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Gold compounds are a promising class of experimental anticancer metallodrugs. Unlike platinum-
based drugs, their antiproliferative effects are thought to result mainly from modulation of cancer cell
metabolism rather than direct interaction with DNA. Previous NMR studies have shown that four
cytotoxic gold compounds - auranofin, aurothiomalate and two gold N-heterocyclic carbenes - induce
distinct metabolic changes in A2780 ovarian cancer cells, suggesting the occurrence of different
mechanisms of action. To better understand these effects, we constructed a genome-scale metabolic
model (GEM) of A2780 cells to analyze the NMR-detected metabolomic changes. The model
successfully predicts the diverse metabolic responses induced by each gold compound and identifies
common metabolic changes. These results confirm the potential of GEMs as a powerful tool for
interpreting and predicting cellular responses to gold-based drugs, providing insights into their
mechanisms of action and potential therapeutic applications.

Epithelial ovarian cancer (EOC) is the most common type of gynecological
cancer in the Western world, with around 90 out of 100 ovarian tumors
being epithelial. EOC means that the cancer started in the surface layer that
covers the ovary'. EOC is the eighth most common cause of cancer-related
death in women, which can be explained by the late detection of the disease”.
Typically, tumors metabolize glucose by oxygen-independent aerobic gly-
colysis rather than the more efficient but oxygen-dependent process of
oxidative phosphorylation, known as the Warburg effect’. This energetically
disadvantageous process can be explained by the fact that the biosynthetic
intermediates required for tumor proliferation are produced from glucose
via pathways diverging from the central glycolytic cascade*. EOC exhibits a
preference for using both aerobic glycolysis and mitochondrial oxidative
phosphorylation to meet the energy demands of cancer cells and facilitate
cell proliferation, invasion, and metastasis. The specific dominant pathway
used by EOCs may vary depending on factors such as histological cell type,
tumor aggressiveness, and tumor microenvironment’. Targeting and con-
trasting the preferred primary metabolism of EOC cells is a promising
approach to combat chemoresistance. However, further research is needed
to assess the clinical efficacy of these strategies in the treatment of EOC
patients’.

The standard of care for EOC is primary debulking surgery followed by
chemotherapy’. The most commonly used chemotherapy for EOC is
platinum-based chemotherapy. Although promising, this therapy often

leaves patients with micro-metastases, which can eventually lead to disease
recurrence, including the acquisition of platinum resistance. As platinum-
based chemotherapeutics are not always effective, trials are needed to
identify new therapies. New metal-based drugs have shown promising anti-
cancer activity, and those based on gold appear to have a great potential, as
gold tends to be less toxic to the human body than other metals such as
platinum itself*"’. Gold-based drugs deserve special attention because of
the high electronegativity, electron affinity, and redox potential of the
gold(I) center compared to the other metals'. Gold compounds may con-
tribute to cancer treatment through a variety of molecular mechanisms,
including direct mitochondrial damage’, alteration of DNA function"’, and
inhibition of thiol-containing enzymes™.

In the framework of a research program supported by the “Fondazione
AIRC per la Ricerca sul Cancro”, IG 26169 - 2021 we have comparatively
analyzed the “in vitro” anticancer activity of four different gold compounds
and investigated their possible mode of action. The four gold(I) compounds
considered here are auranofin (AF), aurothiomalate (AuTM), a gold
N-heterocyclic monocarbene (AuNHC), and a gold N-heterocyclic dicar-
bene (Au(NHC),) complex. Notably AF and AuTM have been approved by
FDA for the treatment of rheumatoid arthritis and are used here as
repurposed drugs for cancer treatment'’. AuNHC and Au(NHC), are
experimental anticancer drugs developed in our laboratory. The chemical
structures of the four gold compounds are shown in Fig. 1. Based on
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Fig. 1 | The chemical structure of the four gold compounds. A AF; B AuTM;
C AuNHC; D Au(NHC),.

previous studies, these gold compounds are known to have very relevant and
promising antiproliferative properties'™'*.

