the model
results for the node Closure. The categorization of the experimental
results, ranging from Some to ON, reflects the observed degree of closure
(decrease of the stomatal aperture) induced by each intervention. The
table indicates the results of the 2017 model, the Maheshwari et al. 2019

model, and the two GA-refined models. The GA1-A model preserves the
2017 model’s agreements and has an improved score for three additional
responses. The GA1-B model preserves the agreement for three inter-
ventions, has a lower score than the 2017 model in one case (supplying
InsP3), and receives a higher score for three additional interventions.
Note that the elements whose closure-inducing nature is newly recapi-
tulated by the GA-refined models lie at the core of the system, as reflected
in the large number of experiments studying them (see the last row of
Table 1).

Reversibility. The 2017 model has 17 minimal trap spaces in the absence
of ABA; 16 with Closure =0 and 1 with Closure = 1. In the presence of
ABA, the model has a single minimal trap space with Closure = 1. If the
model starts in this trap space, and then ABA is taken away, the model can
only reach the single minimal trap space with Closure = 1, and therefore
fails to achieve reversibility. The elimination of this trap space would yield
a one-to-one correspondence between the signal ABA and the closure
response. Boolmore’s scoring method prefers models whose minimal trap
spaces are completely aligned with the experimental observations. Spe-
cifically, when an experimental observation corresponds to a lack of
closure (Closure = 0) but the model prediction (i.e., the average value of
the node Closure in the minimal trap spaces) is close to but not equal to
zero, the model receives a partial score. Both GA1-A and GAI-B suc-
ceeded in eliminating the trap space with Closure =1 in the absence of
ABA and thus achieved reversibility. It is particularly remarkable that this
reversibility was achieved without the introduction of time-dependent
regulatory functions as done in the 2020 revision’'. The score gain from
achieving reversibility is reported in Table 2. Note that the GA-refined
models were not able to gain the maximum score improvement from
reversibility due to trade-offs in capturing some of the experiments (i.e.,
due to the fact that achieving agreement with one experiment may create
a disagreement with another experiment).

Better agreement with experimental results. As 1 point in the score of
a model means recapitulating one perturbation-observation pair, the
highest possible score for a GA-refined model is 505. The 2017 model
recapitulated 33 pairs with a score of 1, had a score of 0.9 for 257 pairs, a
score in the range 0.5-0.8 for 50 pairs, and a score of 0.4 or lower for 165
pairs, achieving a score of 310.5/505 (61.5% accuracy). An improved
model would need to preserve the original model’s agreements with the
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Table 2 | Summary of the two sources of the improved score of the GA1-A and GA1-B models compared to the 2017 model®

Model Score Score gained from resolving original Score gained from reversibility = Score change from new disagreements
(max 505) disagreements (max + 27.4)
(max + 167.1)
2017 310.5 (61.5%) - - -
GA1-A 426.9 (84.5%,+116.5) +101.4 +25.3 -10.2
GA1-B 407.9 (80.8%, +97.4) +85.9 +26.5 -14.9

The score gains (indicated in parentheses in the second column) of the GA-refined models arise from resolving 50% or more of the disagreements of the 2017 model with experimental results (third column)
and achieving reversibility (fourth column). A small number of experiments were no longer captured by the refined models, decreasing the actual score gain (fifth column).

Model Accuracies

100
2 84.5 _— B3 817 Model Description
80 i Li (2006) 39 nodes shared with the 2017 model
70 Albert (2017) baseline A and B are made from this model
. 615 cg 4 E Waidyarathne (2018) 49 nodes shared with the 2017 model
§ °0 54;5‘ [ ] | Maheshwari (2019) 47 nodes shared with the 2017 model
§ 0 GAO-A no extra edges
g 40 \ GAO-B no extra edges, .
alternate Ca?* representation
30 | GA1-A main GA-refined model
20 | GA1-B alternate Ca?*_ representation
GA2-A more assumed edges, started from GA1-A
° GA2-B more assumed edges, started from GA1-B
0 . | o alternate Ca%* representation
~ %"zié&&ff o"q\} 0‘?6% o‘?\"v e"\? o"vv 0‘9&

* for rough comparison

Fig. 3 | The accuracy of the previous ABA-induced stomatal closure models and
the GA-refined models in reproducing a compilation of 505 perturbation—
observation pairs. The accuracy of the models marked with * is scaled to the
percentage (50-75%) of experiments that apply to them. We note that 100%

accuracy is not possible due to intrinsic limits on the agreement between the
experiments on ABA-induced closure and Boolean models. We discuss these limits
in Supplementary Note 9. The GA0 and GA2 models are variants of GA1 in terms of
the allowed addition of edges.

experimental results and reach agreement with the experiments that the
original model did not capture. The score of GAl-A is 84.5%, sig-
nificantly improved compared to the accuracy of 61.7% of the baseline
model A, which is closest to the 2017 model. The accuracy of GA1-B is
80.8%, a dramatic improvement compared to the accuracy of 36.5% of the
baseline model B, which uses an abstract node “Ca**. osc.” We confirmed
that the increase in the score of both GA1-A and GAI-B is due to
resolving the majority of the original model’s discrepancies with
experiments (see Table 2).

