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Bioprocessing utilises microbial monocultures and communities to convert renewable resources into
valuable products. While monocultures offer simplicity, communities provide metabolic diversity and
cooperative biosynthesis. To systematically evaluate these systems, we developed COmmunity and
Single Microbe Optimisation System (COSMOS), a dynamic computational framework that simulates
and compares monocultures and co-cultures to determine optimal microbial systems tailored to a
specific environment. COSMOS revealed key factors shaping biosynthetic performance, such as
environmental conditions, microbial interactions, and carbon sources. Notably, it predicted the
Shewanella oneidensis–Klebsiella pneumoniae co-culture as the most efficient producer of 1,3-
propanediol under anaerobic conditions, aligning closely with experimental data, including optimal
carbon source concentrations and inoculum ratios. Additional findings highlight the resilience of
microbial communities in nutrient-limited processes and emphasise the role of computational tools in
balancing productivity with operational simplicity. Overall, this study advances the rational design of
microbial systems, paving the way for sustainable bioprocesses and circular bio-economies.

Biomanufacturing supports sustainable development by converting
renewable resources, such as agricultural waste or wastewater, into valuable
products like biofuels, pharmaceuticals, and bioplastics1. Both microbial
monocultures and communities are used in these processes, each with
distinct strengths and challenges. Monocultures are easier to control,
manipulate, and engineer for specific product yields, making them ideal for
simple, well-characterised bioprocesses. However, their productivity can
reach a plateau, even after genetic optimisation2.

Microbial communities, on the other hand, leverage complementary
metabolic capabilities and interspecies cooperation3. This has sparked sig-
nificant interest in engineering co-cultures tailored to achieve specific bio-
process objectives4. Studies have highlighted the advantages of co-cultures
overmonocultures in enhancing biosynthetic efficiency.Amolecular toolkit
of auxotrophic and overexpression yeast strainswas developed, enabling the
construction of diverse two- and three-member communities with distinct
metabolic capabilities5. Co-cultures often exhibit superior biosynthetic
potential compared to their constituent monocultures. For instance, Clos-
tridium thermocellum and Clostridium thermosaccharolyticum co-cultures
achieved a 94.1% higher yield of hydrogen than their monocultures6, while
Clostridium thermocellum and Clostridium thermolacticum co-cultures
demonstrated up to a twofold increase in ethanol yield7.

Similarly, heterologous communities frequently outperform mono-
cultures due to enhanced metabolic cooperation and resource sharing. For

example, a co-culture of Escherichia coli and Saccharomyces cerevisiae
producedhigh amounts of taxanes, whereas neithermonoculture generated
detectable levels8. These advantages extend to complex substrate utilisation,
where certain organisms degrade substrates like lignin or cellulose into
simpler metabolites that can be further metabolised by other community
members, facilitating resource-sharing9,10. Communities are also less prone
to feedback inhibition because one species may utilise by-products of
another, leading to enhanced growth and stability11. Furthermore, the
‘division of labour’ across species helps distribute the metabolic burden,
improving production efficiency for complex products12. However, com-
munities are inherently harder to manage and require careful optimisation
to maintain stability and maximise productivity.

Given these trade-offs, the choice between monocultures and com-
munities is dependent on the nature of the bioprocess. The cooperative
behaviour of communities provides resilience and efficiency13, whereas
monocultures are well-studied and can be easier to manipulate. Designing
effective bioprocesses involves identifying the most suitable microbial sys-
tem for specific substrates or desired products. The decision is not always as
straightforward as selecting communities for lignocellulosic biomass con-
version andmonocultures for simpler fermentations14. Selecting the optimal
microbial system for other processes can be challenging, as it would require
testing numerous combinations of organisms and environmental condi-
tions—an approach that is both labour-intensive and impractical15.
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Therefore, computational algorithms become essential for managing this
complexity and streamlining the selection process16.

While some algorithms optimise specific co-cultures, few can sys-
tematically evaluatemultiplemicrobial systems to identify themost suitable
option for a given environment. For instance, an algorithm has been
developed to optimise substrate-pulsing to obtain stable communities17.
Other studies have explored strategies to inducemicrobial communities for
specialised product synthesis, with various computational approaches
developed to regulate these processes18. Additionally, recent efforts19 have
focused on modelling growth kinetics in single co-cultures, revealing how
interspecies interactions, such as cell fusion, can be harnessed to enhance
bioproduction.

Other algorithms like FLYCOP20 optimise parameters such as inocu-
lation ratio and timing for a single microbial consortium, making it useful
for fine-tuning a predefined community for a specific bioprocess. However,
it does not facilitate the comparative analysis of multiple communities to
identify the most effective configuration. Yet another study21 sought to
optimise co-cultures by identifying suitable bacterial partners for anaerobic
fungi. However, their approach lacks a systematic framework that can be
directly applied to different microbial systems and does not incorporate a
comparative analysis of monocultures. Evaluating co-cultures in isolation
may overlook cases where monocultures provide superior performance,
highlighting the need for a more comprehensive assessment.

To address these limitations, we introduce COmmunity and Single
Microbe Optimisation System (COSMOS), a computational framework
that systematically compares both communities and monocultures to
determine the optimal microbial system for a given bioproduct. While
COSMOS can simulate three-member and larger communities, the com-
binatorial explosion of possibilities makes it intractable to exhaustively
evaluate all the combinations. Therefore, this study primarily focuses on co-
cultures. Using COSMOS, we construct pairwise communities from a
predefined set of organisms and apply dynamic modelling to evaluate their
performance. COSMOS integrates dynamic Flux Balance Analysis
(FBA)22,23 and Flux Variability Analysis (FVA) to simulate the growth of
communities and their constituent monocultures24. Unlike some studies
that assess community performance relative to the average productivity of
its monocultures, COSMOS benchmarks each community against the
highest-performing monoculture6. This approach ensures that the optimal

microbial system is identified based on the highest yield/productivity rather
than simply determining whether the community outperforms the sum of
its parts. It also enables users tomake informed decisions based not only on
productivity or yield but also on additional factors, such as community
abundance distribution.

In summary, this work contributes to the development of sustainable
biomanufacturing by identifying when communities or monocultures
should be used andhowbioresources can be efficiently employed. Itmarks a
step forward in creating economically viable, eco-friendly processes, align-
ing with the global effort to promote sustainable industrial practices. This
framework aligns with the growing need for optimised bio-based processes
that reduce waste and reliance on fossil resources, promoting a circular
economy.