While studying their biological and cellular effects, we realized that
these gold compounds can induce important changes in the metabolism of
cancer cells, which may be the basis of their remarkable anti-proliferative
effect. Mechanistic studies of these compounds are typically based on omics
approaches'* . Complete sets of comparative NMR metabolomics data
have been collected for these four gold compounds, as described in more
detail below. As the patterns of observed changes in the cellular metabolome
are highly variable, we have attempted to interpret this complex situation in
terms of the likely molecular mechanisms and key biological processes
affected by each compound, and to correlate the chemical structure of these
gold compounds with their respective pharmacological profiles.

Genome-scale metabolic models (GEMs) allow the analysis, the
simulation and the prediction of the cellular responses activated under
different conditions. This helps to understand the cellular functions,
metabolic pathways, and impact of genetic and environmental factors on the
overall metabolic rates of these processes™. Constraining GEMs with omics
data allows the creation of specific tissue models and can improve their
predictive ability. Creating a context-specific human model from Recon3D,
for example, has suggested new drug targets with greater accuracy and has
led to the development of novel targeted therapies for any disease™ .

Here, we reconstructed a tissue-specific model of EOC by integrating
transcriptomic data from the human ovarian cancer cell line A2780 into the
most widely used human GEM model, Recon3D. We further constrained
the model with NMR metabolomics data measured in the 4 different gold-
based drug treatments and associated controls. For each treatment, we were
able to simulate fluxes in the metabolic network using Flux Balance Analysis
(FBA) and Flux Sampling (FS) to identify drug-targeted pathways, common
patterns, and drug-specific patterns.

Results

Comparative analysis of NMR metabolomics data of gold drugs
in A2780 cancer cells

NMR metabolomics is a powerful tool for monitoring changes in the cellular
metabolome induced by drug treatment™. The method has the potential to
identify and quantify the main endo- and eso-metabolies of cancer cells in a
very reproducible manner. Analysis of the observed changes can provide a
detailed insight into the specific actions of a given drug, its effects on the
different compartments of cellular metabolism, its possible mode of action
and the cellular response to damage. Recently, we used this method to
analyze the changes in the metabolome of A2780 cancer cells induced by the
four cytotoxic gold compounds mentioned above, using A2780 cancer cells
as a reference model’'. The results were first published in three separate

papers'®”*. The first paper analyzed the effects of auranofin; the second
paper compared the metabolic changes induced by the monocarbene and
dicarbene gold complexes. The third paper compared the metabolic changes
induced by aurothiomalate (and its ferritin adduct under equitoxic condi-
tions). The results of these studies are summarized in Figs. 2, 3. Figure 2
shows the 'H NMR spectra of cell lysates (A-B) and growth media (C-D) for
A2780 cells with AuNHC, Au(NHC),, AuTM and AF for 24 h. Figure 3
reports synoptically observed quantitative changes. Endo- and eso-
metabolites detected by NMR are shown together with the significant
changes in their concentration observed upon treatment with the four
different cytotoxic gold drugs. The changes are measured after 24 h of
treatment using a concentration of the Au(I) drugs equal to their respective
IC5 values at 72 h (in such a way to work under equitoxic conditions); based
on previous time course studies, 24 h represents the shortest time where we
could observe significant effects for all compounds'®”*.

A few general conclusions can be drawn from inspection of these data:

1. Overall, the four gold compounds have an important effect on the
metabolism of A2780 cancer cells, supporting the view that these changes in
metabolism may play a critical role in the respective mechanisms of cyto-
toxicity. More in detail, we found that AF induced significant changes to 22
metabolites (11 extracellular and 11 intracellular), AuNHC to 22 (14
extracellular and 8 intracellular), Au(NHC), to 35 (22 extracellular and 13
intracellular) and AuTM to 13 (9 extracellular and 4 intracellular).

2. While some common features of the four gold compounds could be
identified (such as an increased secretion of lactic acid, although not sig-
nificant for AuTM, see Fig. 3B, and a greatly reduced secretion of pyruvate),
the metabolic changes induced by the four gold compounds appear to be
quite different from one another, suggesting that the four gold compounds
have substantially different modes of action. However, there are some
apparent similarities in the profiles of AuNHC and Au(NHC), that deserve
attention.