To place these results into context, we present the accuracy of the
previous manually constructed models as well as two additional versions of
GA-refined models in Fig. 3. In the GAO models, we did not allow the
addition of edges, therefore the GA0 models stay consistent with the original
interaction graph. In contrast, for GA2 models, we allowed more assumed
edges, without requiring experimental support. We describe these models in
detail in Supplementary Note 10. The figure indicates that all versions of
GA-refined models surpass all published models, while at the same time
decreasing the time needed for model refinement.

We evaluated the reproducibility of the genetic algorithm-based
refinement by performing 16 independent GAl runs starting from the
baseline A model, which is closest to the 2017 model. The mean of the final
accuracies was 81.5% with a standard deviation of 2.1%. The GA1-A model

had the highest final accuracy, 84.5%. There was a significant consensus
among the GA1 model variants (e.g,, 16 of the 35 functions that could
change converged into an identical or logically equivalent form) as well as
subtle dissimilarities that explain the differences in the score. The fitness
score saturated before 100 iterations in each run. This shows that although
Boolmore was not able to find the global maximum in every run, it was able
to converge on a local maximum. This is a remarkable result considering the
extremely high number of possible models for this case study. Indeed, we
calculated using Dedekind numbers that the rough lower bound of the
number of Boolean models consistent with the interaction graph and the
constraints is 10'%.

The goal of our model refinement workflow was to find biologically
relevant improvements to an existing model, mirroring a manually refined
model. Comparison with two publicly available tools for Boolean model
inference or refinement, BoNesis”” and Gitsbe®, indicates that neither tool is
able to achieve this goal for the ABA-induced closure process. BoNesis could
not return a single model within 24 h even when restricting the experimental
input to the perturbation-observation pairs satisfied by a baseline model. All
the models generated by Gitsbe in over 13 h contained many biologically
invalid modifications to the regulatory functions, as Gitsbe lacks the ability
to constrain the functions to preserve biological mechanisms. Even if
overlooking the lack of biological interpretability, all of the Gitsbe-generated
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Fig. 4 | Simplified interaction graph illustrating
the modifications to the network topology (edge
deletions and additions) shared by the GA-refined
models GA1-A and GA1-B. Each edge that termi-
nates in an arrowhead indicates a positive regula-
tion, and a round tip means negative regulation. Blue
edges are shared additions of the GA-refined mod-
els, and red dashed edges were deleted by both GA-
refined models. The nodes with a yellow background
are the key intervention nodes whose perturbation
leads to some degree of closure. The full names of the
elements are indicated in Supplementary Table 2.
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models had a lower score than the worst-scoring boolmore-refined models.
See Supplementary Note 11 for a detailed description of our comparison
process.

The model refinements identified by boolmore have both explanatory
and predictive power. The existence of two alternative baseline models
allows the identification of changes implemented by boolmore in both
models. These changes, which are listed and interpreted in Supplementary
Note 12, have a high likelihood of being biologically meaningful. In
addition to an increased understanding of the biological system, it is also
possible to extract novel predictions from the GA-refined models and
suggest new experiments. In the following, we describe a selection of new
predictions.

New predictions of the GA-refined models of ABA-induced
closure

Modifications to the interaction graph. Both GA-refined models fea-
ture significant changes to the interaction graph, which can serve as new
predictions. GA1-A deleted 24 edges out of 152 starting edges. GA1-B
deleted 17 edges out of 145 starting edges. Ten edges were deleted in both
models; these edges are shown with red dashed lines in Fig. 4. A sig-
nificant fraction of these edges represented assumptions of the 2017
model based on indirect evidence. These assumptions are no longer
needed due to the improvements to the regulatory functions made pos-
sible by boolmore (see Supplementary Note 12 for examples). In some of
these cases, we could identify a shortcoming in the reasoning that led to
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Table 3 | Added edges in the GA-refined models compared to the 2017 model*®

PA - ABI2 Aquaporin — ROS ROS — AR PA — MD pH: — VA Other Edges
Maheshwari 2019 o X X X X
GA 1-A (e} (0} (0} o (¢} PA - HAB1
GA1-B o (0] (o} (e} (¢} Ca**; osc -+ ABI2
AR — RBOH

AR Actin reorganization, MD Microtubule depolymerization, VA Vacuolar acidification.
The notation “—” means activation and “+” means inhibition. Note that the inhibitory edge from PA to ABI2, which was incorporated in the 2019 revision of that model by Maheshwari et al.*, was added by

both GA-refined models.

Table 4 | lllustrative biological predictions that can be made
based on the GA-refined models of ABA-induced closure

Context

Prediction

Constitutive activation of ABI1 in the
presence of ABA

The aquaporin channels will not
activate (will not open)

Externally provided ROS in the absence
of ABA

The malate concentration
decreases below threshold.

PA is produced

The microtubules are

depolymerized
Disruption of aquaporins (pip2;7 KO) in Lack of NO production
the presence of ABA No cADPR production

PLDé¢ is not activated

Externally provided ROS in the absence
of ABA

PP2CA is active

Externally provided ROS, knockout of
RCARSs receptors, in the presence of ABA

PP2CA is active

Externally provided cADPR in the
absence of ABA

pHcincreases to alesser extent than
in response to ABA

No ROS production

PA is produced

Externally provided 8-nitro-cGMP in the
absence of ABA

pHcincreases to alesser extent than
in response to ABA

No ROS production

PA is produced
No ROS production

Externally provided Ca®* in the absence
of ABA

the unnecessary inclusion of a variable into a regulatory function in the
original model. These findings illustrate how an automated method using
a genetic algorithm can overcome modelers’ bias in selecting edges and
functions, revealing optimal possibilities. Note that the deletion of an
edge does not necessarily mean lack of influence; the influence may be
preserved through a path, or the deletion may indicate that in the context
considered the influence is not significant enough to overcome the effects
of the other regulators in a phenotypically relevant way.