Results
Navigating trade-offs: choosing between monocultures and
communities
The medium composition is one of the most substantial factors that can
affect a bioprocess.We come across both nutrient-dense or ‘rich’ feedstock,
like animalmanure and sludge,whichhavemorenitrogen content and trace
minerals, and ‘less-dense’ feedstock, like wheat straw and corn stover25,
which may lack essential micronutrients. The biosynthetic capability of the
organisms can also be affected as a result of this medium composition26. So,
we need to either choose the target product based on the feedstock avail-
ability or source the best-suited feedstock for our product of interest. Using
COSMOS,we analyse the effect ofmediumcomposition on the biosynthetic
capability of a diverse set of organisms.

To examine the impact of medium composition, simulations were
conducted as outlined in Section 4.3. Pairwise co-cultures (9C2) were
assessed under four distinct environmental conditions: aerobic-rich, aero-
bic-minimal, anaerobic-rich, and anaerobic-minimal. We calculated the
productivity of each product for both communities and the constituent
monocultures in all four environments, as shown in Fig. 1.

When comparing the four environments, we found that overall pro-
ductivity is highest in the aerobic-rich environment (Fig. 1). However, we
found the effect of the environment on microbial systems to be more
nuanced and product-dependent. While monocultures, on average, per-
formedbetter in the aerobic-rich environment, communities often achieved

Fig. 1 | Productivity of communities and monocultures across varying envir-
onmental conditions. The productivity of both communities andmonocultures for
products across all four environments is represented. Five products, viz. adipic acid,

xylitol, catechol, butanol and butyrate, were excluded as they are not produced in any
of the organisms under study.
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the highest productivity for specific products. The list of microbial systems
with maximum productivity for the aerobic-rich environment is sum-
marised in Table 1. Our results highlight the importance of conducting an
analysis tailored to the specific product and environmental conditions to
identify the optimal microbial system.

To efficiently compare the productivity of communities and mono-
cultures, we calculated the productivity ratio for all products across the four
environments. It should be noted that themaximumproductivity of the two
monocultures was compared against the productivity of the co-culture. The
productivity ratios across all four environments are represented in Fig. 2.

In a co-culture with organisms A and B, where

MonoA þMonoB ¼ CommAB ð1Þ

the change in productivity is given as

ΔProductivity ¼ Productivity CommAB

� �
�max Productivity MonoA

� �
; Productivity MonoB

� �� �
ð2Þ

and the ratio of productivity of the co-culture to that of the monoculture is
given as

Productivity ratio ¼ ΔProductivity

abs max Productivity MonoA
� �

; Productivity MonoB
� �� �� �

ð3Þ

When comparing the productivity ratio of communities and mono-
cultures, we find that the anaerobic-rich environment predominantly
favours community-based production, while monocultures perform best in
the aerobic-minimal medium (p ¼ 2:38× 10�10; Supplementary Data 5).
One possible explanation is that the incomplete nature of anaerobic fer-
mentation can lead to lower productivity in monocultures. In contrast,
microbial communitiesmay exchangeprimarymetabolites, enhancingboth
growth and productivity, particularly in anaerobic conditions. To test this
hypothesis, we analysed the abundance ratios of five communities across all
four environmental conditions, as shown in Table 2. Under anaerobic
conditions, although the total biomass decreases, the growth rates of both
organismsbecomemorebalanced, leading to amore stable abundance ratio.
This equilibrium likely contributes to the improved performance of
microbial communities in anaerobic environments, often resulting in more
positive ormutualistic interactions, as discussed in Section 2.2.Additionally,
previous studies have shown that increased metabolite exchange and
cooperative interactions can lead to higher productivity in microbial
communities27.

To further investigate the role of metabolite exchange and cross-
feeding in this shift, we analysed the exchanged metabolites in the S. onei-
densis—K. pneumoniae co-culture across all four environments. As shown
in Table 3, cross-feeding was more pronounced in the anaerobic minimal
environment compared to the aerobic-richenvironment.While the aerobic-
minimal and anaerobic-minimal environments facilitated the exchange of
similarmetabolites, their quantitative effects differed—leading to a parasitic
interaction in the aerobic-minimal environment, which shifted to mutual-
ism in anaerobic conditions. Since metabolite concentrations fluctuate over
time, we have not included absolute concentration values. The observed
equalisation of growth rates and increased cross-feeding under anaerobic
conditions provide insights into why microbial communities may exhibit
improved performance in such environments.

While general trends suggest that co-cultures often have better pro-
ductivity in anaerobic environments, notable exceptions exist where certain
communities thrive in aerobic environments. For example, in the aerobic-
rich medium, the S. cerevisiae—Bacillus subtilis (0.066mmol/L/h) and S.
cerevisiae—Lactococcus lactis (0.06mmol/L/h) co-cultures exhibited the
highest sorbitol productivity, representing a 59% and 48% increase, T
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respectively, compared to the monocultures. B. subtilis and L. lactis did not
produce excess sorbitol asmonocultures, while S. cerevisiae alone achieved a
productivity of 0.04mmol/L/h. Therefore, in co-culture, althoughB. subtilis
and L. lactis do not produce sorbitol, they enhance S. cerevisiae’s sorbitol
production, likely through metabolic interactions and resource exchange.
Likewise, in the anaerobic-minimal medium, B. subtilis outperforms all the
other microbial communities in the production of L-lactate, with the pro-
ductivity ofB. subtilisbeing 0.29mmol/L/h. It is to be noted that the second-
best alternative is E. coli—Pseudomonas aeruginosa co-culture, with a
productivity of 0.12mmol/L/h of L-lactate, which is less than half of the
productivity shown by B. subtilis. These examples illustrate that while
general trends offer valuable insights, exceptions can be leveraged strategi-
cally to optimise bioprocesses. For instance, certain microbial communities
thrive in aerobic environments, whereas some monocultures, such as B.
subtilis, outperform communities in anaerobic minimal environments. If
thedifferences inproductivity areminimal,monoculturesmaybepreferable
due to easier process control, whereas co-cultures can be advantageous if
they offer superior biosynthetic capabilities.

Therefore, a systematic screening of both monocultures and com-
munities is essential. In the following sections, we explore the impact of
additional factors, such as interaction type, carbon sources and initial bio-
mass ratio, on productivity and community dynamics.