3. The specificity of the metabolic responses induced by each gold
compound can be summarized as follows:

i) Auranofin induces a large increase in glutathione and only a small
increase in lactate.

ii) The two gold carbenes cause an increase in glycolysis and induce the
production of a very large amount of lactate, with no significant increase in
GSH (it even decreases upon Au(NHC), treatment).

iii) Aurothiomalate produces relevant changes in the TCA metabolites,
but no increase in lactate; an increase in GSH (significant after 48 h, data not
shown) is observed, although less than in the case of AF.

While this survey of previously collected data revealed interesting
correlations between these gold drugs and their effects on cellular meta-
bolism, it also showed only the end point(s) of such effect(s). In fact, the
change in concentration of a given intracellular metabolite may be due to the
action of several (possibly conflicting and/or interacting) pathways, the
contribution of which cannot be deduced from the concentration of the end-
product alone. Therefore, to characterize the effect of each tested compound
on the overall cellular metabolism and to identify the pathways most likely
to be affected by the action of the different drugs, we used genome-scale
modeling of ovarian cancer cells, as described in the next sections.

Context-specific genome-scale reconstruction

To investigate the impact of the four different gold-based compounds on the
potential system-level functional metabolic shifts in the A2780 ovarian
cancer cell line, we reconstructed context-specific genome-scale metabolic
models. The procedure we used is detailed in Materials and Methods and
schematically shown in Fig. 4A. Briefly, the construction of this model
started with the latest global human metabolic reconstruction called Recon
3D. We used the gene expression data of the A2780 cell line from the Cancer
Cell Line Encyclopedia™ and the GIMME algorithm™ to constrain it.

This involved matching the gene identifiers in the RNA-seq dataset to
those in the RECON3D reconstruction. All genes were correctly mapped,
except for 30 for which we could not automatically find a match. After
manually curating genes of this subset, we were left with 3 unidentified genes
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Fig. 2 | Representative "H NMR spectra of A2780 control cells and A2780 cells treated with AuNHC, Au(NHC),, AuTM and AF for 24 h. Cell Lysates (A, B) and growth

media (C, D). #: signals of the protease and phosphatase inhibitor cocktail.

in the NCBI Entrez gene list and decided to set their expression level in the
model to the maximum observed TPM value (see below), as done in
Weglarz-Tomczak et al.”'. This guarantees that they will not be limiting in
any of our downstream analyses. Next, it was necessary to define an
expression threshold to consider a gene (i.e. an enzyme) active in the
context-specific metabolic reconstruction, given the A2780 expression
values. As there is no generally accepted threshold in this sense, we used an
“elbow strategy” to define the most reasonable gene expression threshold.
Specifically, we used the “elbow” cut-off point (as is usually done in heuristic
mathematical optimizations) to select the expression values for which
adding additional genes to the model didn’t significantly affect the outcome
of the main model features (i.e. number of metabolites, reactions and
cancer-associated reactions).

The results of this analysis are shown in Fig. 4B. We found that a gene
expression threshold of 0.5 TPM shrank the original (i.e. TMP threshold
equal to 0) unconstrained metabolic model (as expected), but retained most
model features and, perhaps more importantly, these features were not
affected by further changes in the expression threshold. After some manual
curation, such as adding back 23 transport reactions for metabolites known
to be consumed by cells during in vitro growth, the final model contained
3769 metabolites and 4930 reactions. While the latter represented less than
50% of the reactions present in the original human reconstruction
(Recon3D), the initial unconstrained optimal solution was very similar
between the two models, suggesting that no important pathways were
removed during the creation of the ovarian cancer-specific metabolic model.
Furthermore, in the A2780 GEM, we retained 79 of the 116 total cancer-
related responses found in the literature (Table S1)**°. We then sought to
further contextualize the A2780 GEM and investigate its metabolic response
to gold-based compounds.