GA1-A added six new edges, and GA1-B added seven new edges
from the pool of 13 experimentally supported new edges. The added
edges present in both GA-refined models indicate biological
mechanisms that were not included in the 2017 model. As shown in
Table 3, five new edges were added in both models. Importantly, the
added inhibitory edge between PA and ABI2 recapitulates the
experimentally supported prediction of the 2019 follow-up to the 2017
model™. The success of these shared additions confirms the
improvements possible from the incorporation of new biological
information.

Predictions that can be verified experimentally. The GA-refined
regulatory functions also serve as new biological predictions. We

summarize selected testable predictions in Table 4 and explain them in
Supplementary Note 13. Here we illustrate the types of predictions with a
few examples.

The GA-refined models modify the regulatory function of the anion
channel SLACI such that it is easier to activate. As a consequence, the
models recapitulate the experimental observation that ROS activates
SLACI. A follow-up prediction is that the resulting anion flow brings the
malate concentration below the threshold.

Causal relationships mediated by chains of interactions (pathways) can
also yield new predictions. The 2017 model and the GA-refined models
agree in predicting that ROS is sufficient to induce PA production. This is
experimentally testable. As the GA-refined models incorporate the new
observation that PA is sufficient for microtubule depolymerization, a follow-
up testable prediction is that ROS can induce microtubule depolymeriza-
tion; this can be tested by methods used by Eisinger et al.*’.

The shared features of the GA-refined models’ minimal trap spaces,
which are described in detail in Supplementary Note 14, identify further
predictions. One such prediction is that external Ca** would yield no or a
very limited amount of ROS production. While ROS production in ABA-
induced closure has been experimentally documented, the production of
ROS in response to external Ca** has not yet been studied experimentally.

A more general insight can be gained from observing that GA1-A and
GA1-B rely on two different mechanisms to yield minimal trap space results
of 0.5 that achieve agreement with experimental observations classified as
“Some” in Table 1. The attractors of GA1-A feature oscillations in Closure
along with a significant number of other nodes, which are due to the
oscillations of Ca**.. In contrast, GA1-B has two attractors, one featuring
Closure =1 and the other featuring Closure = 0. Although different in a
technical sense, these results are consistent with each other in that they both
suggest population-level heterogeneity of the stomatal responses. Due to the
challenges of tracking individual stomata in real time, there are few studies of
individual stomata. Nevertheless, the studies that exist include observations
of multiple types of oscillations in the stomatal aperture, including
Ca’* —induced oscillations (reviewed by Yang et al.""). In addition, Li et al.**
reported a significant bimodality of the ABA-treated stomatal aperture
distribution. Our results suggest that more in-depth analyses of the time-
dependent status of signaling mediators in individual guard cells may reveal
a richer dynamic picture than previously thought.

Discussion

Small, local changes in a Boolean model, such as to the regulatory function of
a single gene, can lead to global changes in the model’s attractor repertoire
and thus to the predicted phenotypes. This makes the process of iteratively
building a model, or incorporating new biological knowledge into an
existing model, extremely challenging. Here we automate the process of
refining or updating an existing Boolean model and implement it as the tool
boolmore. We use a genetic algorithm to adjust the regulatory functions of
the model to improve its agreement with curated experimental results.
Automated exploration and quantitative scoring of modeling decisions can
alleviate the immense cognitive burden of integrating myriad experiments
into a causal model, while reducing human error and modeler bias. Our
workflow allows modelers to automatically explore many more modeling
choices than previously possible, enabling systematic evaluation of alternate
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modeling assumptions with large, global effects on the model dynamics. As
an illustrative example, we considered a model of ABA-induced closure
(baseline model B) in which the oscillating negative feedback between
cytosolic calcium and calcium ATPase was replaced by a single node whose
activity indicates calcium oscillation. Using boolmore, we refined baseline
model B, which had an accuracy of only 36.5%, into model GA1-B, with an
accuracy of 80.8%.

Any method that involves fitting to data has a chance of overfitting, i.e.,
inferring more parameters than can be justified by the data®. The para-
meters of a Boolean model are the Boolean functions of individual nodes. In
our case study, boolmore deleted many edges that were included in the
manually constructed starting models. Deletion of edges is analogous to
removing parameters, and hence, boolmore actually helped reduce the risk
of overfitting that exists in the manual refinement process. Our workflow
also helps introduce new edges in a much more conservative manner by only
allowing edges that increase the accuracy of the model as a whole. The
mutation of the regulatory functions used in boolmore preserves these
functions’ biological interpretability. The representation of the functions
preserves the sign of each regulatory relationship. The constraints ensure
that known mechanisms are reflected in every model version. The predictive
power of the models refined by boolmore is evident in the benchmarks,
where the refined models showed 95% accuracy over the validation set,
which was not used in the refinement process.