Synergy in action: positive interactions drive higher productivity
Aswearedealingwith pairwise communities, another interesting factor that
we can analyse is the effect of interaction.Tofind the interaction typeof a co-
culture,we compare the growthof the organismas amonoculture and in the
community under the same environmental conditions. The communities
were categorised into six interaction types—competition (−/−), amensal-
ism (−/0), parasitism (+/−), neutralism (0/0), commensalism (+/0), and
mutualism (+/+)—based on a threshold of 10% difference in growth rates
of the microbe in the co-culture and the monoculture28.

In a co-culture with organisms A and B,

Fig. 2 | Effect ofmedium composition and oxygen availability on the productivity
of communities vs monocultures. The average productivity ratio of communities
across all products and environments is represented. Positive values (blue) indicate
increased productivity in communities compared to monocultures, while negative
values (red) indicate a decline. In cases wheremonoculture productivity is extremely
low, leading to an exceptionally high productivity ratio, we classify it as ‘High’ and
denote it with a navy-blue colour. Hierarchical clustering was conducted using the
complete linkage method.
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interaction is positive (+) if

CommAjB > 1þ thresholdð Þ � MonoAjB
2

� �
ð4Þ

interaction is negative (−) if

Comm AjBð Þ < 1� thresholdð Þ � MonoAjB
2

� �
ð5Þ

and interaction shows no change (0) if

1� thresholdð Þ � MonoAjB
2

� �
<Comm

AjB
< 1þ thresholdð Þ � MonoAjB

2

� �

ð6Þ
The average Productivity ratio was calculated for each product across

the four environments, as shown in Fig. 3.Mutualistic interactions generally
lead to the highest productivity gains in communities, likely due to the
increased biomass of the participating organisms. Parasitic interactions
follow, with productivity varying depending on the product—some are
better produced in communities, while others aremore efficiently generated
in monocultures. This variation may arise because, in some cases, the
producer strain exhibits higher growth, whereas in others, it experiences
reduced growth. The effect of interaction type on the productivity ratio was
statistically significant (p ¼ 1:4 × 10�10; Supplementary Data 6). However,
no significant differences were observed among competition, commensal-
ism, and amensalism, suggesting that these interaction types have minimal
impact on productivity differences between communities and mono-
cultures. The influence of environmental conditions on interaction types
can be further understood by examining Table 2. As conditions shift from
aerobic to anaerobic, microbial interactions become increasingly coopera-
tive, transitioning from negative to more positive. This can be attributed to
the slower, less efficient nature of anaerobic fermentation, which equalisesT
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Fig. 3 | Effect of interaction type on the productivity of communities vs mono-
cultures across products. Positive values (blue) indicate an increase in the pro-
ductivity of a given product in the co-culture compared to the monocultures, while
negative values (red) reflect a decline in productivity. Neutralism was not observed.
Hierarchical clustering was conducted using the complete linkage method.
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growth rates and promotesmetabolite exchange between species, as evident
from Tables 2 and 3. The resulting resource-sharing dynamics foster
mutualistic relationships, highlighting the significant influence of oxygen
availability on community interactions.

Tailored metabolism: communities and monocultures show
distinct carbon preferences
Another key factorwe examined is the impact of different carbon sources on
the growth and biosynthetic capabilities of microbial systems. In this ana-
lysis, we replaced the glucose in the ‘rich’ and ‘minimal’ media with
10mmol/L of the carbon source under investigation. We tested seven dif-
ferent carbon sources and compared the productivity of communities and
monocultures across all four environments, as shown in Fig. 4.

Our findings show that while there are some variations, lactose and
sucrose consistently enhance productivity in communities, whereas xylose
and fructose favour monocultures. Interestingly, the aerobic-rich medium
deviates from the pattern observed in the other three environments. While
xylose and fructose promote higher productivity in communities in the
aerobic-rich environment, these carbon sources support higher productivity
in monocultures in other environments. Although the underlying cause
remains unclear, this provides an additional factor that could be manipu-
lated to optimise the bioprocess. This insight can guide the design or sup-
plementation of fermentation media such that the choice of carbon source
aligns with the microbial system and environment. The effect of carbon
source on the productivity ratiowas statistically significant (p ¼ 1:8× 10�4;
Supplementary Data 7).

To explore the variation amongst communities, we calculated the
productivity ratio for four different products across communities in the
aerobic-rich medium, as shown in Supplementary Fig. 1. Some commu-
nities, like S. oneidensis—K. pneumoniae, showed minimal sensitivity to
various carbon sources. However, others, such as S. cerevisiae—L. lactis,
displayed varying productivity across carbon sources. In some cases, like E.
coli—S. cerevisiae, the community does not grow under specific carbon

sources. Moreover, this behaviour can also be product-dependent. Thus,
product-specific analysis is crucial for identifying the optimal combination
of carbon source and microbial system.

Computational screening reveals idealmicrobial systemsacross
fermentation conditions
While communities generally perform better in challenging environments,
exceptions may occur. Therefore, it is essential to analyse the specific pro-
duct of interest before selecting the most suitable microbial system. Fur-
thermore, variations between communitiesmean that choosing the optimal
community for a given nutrient source is crucial. Since experimentally
comparing multiple communities is time-consuming and labour-intensive,
computational analysis becomes essential.

We compared the change in productivity between communities and
monocultures across all products, as shown in Fig. 5. Themeanproductivity
ratio for 25 products was calculated across the four environments for each
community. Positive values (blue) indicate higher productivity in com-
munities compared to their constituentmonocultures, while negative values
(red) indicate lower productivity. Clear clustering patterns emerge both by
product and community, highlightingpreferences inmicrobial systems.The
effect of community on the productivity ratio was found to be statistically
significant, with a (p ¼ 2:2 × 10�16; Supplementary Data 8).

Microbial communities such as P. aeruginosa–S. oneidensis and E.
coli–S. Oneidensis generally outperforms theirmonocultures, particularly in
theproductionofmetabolites likepyruvate, hydrogen, andglutathione.This
behaviour may be attributed to the proficiency of S. oneidensis in electron
transfer, which enhances the metabolic activity of co-culture partners,
thereby improving overall community performance29. In contrast, com-
munities like Synechocystis spp.–K. pneumoniae and P. putida–K. pneu-
moniae consistently exhibit lower productivity compared to their respective
monocultures. This could be due to inherent biological differences that
hinder cooperation, resulting in limited biosynthetic capabilities. In such
cases, monoculturesmay utilise available resourcesmore efficiently without

Fig. 4 | Effect of carbon source on the productivity of communities vs mono-
cultures. The effect of carbon sources on the Productivity ratio is compared across
all four environments. Positive values (blue) indicate an increase in the productivity

of a given product in the community compared to the monocultures, while negative
values (red) reflect a decline in productivity. Hierarchical clustering was conducted
using the complete linkage method.
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competition, leading to superior performance27. Furthermore, metabolite
production appears to be highly product- and organism-dependent. For
instance, acetate and pyruvate are more efficiently synthesised in co-culture
systems, whereas sorbitol and propionate yield higher levels in mono-
cultures. Additionally, productivity patterns vary across different environ-
mental conditions, underscoring the importance of evaluating microbial
systems in a context-specific manner.