Boolmore uses a flexible scoring method that appropriately handles
low-throughput state data and the subtleties that arise in discretizing
experimental data. In the case study considered here, for example, we used
this flexibility to introduce additional outcome categories (e.g., “Some”,
“OFF/Some”) to describe intermediate outcomes (e.g., reduced closure) and
inconsistency between repeat experimental observations. By considering the
interdependence of perturbation experiments, our scoring achieves an
unprecedented level of biological realism even with limited data.

The scoring system can be readily augmented by additional measures,
such as the number of attractors or the phenotype transitions under dif-
ferent environments, to produce more realistic models. Model prioritization
can be customized so that only models with certain key behaviors are
selected. Furthermore, the modeler has the freedom to determine how
individual experimental observations should be encoded; for instance,
allowing for categories, such as “Oscillating” or “Bistable” (see Supple-
mentary Note 3 for the types of experiments that lend themselves to this
categorization).

Although boolmore was implemented for locally-monotonic Boolean
functions, it can readily handle non-monotonic Boolean functions as well
as multi-level variables. Biologically justified context-dependent regula-
tion (expressed as a non-monotonic function) can be incorporated via
virtual mediators (see Methods). As a lossless mapping between a multi-
level variable and a set of Boolean variables has been worked out'>*,
boolmore can accommodate multiple levels. We indicate in Supplemen-
tary Note 15 the details of this adaptation and a proof of concept appli-
cation to a model of nutritional regulation of lisosomal lipases in C.
elegans®. A multi-level representation of the output variable “Closure” is
especially needed in future models that integrate the response to the
various signals that lead to various degrees of stomatal closure. These
signals include ABA, high CO,, darkness, and their combinations. Bool-
more can be a useful tool for identifying the number of levels that yield the
best agreement with experiments.

Boolmore needs a high-quality interaction graph. Our case study
indicates that even one erroneous edge can significantly limit the success of
model refinement (see Supplementary Note 10 for related results on our case
study). Fortunately, many methods have been developed to construct or
infer biomolecular interaction graphs'®, and curated interaction graphs are
available in multiple databases*™, increasing the likelihood of a high-
quality interaction graph for any cellular process to be modeled. Gaps of
knowledge in the interaction graph can be filled by allowing the addition of
edges, increasing the accuracy of the model (see Supplementary Note 10 for
related results). Each such addition serves as a new prediction. However,

edge addition is only effective in moderation, as each additional edge
doubles the size of the search space.

Model evaluation is the major computational bottleneck of boolmore
and we believe that no trivial speedup is possible. By relying on the Python
package pyboolnet", boolmore could find the minimal trap spaces in our 82-
node case study in a hundredth of a second. Even with this remarkable
speed, evaluating more than 8000 models under more than 260 perturbation
settings resulted in 10 h of runtime for a single run on a personal computer.

Although the fast computation of minimal trap spaces is a major
contributor to boolmore’s effectiveness, the focus on trap spaces also
imposes some limitations. Boolmore cannot incorporate initial states,
timecourses, and cannot determine basins of attraction. Consequently,
boolmore cannot test whether a model can reproduce an organized set
of global states corresponding to an oscillation, such as the cell cycle or
a circadian oscillation. In some cases, timecourse information can be
abstracted into early and late events, using a suitable categorization of
interactions’. When comparing to experiments describing early
responses, boolmore would mask (inactivate) the late-event interac-
tions, and use the trap spaces of the model version that only has the
early events. Other limitations can be overcome by integration of
boolmore with a simulation tool, e.g., using the fast GPU-based
simulator cubewalkers™. Such integration would allow identifying the
long-term behavior specific to a certain initial condition and deter-
mining the relative basin of each minimal trap space. In turn, this
information could be incorporated into scoring schemes to evaluate
model agreement with experimental observations on cell subpopula-
tions. Integration with a simulator would also allow the probabilistic
implementation of intermediate perturbations (knockdowns) and
open the way toward the incorporation of probabilistic Boolean
models™*.

Our automation of model refinement streamlines model-building by
lowering the hurdle for the initial model. Once the experimental database
and an interaction graph for the model are set, a quickly achievable pre-
liminary model can be refined in a fraction of the time that would be needed
for manual model building. We envision that boolmore may also be used as
an exploratory tool, allowing biologists and modelers to evaluate whether,
and how, a model can accommodate hypothetical experimental results.
Boolmore can also be integrated with other steps, such as automated evi-
dence gathering” and model expansion® to progress toward fully auto-
mated and extremely fast model construction.

Methods

Methodological details of boolmore

Mutating functions such that edge signs are preserved. The inter-
actions and regulatory relationships in biological networks are locally
monotonic in the vast majority of cases. This means a regulator either
inhibits or activates its target; it is not an inhibitor in one context (i.e.,
for a certain state of other regulators of the target node) and an
activator in another context. The signs of the interactions are built
from the literature, and form the foundation of the model. These
interactions are often well established, and hence changing the signs
will lead to completely unrealistic networks. Boolmore only allows
Boolean function mutations that preserve the original signs. Boolean
models of biological networks may contain functions with context-
dependent regulation; indeed, 1% of the functions of an ensemble of
122 Boolean models were found to be context-dependent’’. Such non-
monotonic functions can be handled by introducing virtual media-
tors, as we describe later.