To investigate this behaviour further, we identified the microbial sys-
tems with maximum productivity for producing four key products from
different classes under all four environmental conditions, as summarised in
Supplementary Table 5. The observations reveal that productivity is highest
in the aerobic-rich environment, as discussed in Sections 2.1 and 2.2.
Notably, the anaerobic-rich environment also performs competitively and,
in some cases, surpasses the aerobic minimal medium in productivity. The
findings in Supplementary Table 5 show that some of the best-performing
systems in aerobic environments are monocultures, while communities
tend to outcompete monocultures in anaerobic environments. It also
highlights variabilitywithin products—while fumarate is consistently better
produced by communities across all environments, spermidine is pre-
dominantly produced by monocultures in most conditions. This highlights
the necessity of selecting the optimal microbial consortium and environ-
mental setting tailored to the specific product of interest.

Moreover, when choosing a community, the selection criteria need not
be restricted to productivity but can also be extended to other factors like
abundance ratios.When two systems exhibit similar productivity, choosing
the one with amore balanced abundancemay be preferable, as it can lead to
a more stable community. Moreover, the final choice can also be guided by
biological insights, such as ease of handling or specific biological

characteristics desirable for the bioprocess of interest. The optimal systems
in the other environments are provided in Supplementary Data 1–4.

Additionally, we compiled the top-performing systems for all 25
products across four environments in Supplementary Table 6. As expected
from previous analyses, monocultures dominate in the aerobic-rich med-
ium. Meanwhile, communities excel in the anaerobic minimal medium,
reinforcing the idea that harsher conditions favour biosynthesis in the
communities. The detailed results for all 25 products are in Supplementary
Data 1–4, with key findings aligning with experimental studies summarised
in Table 4 alongside references.

Optimising biomass ratios enhances productivity in microbial
communities
The initial biomass ratio of organismswithin a community can significantly
influence growth, abundance, and overall community dynamics. By
adjusting the inoculum ratio, we can further enhance the biosynthetic
capabilities of the community. Tables 5 and 6 illustrate how variations in
inoculum ratios impact 1,3-propanediol (1,3-PDO) production in P. aer-
uginosa - K. pneumoniae and S. oneidensis - K. pneumoniae communities.
Product concentrations vary with inoculum ratios, highlighting distinct
responses between the two communities. While increasing K. pneumoniae
inoculum enhances product titre in both, the S. oneidensis - K. pneumoniae
co-culture shows an increase in total biomass, whereas P. aeruginosa - K.
pneumoniae displays a growth reduction. Moreover, higherK. pneumoniae
inoculum in S. oneidensis - K. pneumoniae leads to a more skewed abun-
dance ratio. These findings suggest that inoculum ratios can have varied
effects on community dynamics and biosynthetic output, emphasising the
need for careful ratio optimisation.

Fig. 5 | Comparison of Productivity of Communities and Monocultures. This
figure presents the mean productivity ratio of communities, averaged across four
environments, for all the products under study. Positive values (blue) indicate an

increase in the productivity of a given product in the co-culture compared to the
monocultures, while negative values (red) reflect a decline in productivity. Hier-
archical clustering was conducted using the complete linkage method.
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Validation
Though someof the resultswe obtain corroboratewith experimental studies
as listed inTable 4, these studies only talk about thebiosynthetic capabilityof
the community and not the monoculture. There are very few studies that
compare theproduction capabilities of themonoculture and the community
in the same environment. Interestingly, a previous experimental study29

attempted to enhance 1,3-propanediol (1,3-PDO) production in K. pneu-
moniae using glycerol as a carbon source under anaerobic conditions.
Despite strain engineering efforts, they identified an insufficient supply of
reducing power as a major bottleneck for 1,3-PDO synthesis. Their study
demonstrated that a K. pneumoniae–Shewanella oneidensis co-culture
outperformed the K. pneumoniaemonoculture, as S. oneidensis functioned
as an electron mediator, facilitating improved 1,3-PDO production.
Remarkably, S. oneidensis proved more effective than both physiological
(riboflavin) and non-physiological (neutral red and methyl viologen) elec-
tron mediators. Consistent with these findings, our analysis identifies this
co-culture as the highest 1,3-PDO producer among all co-cultures and
monocultures examined in this study. To demonstrate the reliability of
COSMOS, we simulated the growth of the co-culture and the monoculture
in the medium used in the experimental study and compared the results.
The first analysis is to identify the optimum glycerol concentration for the
monoculture. We found 50 g/L glycerol to be the optimum concentration
for 1,3-PDO production, which correlates with the experiment values, as
shown in Table 7. Although the algorithm captures production trends,
discrepancies in absolute values may arise due to limitations in kinetic
parameters, oversimplified Michaelis-Menten kinetics, and the absence of
regulatory mechanisms. Additionally, Dynamic FBA (dFBA) assumes
quasi-steady-state metabolism at each time step, ignoring transient meta-
bolite pools and dynamic regulation, which can contribute to deviations
from experimental data.

For the co-culture analysis, the experimental group used a fed-batch
reactor under anaerobic conditions where the initial glycerol concentration
was 50 g/L. When the glycerol concentration fell below 10 g/L, additional
glycerol was introduced to maintain a final concentration of 30 g/L. They
found that the co-culture produced 32.01 g/L of 1,3-PDO, which was sig-
nificantly higher when compared to the monoculture. They also optimised
the inoculum ratio and found that a 1:1 ratio of Klebsiella pneumoniae:
Shewanella oneidensis resulted in the highest product concentration, though
the exact values are not listed.We did a similar analysis usingCOSMOS and
found that the co-culture was, in fact, able to produce more product in the
fed-batch system than the monoculture. However, we found that both the
inoculum ratios of 1:1 and 2:1 performed equally well, as shown in Table 8.
Thismight be becausewehave used thewild-typemodels of both organisms
and lack the strain-specific information that might be required.