To achieve random mutations of Boolean functions that preserve the
original signs, we propose a degenerate binary representation of each
function based on a disjunctive normal form of the function. The key idea is
the following: a function with p positive regulators and n negative regulators
can be expressed (not necessarily uniquely) as the disjunction (OR com-
position) of a subset of the 2"*? conjunctions (AND compositions) con-
sistent with the regulatory signs. Each of these conjunctions is assigned a
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location in a binary string of length 2"*F; the binary string is interpreted as
the disjunction of the conjunctions corresponding to the locations in which
the string has a 1. Each mutation changes a randomly selected digit of this
binary representation and is guaranteed to preserve the signs of the reg-
ulatory relationships.

The specific representation for a positive regulatory function (i.e., one
for which all regulators are activators) with k inputs is

(X, .y Xp) =
3|
A &X | Jagg &eXy |
a“‘ZJ&Xl&XZL . .|a“_’k)&X1 &Xl -
ay; 53 &X &K &Ky Jayy 51y &K &K &K ] |

Here, X; represents the state of the ith input node out of k input nodes.
The notation “|” means logical “OR” and “&” indicates logical “AND”. A
constant Boolean coefficient ag is assigned to each subset S of input nodes,
from S = {} to S = {1,...,k}. Note that this representation is not unique. The
coefficients ag can be ordered to obtain a binary representation of the
function. A natural ordering interprets each S as the binary representation of
the numbers from 0 to 2°-1. This ordering is also traditionally used in the
truth table representation of Boolean functions.

For example, let us consider three variables A, B, C, and the Boolean
function f(A,B,C) = B&C|A&B. This function can be written as f(A,B,C)=0
|0&C|0&B|18B&C|0&A |0&A&C|1&A&B|0KAKB&C. Note that this
representation includes all the possible subsets of ABC, leading to 2° =38
clauses; the original three clauses are the terms that start with 1. The Boolean
function can be represented by a string of the ag coefficients, i.e., f(A,B,C) is
represented by 00010010. The benefits of this representation are that any
possible combination of Os and 1s represents a positive (activators-only)
function, and that the combinations span all the positive functions.
Exemplifying the degenerate nature of this representation, 00010011 also
represents f because A&B&C is implied by B&C|A&B. However, the
representation that has the maximal number of 1s (max representation) is
unique and is equivalent to the truth table of the function (00010011 in this
example). The representation that has the minimal number of 1s (min
representation) is also unique and is equivalent to the Blake canonical form
of the function (00010010 in this example).

To obtain a mutated function, each digit of this representation is
changed with a certain probability. For example, the mutation may change
the sixth digit and lead to 00010110. The mutated function is thus (A,B,C)
=0|0&C|08<B|1 &B&C|08&A|1 &KAKC|1 &AKB|O&KA&B&C, which can be
further simplified to £(A,B,C) = B&C|A&C|A&B.

This method can be extended to mutate locally monotonic functions
that do contain the NOT operator (which we will represent as!). If g(A,B) =!
A&B, we can use the change of variables A’ = A and represent the function
as the positive function g'(A’,B) = A’&B. As long as we keep the original
records of the signs, any locally monotonic function can be switched to a
positive function, mutated, and switched back.

Note that the above representation naturally has a bias toward 1. For
example, if the first digit of the binary representation is mutated to 1, the
whole function becomes 1. To remove this bias, we also consider a binary
representation of the negation of the function. For example, the negation of
the above function, !f(A,B,C) =B | IA&!C =!f(A’,B’,C)=B’|A’&C’ can be
represented as 0010100. In the negated representation, mutating the first
digit to 1 makes the negated function 1, and thereby makes the original
function 0. To remove bias toward one output state or the other, we
introduce a 50% chance to mutate the negation of the function rather than
the function itself.

Although boolmore’s encoding of Boolean functions relies on their
local monotonicity, it can flexibly handle non-monotonic functions.
Modelers should simply introduce virtual mediators for each regulator
whose effect is non-monotonic. This allows the function to be fixed or
mutated depending on the choice of the modeler. For example, if a variable
C s governed by the function “A XOR B”, the modeler can add mediators a
and b, and transform the system into

a"=A

b =B

C" = (A orB)and not (aand b)

In cases where there is good biological justification for the XOR
function, the modeler can include nodes a, b, and C in the group of nodes
whose Boolean function is fixed. Depending on the situation, the modeler
could choose to let the function of C to be mutated, to allow testing models
with various modifications of selected parts. For example, if one is more
certain about the positive effects of A and B, then A and B could be added to
the list of required regulators, while the negative effects represented by a and
b are allowed to be dropped.

Preserving known mechanisms via constraints. In some cases, the
biochemical mechanisms of certain regulatory relationships are
known. We encode such knowledge as constraints to the Boolean
regulatory functions, in a similar vein as Azpeitia et al.”’. These
constraints not only ensure reasonable models, but they also reduce
the search space greatly. For example, if it is known that the activation
of aregulator A is necessary for the activation of the target B, then the
form of the Boolean function of B is constrained to be “fz=A & (other
regulators)”. For a function with four inputs, this reduces the number
of possible Boolean functions with fixed signs from 168 to 20. The
constraints of the regulatory functions are enforced by their binary
representations. For example, if A is constrained to be a necessary
regulator, any term that does not contain A will have a coefficient of 0
in the binary representation.

We implemented five types of constraints in our case study. Four
explicit constraints are fixed functions (not allowing the mutation of a
function that describes a known mechanism), edge preservation (not
allowing the loss of a biologically well-supported edge), logic preservation
(preserving the information that a regulator is necessary for the activation of
the target node), and grouped regulation (preserving the relationships that
express an enzyme-catalyzed reaction). The fifth constraint is that, in gen-
eral, we do not allow mutations that would transform a node into a source
node (e.g., by the loss of its last remaining regulator). Exceptions from this
constraint are explicitly listed.

The currently implemented constraints are based on our current
experience with using boolmore on a signal transduction network.
Future applications will likely reveal new constraints, which can be
implemented.

Allowing the addition of new edges from a limited pool of
experimentally-supported hypotheses. Boolmore modifies the inter-
action graph by deleting or adding edges. The deletion of edges is done
implicitly through the modification of regulatory functions. The addition
of edges was implemented in a restrictive way: boolmore can only select
edges from a predetermined pool. Initially, a newly added regulator is
integrated with the rest in a random way, and the function can mutate
through the iterations. For example, consider that node X, which had the
original function fx(A,B,C) = B&C|A&B|A&B&C, acquires a potential
new positive regulator D. Its binary representation now has 16 digits
instead of eight, thus acquiring 8 free parameters, which we mark with the
symbol “?”: fy(A,B,C,D)=0[?&D|0&C|?&C&D|0&B[?&B&D|1&B&C|?
&B&C&D|0&KA [?&AKD|0&A&C|?&A&C&D|1&A&B|?&AKB&D)

the additional regulator is fully redundant, whereas the regulator is suf-
ficient for activation if the first “?” is equal to one. When adding an

npj Systems Biology and Applications| (2025)11:65


www.nature.com/npjsba

https://doi.org/10.1038/s41540-025-00532-y

Article

A

Signal response under S S S
perturbations Example il
Boolean Models M*=
mS=0 mS=1
2 - = on
R*=S R*=0 | | R*=M
2 $=0 -> R=OFF v v v
® 15 Some
2 S=1 ->R=ON v X v
o<
ua S=1, M KO -> R=OFF X v v
é ! OFF Minimal trap space agreements | 2/3 2/3 3/3
2
g
05 S=0 -> R=OFF v v v
S=1 ->R=ON v X v
o L] L] L S=1, M KO -> R=OFF X X v
wild type M KO CCA Hierarchy-based score 2/3 1/3 3/3

KO: Knock out, CA: Constitutive activation

Fig. 5 | Illustrative example of categorizing perturbation experiments and
scoring model agreement. A The reported results are normalized by the activation
of the response node R in the absence of the signal (S = 0). The wild type shows higher
activation of R in the presence of the signal S. M and C represent mediators of the
signal. ”’KO” means knockout and “CA” means constitutive activation. The wild type
response under S = 0 is categorized as OFF; the wild type response under S =1 is
categorized as ON. If the value of R observed under a perturbation is similar to one of
these two reference values, it will be included in the same category as the reference.
For example, the response to [S =1, C CA] is categorized as ON. Notably, the

response to [S=0, C CA] is categorized as Some. B Illustrative example of deter-
mining the minimal trap space agreement and the hierarchy-based score of putative
models. Each model indicates the next state of R (denoted R*) as a function of the
current state of S or M. The model with R* = 0 has the same minimal trap space
agreement as the R* = Smodel, and in particular it agrees with the observation [S=1,
M KO] — R =0, but it receives a lower hierarchy-based score because of its dis-
crepancy with the observation [S = 1] — R = 1. In general, the difference between the
minimal trap space agreement and the hierarchy-based score (highlighted in yellow)
is more prominent in more complex perturbation experiments.

additional regulator in boolmore, we initialize each “?” randomly, with a
50% chance to be 0 or 1.

Models are given internal penalties when adding edges, so that models
in which the addition of an edge did not lead to a score increase are less likely
to survive through the iterations. This is done by counting the number of
added edges and prioritizing the model with fewer added edges among two
models with the same score. We also prioritized models with simpler
functional forms. This was done by counting the number prime implicants
(or equivalently the number of 1s in the minimal binary representation) and
prioritizing the model with a smaller number whenever there are two
models with the same score and the same number of added edges. This
method helps prevent the models from deviating too much from the original
interaction graph and from increasing their complexity. However, even with
these preventive measures, each edge in the pool makes the search space
exponentially larger, and can preclude boolmore from finding an optimal
model in a reasonable amount of time. Hence we only allowed the addition
of user-provided edges, often limited to edges with experimental support.

Interpreting experimental results in a Boolean context. Boolmore
computes each model’s fitness score using input data consisting of
experimental perturbations and a coarse-graining of the observed out-
comes. We classified the experimental observations into five categories:
OFF, OFF/Some, Some, Some/ON, ON; we describe below how we
assigned these categories for each node, though we note that our work-
flow is flexible and allows other choices.

Experimental perturbations, such as knocking out a gene or providing
excess amounts of a protein have natural Boolean interpretations; the cor-
responding nodes are considered to be fixed OFF for the former and ON for
the latter. The observations of mRNA or protein concentrations in the
unperturbed (wild type) or perturbed (e.g., mutant type) systems have a
continuous spectrum of outcome. We use a comparative method to express

these observations in a form that is compatible with Boolean dynamics. In
the case of a signal transduction network, we use the observed concentration
or activation of each node in the presence/absence of the signal (in the wild
type system) as two points of reference, akin to a positive and negative
experimental control. We coarse-grain the observed node activities in
response to perturbations by comparison to these two points of reference.