The study reported monoculture and co-culture yields of 0.4 g/g and
0.44 g/g, respectively, reflecting a 10% improvement. COSMOS predicted
yields of 1.50 g/g formonocultures and 1.33 g/g for co-cultures, indicating a
12.6% increase.Although the absolute values differ, the algorithmeffectively
captured the trend in performance, identifying optimal substrate con-
centrations and inoculum ratios. This observation demonstrates the
potential of dynamic modelling in bioprocess design, offering a powerful
tool for efficiently comparing multiple communities and monocultures to
identify the most productive configurations.

Discussion
Microbial communities often exhibit superior biosynthetic capability
compared tomonocultures7,30. However, their application in bioproduction
remains limited to cases where their productivity is already known orwhere
theirmetabolic diversity is essential, such as when one communitymember
canmetabolise a complex carbon source that the others cannot. Studies that
directly compare the biosynthetic potential ofmultiple communities remain
scarce21, leaving a gap in identifying the most effective microbial systems.

To address this, COSMOS provides a systematic approach to evalu-
ating microbial systems by assessing a wide range of co-cultures alongside
their corresponding monocultures. Unlike tools like FLYCOP20, whichT
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optimise the configuration of a single chosen co-culture, COSMOS sys-
tematically evaluates a diverse set of co-cultures alongside their constituent
monocultures to identify the optimal microbial system for a given product.
The assessment can be tailored to prioritise either productivity or yield,
depending on the specific requirements. It also offers granular insights into
the system’s performance across awider range of environmental conditions.
COSMOS is particularly valuable when working with low-quality feed-
stocks, such as agricultural residues and wastewater, which are gaining
importance due to global efforts to transition toward second-generation
feedstocks for improved food security and sustainability31. Given these
challenges, optimising the microbial system is just as crucial as optimising
the environment to develop efficient and sustainable bioprocesses.

While productivity or yield are often the primary factors in selecting a
microbial system, the choice between monocultures and communities
depends on additional factors. If a community offers substantially higher
productivity or yield, it is the better option for bioproduction. However,
when productivity or yield is comparable, monocultures are preferred for
their ease of control and simplicity. In cases where operational simplicity
takes precedence over maximum output, slightly less productive mono-
cultures canbe selected.COSMOSstreamlines this decision-makingprocess
by assessing the biosynthetic potential of multiple microbial systems under
diverse environments.

COSMOS employs parsimonious dFBA22,23 tomodelmicrobial growth
in synthetic consortia, allowing it to capture fluctuating growth rates.While
traditional steady-statemodelling is simpler to use, it assumes equal growth
rates and is better suited to natural communities32. Therefore, we use dFBA,
which accounts for fluctuating growth and provides promising results even
with the lack of organism-specific parameters33. This makes COSMOS
especially valuable for engineered or synthetic consortia, where kinetic data
is often unavailable, and the stability of the co-culture remains uncertain.

By integrating dFBA and FVA, COSMOS minimises redundancy in
metabolic predictions, providing more precise insights into productivity24.
To ensure an unbiased comparison, it evaluates communities and mono-
cultures under identical conditions, benchmarking co-culture productivity
against the highest-performingmonoculture.This approachprioritisesfinal
productivity or yield, making it a more effective tool for selecting optimal
bioproduction systems34.

To understand the factors that influence bioproduction in co-cultures
and monocultures, we tested COSMOS across four environments: aerobic-
rich, aerobic-minimal, anaerobic-rich, and anaerobic-minimal media.While
overall productivity was highest in the aerobic nutrient-rich conditions,
communities outperformed monocultures in anaerobic environments. This
trend can be attributed to several factors. Anaerobic environments, char-
acterised by slower and incomplete fermentation, result in more comparable

Table 5 | Effect of inoculum ratio on the productivity of 1,3-PDO in P. aeruginosa - K. pneumoniae co-culture

Biomass ratio Biomass A (g/L) Biomass B (g/L) Total biomass (g/L) Abundance Product concentration (mmol/L)

0.9,0.1 0.67 0.03 0.70 0.96,0.04 0.01

0.8,0.2 0.63 0.06 0.69 0.91,0.09 0.02

0.7,0.3 0.59 0.09 0.68 0.87,0.13 0.03

0.6,0.4 0.54 0.12 0.66 0.81,0.19 0.03

0.5,0.5 0.48 0.16 0.64 0.75,0.25 0.04

0.4,0.6 0.39 0.19 0.58 0.67,0.33 0.06

0.3,0.7 0.33 0.23 0.56 0.59,0.41 0.07

0.2,0.8 0.23 0.27 0.50 0.47,0.53 0.08

0.1,0.9 0.14 0.32 0.46 0.31,0.69 0.09

Table 6 | Effect of inoculum ratio on the productivity of 1,3-PDO in S. oneidensis - K. pneumoniae co-culture

Biomass ratio Biomass A (g/L) Biomass B (g/L) Total biomass (g/L) Abundance Product concentration (mmol/L)

0.1,0.9 0.47 0.12 0.59 0.79,0.21 0.04

0.2,0.8 0.40 0.23 0.62 0.64,0.36 0.07

0.3,0.7 0.35 0.33 0.68 0.51,0.49 0.09

0.4,0.6 0.29 0.41 0.7 0.41,0.59 0.11

0.5,0.5 0.23 0.48 0.71 0.32,0.68 0.14

0.6,0.4 0.19 0.57 0.76 0.24,0.76 0.14

0.7,0.3 0.13 0.63 0.76 0.18,0.82 0.18

0.2,0.8 0.09 0.67 0.76 0.11,0.88 0.22

0.9,0.1 0.04 0.75 0.8 0.05,0.95 0.23

Table 8 | Concentration of 1,3-propanediol with varying
inoculum ratio according to simulations

Initial biomass ratio 1,3 Propanediol (g/L) Abundance

2,1 2.42 0.04, 0.96

1,1 2.20 0.07, 0.93

1,2 0.31 0.1, 0.9

1,3 0.28 0.12, 0.88

Table 7 | Concentration of 1,3 propanediol in experiments and
simulations under varying glycerol concentration

Glycerol
concentration (g/L)

Concentration of 1,3
PDO inexperiments (g/L)

Concentration of 1,3
PDO in COSMOS (g/L)

40 11.3 1.76

50 12.68 1.83

70 12.21 1.58
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growth rates between species, fostering cooperative interactions, as shown in
Table 2.Additionally, the accumulationof intermediatemetabolites enhances
resource exchange, promoting metabolic cooperation and improved pro-
duction, as discussed in Table 3 and Section 2.1. Similar observations have
been reported in some studies27, while others have demonstrated that, in
aerobic-rich conditions, organisms prioritise resource utilisation and com-
pete for dominance35. These findings further support the notion that
microbial communities, in general, can achievehigherproduction efficiencies
in anaerobic environments compared to monocultures.