We illustrate in Fig. 5 the case of a node R, which has higher
activation when the signal Sis present in the wild type. We consider this
level of activation to be the ON state (R = 1), and in any perturbation
that leads to a similar activation level or higher, R is considered ON.
Thelevels are assigned to the OFF state in a similar manner. In addition
to the preferred OFF and ON categories, we also introduced inter-
mediate and mixed categories as necessary. If the observed activation
level is an intermediate between the OFF and ON states, it is categor-
ized as “Some”. Although a Boolean model has no simple way of
describing such an intermediate level, it can be realized by an attractor
in which the node oscillates or by multiple attractors, with the node
being with ON in some of the attractors and OFF in the others. We
discuss the interpretation of the “Some” category and its possible
customization in Supplementary Note 3. We assigned the OFF/Some
or Some/ON categories in cases when there are multiple reported
observations for the same perturbations that have non-identical
results, or in cases where a clear comparison with the reference was
impossible.

Detailed description of the model’s outcome. We use pyboolnet, a
Python package for analyzing Boolean models" to determine the mini-
mal trap spaces of the model under various constraints that mimic per-
turbation experiments. Minimal trap spaces are a close, update-scheme-
independent approximation of attractors and their identification is more
computationally efficient (see Supplementary Note 1). For each minimal

npj Systems Biology and Applications| (2025)11:65

10


www.nature.com/npjsba

https://doi.org/10.1038/s41540-025-00532-y

Article

Table 5 | The agreement functions used in boolmore

Category Agreement Examples
function (0<x<1)

ON f(x) =x ABA=1, observing pH..

Some/ON f(x) =2x (x < 0.5) NO CA, observing Closure. The closure (i.e., reduction in the stomatal aperture) in various reported experiments varied
f(x)=1(x=>0.5) between 30% and 60% of that in response to ABA.

Some f(x) = 4x (x < 0.25) 8-nitro-cGMP CA, observing Closure. The experimental closure response was around 25% of the response to ABA.
f(x)=1(0.25 <x<0.75)
f(x) = 4-4x (x 2 0.75)

OFF/Some  f(x)=1 (x<0.5) ABA =1, S1P/PhytoS1P KO, observing Closure. S1P was depleted using a chemical, whose effect may reduce over time.
f(x) =2-2x (x = 0.5) Thus, the experimentally observed weak closure (instead of the expected lack of closure) may be due to the dissipation of

the depletion.
OFF f(x) =1-x NO CA, observing ROS.

The agreement function indicates the average value of the respective node in the trap spaces of the model on the x-axis and the agreement on the y-axis. These are used for hierarchy-based scoring.

trap space, nodes constrained to be ON are assigned the value of 1, nodes
constrained to be OFF are assigned the value of 0, and unconstrained
(oscillating) nodes are assigned the value of 0.5. In each comparison with
the experimental observation obtained in a perturbation condition, the
model outcome is the average value of the observed node in the minimal
trap spaces corresponding to that condition. For example, if there are two
minimal trap spaces and the node oscillates in one and has the state 1 in
the other, the average node value is 0.75.

Although there are alternative tools for minimal trap space calculation
that can outperform pyboolnet in typical settings, it is optimal for boolmore.
This is because pyboolnet allows very fast computation of minimal trap
spaces using the Blake canonical form of the functions, and its main bot-
tleneck is calculating the Blake canonical form from the given functions. In
boolmore, the binary representation allows the computation of the Blake
canonical form at a very small cost.

Scoring model fitness with a hierarchy-based method. Each model
receives one point toward its fitness score per recapitulated
perturbation-observation pair. To ensure that the simulated pertur-
bation is causally linked to the model outcome, a perturbation
experiment is considered to be recapitulated only if the model pre-
dictions agree with measurements obtained for subsets of the per-
turbation as well, resulting in a hierarchy of experimental
observations. The top of the hierarchy is the ‘resting state’ observa-
tion of the wild-type system in the absence of any signal. The signal-
response pairs of the unperturbed (wild type) system are one step
down, as are the observed responses to perturbations of single
intermediary nodes in the absence of any signal. The signal-response
pairs under perturbations of single mediators are two steps from the
top. Perturbations of multiple mediators are at increasingly lower
levels of the hierarchy.

Asanillustrative example, consider a system in which a signal Sleads to
a response R through a mediator M (see Fig. 5B). The knockout of the
mediator M (M KO) inhibits the response to the signal (R=0 even if S=1).
A hypothetical model that says R is inactive regardless of the signal (R* = 0)
recapitulates the result that M KO leads to R = 0. However, this model does
not respond to the signal even when M is not knocked out. Our scoring
method ensures that a high-scoring model satisfies the top-of-the-hierarchy
experiment [S = 0] — R = 0, the one step down experiment [S=1] — R=1,
as well as the more complex experiment [S =1, M KO] — R = 0. Note that
§=0 is the default and should be included in the specification of the
experiment unless S = 1.