Interestingly, there were exceptions where communities achieved
maximum productivity in aerobic environments, while certain mono-
cultures outperformedcommunities inanaerobic conditions.Thishighlights
the importance of systematically evaluating both communities and mono-
cultures before selecting the optimal microbial system for a specific product.
COSMOS enables us to maximise productivity in the chosen fermentation
medium and provides insights into the role ofmutualistic interactions in co-
culture design. By leveraging these interactions, it aids in optimising both
productivity and stability for biomanufacturing applications.

Wealso examined the effect of carbon sourceson these systems.Certain
carbon sources, like lactose and sucrose, enable better productivity in the
community, while glucose and fructose boost monoculture performance in
most environments. Several factors may influence this phenomenon. Most
microorganisms are naturally adapted to utilising simple carbon sources like
glucose and fructose, which are readily absorbed, leading to resource com-
petition and reduced cooperation in co-cultures. However, in the aerobic-
rich environment, this phenomenon is reversed, likely because the abun-
dance of resources enables both organisms to access sufficient glucose,
supporting efficient growth and production within the community36.

In contrast, themetabolismof alternative carbon sources often involves
distinct and less efficient pathways, significantly slowingdown the growthof
both organisms, resulting inmore cooperation. Additionally, certain sugars
may be converted into organic acids, which can be exchanged between
community members, fostering metabolic cooperation37. For instance, P.
aeruginosa cannot directly metabolise maltose and instead depends on its
co-culture partner to break down maltose into glucose before utilisation38.
Although the patterns of carbon source utilisation are not entirely clear,
these findings highlight carbon source selection as a crucial factor in opti-
mising and controlling bioprocesses. This analysis provides a framework for
selecting or enriching fermentation media with specific carbon sources to
enhance microbial performance. Additionally, the algorithm can be readily
extended to assess the impact of multiple carbon sources. Furthermore,
COSMOS facilitates the optimisation of initial inoculum ratios, offering
another lever to enhance productivity.

To validate COSMOS, we applied it to the Klebsiella pneumoniae—
Shewanella oneidensis co-culture and its corresponding monocultures,
effectively capturing the impact of carbon source concentration and inocu-
lum ratio. Consistent with the findings of previous studies29, our analysis
confirms that the co-culture outperforms monocultures in 1,3-PDO pro-
duction. This enhancement is attributed to the superior electron-mediating
capability of S. oneidensis, which alleviates the redox imbalance in K. pneu-
moniae. Since 1,3-PDO biosynthesis requires high reducing power, K.
pneumoniae accumulates excess H+ ions, which S. oneidensis subsequently
utilises, as shown in Table 3. This demonstrates that COSMOS accurately
captures themetabolic interactions driving improved production.Moreover,
the observed trends in yield and productivity across different conditions align
well with experimental data, reinforcing the reliability of the algorithm.
Additionally, several other microbial communities identified in our study
have been experimentally validated as stable consortia, with some already
demonstrating promising biosynthetic capabilities, as listed in Table 3.

Although the algorithm effectively captures production trends (Tables
6 and 7), discrepancies in absolute values arise due to several factors. DFBA
relies on predefined kinetic parameters that may not fully represent in vivo
enzymekinetics, and theuseofMichaelis-Mentenkineticsmayoversimplify
nutrient uptake dynamics. Additionally, dFBA assumes quasi-steady-state
metabolism at each time step, neglecting transientmetabolite accumulation

and regulatorymechanisms, which can lead to deviations in the predictions.
Moreover, ourmodel employs wild-type genome-scale reconstructions that
may lack strain-specific pathways and alternative metabolic routes. These
limitations highlight the challenges of predicting absolute production values
while reinforcing dFBA’s utility for capturing overall metabolic trends.

While COSMOS provides valuable results using standard kinetic
parameters and wild-type GSMMs, its accuracy can be significantly
improved by using experimentally-determined kinetic parameters and
strain-specific GSMMs39,40. It is important to acknowledge that it assumes
uniformVmax andKm values for allmetabolites,whichmayhave reduced the
sensitivity of growth predictions to these parameters. Incorporating experi-
mentally determined values for at least a subset of metabolites will enhance
the accuracy of the algorithm. However, the availability of high-quality,
manually curated models for diverse organisms remains a limitation41.
Improving the accessibility and accuracy ofmetabolicmodelswill strengthen
computational predictions. Additionally, integratingmulti-omic data—such
as transcriptomic and proteomic information—into GSMMs could further
refine the algorithm’s performance, paving the way for more precise bio-
process optimisation42. Although more complex, kinetic modelling that
accounts for enzyme-level regulation and experimentally derived parameters
could further improve accuracy, making it particularly useful for fine-tuning
selected microbial communities. Moreover, to investigate the long-term
adaptationandevolutionof synthetic consortia, community evolution canbe
modelled using approaches similar to COMETS43 or EvolveX44.

Although our study primarily focuses on two-member communities,
COSMOScanbe readily extended to larger consortia.The additionof a third
member could significantly alter community dynamics and potentially
enhance productivity. However, the combinatorial explosion in the number
of three-member communities (9C3) makes exhaustive analysis computa-
tionally challenging. We anticipate that future advancements in dynamic
modelling and computational architecture will enable more efficient design
and evaluation of higher-order communities. However, alternative
approaches45 could be explored to predict the behaviour of complex com-
munities based on simpler ones, further streamlining community design.

Notably, the insights from this study have direct relevance to fields like
biofuel production,wastewater treatment, andpharmaceutical biosynthesis46.
Moreover, by optimising microbial systems for nutrient-limited and waste-
derived feedstocks, our approach aligns with the UN Sustainable Develop-
ment Goals (SDGs), particularly SDG 9 (Industry, Innovation, and Infra-
structure) and SDG 12 (Responsible Consumption and Production)46. In
summary,COSMOSprovides a robust computational framework to evaluate
and compare the productivity of monocultures and microbial communities,
addressing the challenges of experimental testing. It offers insights into how
environmental factors, carbon sources, and inoculum ratios affect perfor-
mance, helping researchers make well-informed decisions about which
microbial system to use. Whether the goal is to work with nutrient-dense or
nutrient-limited media, our approach ensures the selection of the most
effective system, enhancing productivity, process efficiency, and community
stability.