Boolmore scores each model in a two-step process. First, it determines
the agreement of the model with the observation of each perturbation
experiment, and then it scores the model by considering all agreements with
the experiments at higher levels of the hierarchy. For each perturbation
condition, the model prediction is the average value of the observed node in
the minimal trap spaces. The model’s agreement for that perturbation

experiment is given depending on how well the prediction agrees with the
categorization of the experimental observation. Each agreement function’s
output ranges from 0 to 1 following a piece-wise linear mapping, indicated
in Table 5. For example, if the experimental outcome is categorized as ON, a
model with a prediction of 1 receives an agreement of 1 for that experiment
and another model with a prediction of 0.5 gets an agreement of 0.5. The
final score is the product of all the attractor agreements of the subset per-
turbation experiments. For example, in Fig. 5B, if we are considering the
perturbation [S = 1, M KOJ, the score is given by multiplying the agreements
of 4 experiments, namely [S=0], [S=1], [S=0, M KO], and [S=1, M KO]
itself.

Setups used for the benchmarks and case study

Parameters for running the genetic algorithm. The steps described in
Fig. 1 are performed on a population of 100 models generated in each
iteration. We do 100 iterations in each run. The top 20 models with the
highest fitness scores from the previous iteration are carried over. We
perform 20 repetitions of selecting two models randomly from the top 20
(fitter models having a higher chance of being selected) and generating a
cross-over model in which each node’s Boolean function is chosen with
equal probability from one of the two models. This process generates 20
additional models. Finally, from this pool of 40 models, we repeat 80
times the process of selecting a model and mutating it, to generate the
remaining 80 models of the new iteration. We used a mutation prob-
ability of 0.01 in the functions. Fitter models have a higher chance of
being selected in this process as well. Ten thousand networks are gen-
erated in a single run. These numbers were chosen such that the best score
saturates by the end of the run in the benchmarks and the case study. We
performed a parameter analysis and found significant robustness to
changes in these parameter values (see Supplementary Note 4 for more
details).

We found that the performance of the genetic algorithm does not
depend sensitively on the choice of the parameters. The most important
choice is the selection of the mutation probabilities, as the most appropriate
mutation rate depends on the fitness of the starting model. Another con-
sideration is that in general, larger models require lower mutation prob-
abilities to allow fine-tuning of the well-performing models. However, any
mutation probability in the range of 0.01-0.1 can sufficiently refine the
model and reach saturation with enough iterations. We found that the other
parameters have negligible impact on the performance. When an equal
number of models were generated, the number of iterations did not make a
significant difference as long as it was over a certain threshold, i.e., larger
than ten when 100 models are generated. Similarly, the number of models
kept to the next iteration did not make a significant difference as long as it
was comparable to the number of models generated for each iteration, i.e.,
lower than five when five models are generated at each iteration. The
optimal number of models to generate using mix (crossing) is small, i.e., one
for the sampled models when five models were generated for each iteration.
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Methods of the benchmark analysis to test the overall performance
of boolmore. Following the common practice in such benchmarks, we
used existing Boolean models as ground truth. We used the original
model’s interaction graph to generate a randomized starting model to be
refined. We used the minimal trap spaces of the original model under
various perturbations to generate the artificial perturbation-observation
pairs (which we will refer to as artificial experiments). We used 80% of the
artificial experiments as the training set to refine a randomized starting
model and used the remaining 20% as the validation set to test the
accuracy of the refined model in recapitulating newly encountered
experimental results.

We used all Boolean models with 30 or fewer nodes available in the Cell
Collective (a repository of peer-reviewed, experimentally supported Boo-
lean models™), leading to 40 models. For each model, we ran five replicate
benchmark runs using a unique starting model and a unique set of artificial
experiments.

We generated five starting models for each model by randomizing the
binary representation of the Boolean functions of the original model. This
randomization keeps the functions monotonic and consistent with the
original interaction graph, but may yield fewer regulators than the original.
The missing regulators can be added back in during the iterations of the
model refinement process.

For each model with N nodes, we generated five sets of 10*N artificial
experiments, 80% of which were used for training, for a coverage that is
comparable to that of our case study (505 experiments for 68 not fully
constrained nodes). Each artificial experiment consists of a set of nodes
whose state is controlled (kept fixed) and a node whose state is observed. We
aimed to select the controlled and observed nodes such that the collection of
artificial experiments is representative of empirical perturbation-
observation pairs.

The controlled set of nodes always included the source nodes of the
network, which describe the signals and experimental context. Additional
non-source nodes were included in the controlled sets such that their
number followed a decreasing frequency (such that the majority of control
sets included a single non-source node). This decreasing frequency reflects
the lower representation of combinatorial perturbations due to the difficulty
of their practical implementation.

We ensured that the sink nodes, which represent phenotypes in most
models, are observed for each unique controlled set of nodes. We also
assigned more observations to the smaller controlled sets (such as the wild
type), reflecting the real-world dataset of our case study. We fixed the values
of the nodes in the controlled set randomly and determined the average
node value of the observed node in the minimal trap spaces. Depending on
the average value, the result was classified into one of the five categories
described previously, using thresholds that ensure that the original model
would have a perfect fitness score.

We used boolmore to refine the models over 100 iterations and score
them by comparing their results to the results of a subset (80%) of the
artificial experiments following the procedure described earlier.

Data availability
The datasets generated and analyzed during the current study are available
in the github repository https://github.com/kyuhyongpark/boolmore.

Code availability

The Python package boolmore and the training/validation datasets for
this study are available in the github repository https://github.com/
kyuhyongpark/boolmore.
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