As the bioeconomy shifts toward sustainable resource utilisation,
leveraging agricultural residues and wastewater for microbial bioprocessing
is becoming increasingly critical. While nutrient-rich media remain stan-
dard for high-value fermentation, optimising processes in nutrient-poor
conditions is essential for achieving carbon-neutral goals. Tools like COS-
MOSplay apivotal role in this transitionbybalancingproductivitywith ease
of control. Ultimately, this approach supports the rational design of
microbial systems, driving advancements in synthetic biology, sustainable
biomanufacturing, and the transition to circular bio-economies.

Methods
Flux Balance Analysis (FBA)
Constraint-based modelling provides a powerful framework for analysing
metabolic networks by leveraging physicochemical and biological constraints
to predict cellular behaviour. The metabolic network of the organism is
represented as a stoichiometricmatrixA of sizem× nwherem is the number
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ofmetabolites andn is thenumber of reactions. The entries in each columnof
A represent the stoichiometric coefficients of the metabolites involved in a
given reaction, defining the mass balance constraints of the metabolic
network.

A key approach in constraint-based modelling is FBA, which for-
mulates a linear programming (LP) problem to determine the optimal flux
distribution that maximises a predefined cellular objective. The linear
programming (LP) problem is denoted by

maxvc
Tv ð7Þ

subject to

A:v ¼ 0 ð8Þ

while

vl ≤ v ≤ vu ð9Þ

where c is a vector of weights denoting the contribution of each reaction to
the objective function, vϵRn is the vector of metabolic fluxes, vl and vu are
the lower and upper bounds, respectively.

The steady-state assumption (A:v ¼ 0) ensures that the intracellular
metabolite concentrations remain constant, enforcing mass conservation
across reactions. Additionally, thermodynamic and enzymatic constraints,
often implemented as flux bounds (vl ; vu), restrict infeasible reaction
directionsandregulateuptakeandsecretion ratesbasedonexperimentaldata.

Dynamic FBA
dFBA is performed using the static optimisation approach, where the entire
batch time is divided into intervals, and the LP is solved at each time interval
as a standard FBA problem. While steady-state modelling is well-suited for
natural consortia that inherently growtogether,dFBAismoreappropriate for
artificial consortia. Traditional FBA assumes that intracellular fluxes remain
at a steady state at each time point, but in dynamic systems, both intracellular
and extracellular variables vary over time. Therefore, dFBA extends FBA by
incorporating temporal changes, enabling a more accurate representation of
community dynamics. The growth rate (μ) and intracellular fluxes (v),
includingproduct secretion rates (vp) at any given timepoint, are determined
by solving a standard FBA problem at the biomass concentration X. Instead
of using fixed substrate uptake rates as in the case of classic FBA, we utilise
extracellular concentrations of substrates (S) and products (P) to calculate
dynamic substrate uptake rates (vs) based on specific kinetic parameters, as
shown in Fig. 6. These rates reflect the maximum uptake capabilities at each
time point and are applied as constraints in the calculations.

Once the biomass values are obtained through the dFBA formulation
(as shown in Fig. 6), the relative abundance of each species is calculated
using the formula:

Abundancei ¼ Xi=
X
i

Xi ð10Þ

This approach is similar to the methodology used in SteadyCom32,
where species abundances aredeterminedbasedonbiomass concentrations.

Calculation of substrate uptake rate. The substrate uptake limit is
limited by two factors—the amount of nutrient available in the medium
for each species i and the transport kinetics for the substrate. We have
used a similar approach as previous studies47–49 to calculate the substrate
uptake rate. The nutrient concentration in the medium is denoted by
SjðtÞ, where the maximum amount of nutrient j that species i can import

per gram biomass per hour is Sj;conc

Sj;conc ¼
Sj tð Þ

Xi tð Þ � Δt
ð11Þ

The second limitation is transport, where the cell’s transport
mechanism may not be able to import all the available nutrients. Nutrient
transport often followsMichaelis–Menten kinetics50,51, andwe therefore use
the kinetic parameters Vmax and Km to calculate the transport limit Sj;trans

Sj;trans ¼
Vmax � Sj tð Þ
Km þ Sj tð Þ

ð12Þ

The substrate uptake rate vs is the minimum of these two limits and is
given by

vs ¼ min
Sj tð Þ

Xi tð Þ � Δt
� � ;Vmax � Sj tð Þ

Km þ Sj tð Þ

" #
ð13Þ

This substrate uptake rate is used as an additional constraint for the
parsimonious FBA to compute the growth rate μi of each species i and the
medium concentration for each substrate is updated.

Flux Variability Analysis (FVA). To evaluate the production of each
product under study, we performed an FVA at each time step. The
maximum flux through the exchange reaction for k products vpk is
evaluated as follows

maxvvpk ð14Þ
subject to

A:v ¼ 0 ð15Þ
while

vl ≤ v ≤ vu ð16Þ
The product concentration Pk;i for product k in species i is given by

Pk;i ¼ vpk � Xi tð Þ � Δt ð17Þ
FBA provides a unique solution for the objective function; however,

fluxes through other reactions can havemultiple feasible solutions. To avoid
selecting arbitrary redundant solutions, FVA is performed at each time
point to determine the range of possible flux values. Comparing the upper

Fig. 6 | Dynamic flux balance analysis model for a microbial community. The
substrate flux vsj for metabolite j is determined using substrate concentration Sj
kinetic parameters Vmax, and Km at each timestep. The substrate fluxes, together
with the lower and upper bounds, vl and vu are used to solve the FBA problem. The
FBA problem comprises the stoichiometric matrix A and the vector of weights c,
which represents the contribution of each reaction to the objective function, typically
the maximisation of the growth rate, μ: This optimisation is performed iteratively at
each timestep dt for each species i using the current concentrations of biomass Xi ,
substrate flux vsj , and product flux vpk for product k.
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bounds of these flux ranges allows for a more accurate assessment of
whether a true increase in performance is observed when comparing dif-
ferent systems.

Comparative analysis
High-quality GSMMs of more than 30 organisms were obtained from the
BiGGmodels database52 and the BioModels database53. These models were
filtered based on criteria such as pathogenicity, prior evidence of biopro-
duction, model quality, and annotation compatibility54. We chose ten
organisms for our final analysis, and though some of these are pathogenic
(Supplementary Table 1a), bioproduction has been successfully demon-
strated in all of them55–60. Supplementary Table 1b provides a detailed list of
organisms that were considered but excluded from the study due to factors
such as poormodel quality andother limitations. Thesemodelswereused to
form pairwise communities with a universal compartment shared by the
organisms, representing the external medium. The biomass synthesis
reactions are defined as the objective function of each organism, allowing
them to optimise their growth. Organisms can freely utilise any available
metabolites in the extracellular medium, either supplied through initial
medium constraints or secreted by the co-existing organisms. The uptake
kinetic parameters Vmax and Km were assumed to be constant

(Vmax = 20mmol/gDW/h and Km = 0.05mmol) for all metabolites, as the
parameters for all the organisms were not readily available.

Many previous studies47,61 have assumed a similar Vmax of 20mmol/
gDW/h for all nutrients, based on the reported distribution of values for
nutrient transport. This is comparable to the Vmax of 26mmol/gDW/h
reported for glucose transport in E. coli62. Similarly, we assume
Km = 0.05mmol for all nutrient transport, which falls within the broad
range of values documented in the BRENDA enzyme database47,63,64.
Another study65 has demonstrated that variations in Vmax have little to no
impact onmicrobial growth. To further assess the influence ofVmax andKm
on microbial growth, we performed a sensitivity analysis using Latin
Hypercube Sampling (LHS) to generate 10 parameter sets within the ranges
Vmax = 1–50mmol/gDW/h and Km = 0.01–1mmol. Multiple regression
analysis revealed thatVmax had a coefficient of 0, whileKm had a coefficient
of 0.17, with an R2 value of 0.02, indicating minimal influence of these
parameters on community growth. The limited effect observed may be
attributed to the influence of additional factors governingmicrobial growth,
such as substrate availability, oxygen concentration, and co-factor limita-
tions, which can serve as rate-limiting steps or physiological constraints.
This observation aligns with previous studies that have reported similar
findings65.

Fig. 7 | Overview of the COSMOS workflow. The workflow begins with Pre-
processing, where the organisms and models are selected, model quality is verified,
and parameters are defined. These inputs are then passed to the Algorithm, where
dynamic Flux Balance Analysis (dFBA) and Flux Variability Analysis (FVA) are

used to simulate microbial growth andmetabolite exchange. Finally, in Analysis and
Validation, the results are examined to identify optimal microbial systems, which
can be experimentally validated when necessary. (Icons: Flaticon.com).
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The pairwise community and the monoculture growth rates were
simulated in the same external medium, and the product concentrations in
both cases were compared to find the optimal system under each scenario
and target product, as shown inFig. 7. Toobtain a robust, numerically stable
solution for each system, the final biomass, substrate, and product con-
centrations were averaged over the last five feasible solutions/time points. It
is important to note that no collective community biomass objective is being
optimised. Instead, each organism independently maximises its own
growth, leading to competition within the community. If one organism
outgrows the other entirely, the community is considered non-viable. To
ensure viability, a community must meet two criteria: a minimum abun-
dance threshold of 0.1 and at least a 10% increase in biomass, consistentwith
standard thresholds in the literature66. These criteria ensured the inclusion
of communities where both organisms exhibited substantial growth.

To investigate the impact of medium composition, we designed two
types ofmedia: a ‘minimal medium’ and a ‘richmedium.’The ‘richmedium’
containsover 60metabolites commonly found ingrowthmedia67. In contrast,
theminimalmedium consists of around 40 essentialmetabolites required for
the growth of all the individual organisms under study. A complete list of
organisms andmedia components is provided in Supplementary Tables 1–3.

The initial concentration of each medium component was set to
10mmol/L to ensure consistency and align with values used in previous
studies68. To assess the impact of oxygen availability, we simulated com-
munity growth under both aerobic (10mmol/L oxygen) and anaerobic
conditions. Obligate anaerobes were excluded from aerobic simulations,
and obligate aerobes were excluded from anaerobic simulations (Supple-
mentary Table 1). This resulted in nine aerobic and nine anaerobic
organisms, forming 9C2 pairwise communities, each analysed across four
distinct environments: aerobic-rich, aerobic-minimal, anaerobic-rich, and
anaerobic-minimal. An initial biomass of 0.01 g/L was chosen for both the
organismsof the co-culture to ensure sufficient growth.All simulationswere
run for a bacterial growth period of 12 h, by which the carbon source was
fully consumed, and the organisms reached the stationary phase.

All simulations were performed using MATLAB R2018a, COBRA
Toolbox v3.0, and IBM CPLEX solver v12.8. The computation time for a
single co-culture and its correspondingmonocultures, evaluated for a single
product, averages 10min and scales proportionally. For the analysis of 9C2

co-cultures (Supplementary Table 1) across 25 products (Supplementary
Table 4) in this study, the total computation time is 6.47 h.

Statistical analysis
Thedistribution of the datawas assessed using the Shapiro–Wilk test, which
indicated a non-normal distribution. Consequently, we applied non-
parametric statistical methods for hypothesis testing. To model relation-
ships between variables, we implemented Generalised Additive Model
(GAM) regression in R (mgcv package). GAMs were selected over simpler
models, such as linear regression, due to their ability to flexibly capture
nonlinear relationships without requiring a predefined functional form.
This was particularly important in our study, as preliminary analyses
showed that linear models failed to adequately describe the observed pat-
terns, necessitating a more adaptive approach.

Given the multiple factors influencing the system (e.g., environment,
interaction type, carbonsource, etc.),wefirst usedGAMstomodel their effects
and extract residuals, ensuring that statistical comparisons focused solely on
the underlying relationships of interest. For group-wise comparisons, we used
the Kruskal–Wallis test, a non-parametric alternative to ANOVA. If a sta-
tistically significantdifferencewasdetected (p < 0:05),weconductedpost-hoc
pairwise comparisons using the Dunn test with Benjamini–Hochberg cor-
rection to adjust for multiple comparisons. All statistical analyses were per-
formed in R69 (version 4.4.2; http://www.r-project.org) using the mgcv70

(version 1.9–1) and stats69 (version 4.4.2) packages.

Data availability
All models and analysis scripts used in this study are openly available at
https://github.com/RamanLab/COSMOS.
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