To do this, we constrained the nutrient uptake responses according to
the experimental data on the relative concentration of metabolites measured
in the medium at time 0 and 24 h. In total, we obtained 46 context-specific
GEMs each, which we used for downstream simulations. These were 16
models reproducing the exposure to auranofin (8 control and 8 treated
samples), 12 to aurothiomalate (6 control and 6 treated samples), 12 to gold
monocarbene (6 control and 6 treated samples) and 6 to gold dicarbene (6
treated samples) at t =24 h and the respective control at t =0 h. Note that
the 6 gold monocarbene controls are shared with gold dicarbene (3) and
with aurothiomalate control pools (3). We would like to point out that to
constrain the models, we only used metabolomic data from the growth
media (Fig. 3B). In this way, we were able to use intracellular metabolomic
data (cell lysate, Fig. 3A) as a benchmark and validate whether the con-
textualized model could be used to correctly represent the intracellular
metabolic state of the cells. Furthermore, the contextualization of metabolic
reconstructions with intracellular metabolite concentrations could lead to
ambiguous results. Indeed, for a single measured compound, there are
usually multiple reactions (i.e. enzymes) responsible for its production/
consumption and identifying which of these is responsible for the observed
change could be misleading in the absence of additional information.

Overall metabolic reprogramming induced by gold compounds

First, Flux Balance Analysis (FBA) was employed to optimize the biomass
objective function. Subsequently, flux sampling (FS) was utilized to analyze
the probability distribution of reaction fluxes within the metabolic network,
to investigate metabolic reprogramming because of gold-based drug
exposure from a general perspective (Fig. SIA-H). When simulating aur-
anofin exposure, 107 reactions showed a significant change in their activity
when comparing the A2780 model with the auranofin-specific A2780
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metabolite in the samples; thus, for the molecules that are released, lower/higher
concentration levels upon treatment mean a lower/higher release; Indeed, for the
molecules that are taken up from the starting media, lower/higher levels upon
treatment mean a greater/lower consumption of nutrients, i.e. increased/decreased
uptake. The brightness of the colors corresponds to the magnitude of FC. Asterisks
indicate statistical significance (p value < 0.05).

model (Fig. SIA-H). Of these, 62 increased or decreased their flux in the
treated condition, while 45 changed their direction.

Interestingly, among the reactions that increased their activity upon
auranofin exposure, we found the reaction SSALxm (succinate-semi-
aldehyde:NAD+ oxidoreductase), which is responsible for an increase in
mitochondrial succinate. Of note is the reaction involving the thioredoxin
RNTR1, which shows an increase in negative flux and reduced thioredoxin
production. Theoretically, thiol-redox enzymes such as thioredoxin
reductase (TrxR) and thioredoxin glutathione reductase (TGR) are inhib-
ited by auranofin®. Among the 45 significant reverse reactions, many
involve transport (HMR_2706, HMR_2857) and carnitine production with
coenzyme A consumption. Finally, three reactions are significant in both FS
and FBA: FUMtr, increasing extracellular fumarate; EX_fum_e, decreasing
fumarate secretion; and MALSO3tm, increasing malate transported from
the mitochondria to the cytosol, thus diverting it from the Krebs cycle.

For aurothiomalate we observed 126 reactions with significantly dif-
ferent flux values, 99 with the same direction and 27 with the opposite
direction (Fig. S1B). Several significant reactions involve fatty acids, parti-
cularly with a decrease in flux in reactions FACOAE1839Z12Z15Z and
FACOAL1832, resulting in reduced coenzyme A consumption and less
alpha-linolenoyl-CoA production. The FACOAL161 reaction consumes
more coenzyme A and produces hexadecenoyl-CoA, a precursor in the
essential carnitine synthesis pathway of lipid metabolism. Carnitine is key in
facilitating the transport of long chain fatty acids into the mitochondria for
B-oxidation. Two reactions with a significant increase in flux leading to
carnitine production are LNELDCCPT1 and LNELDCCPT?2. Five reactions
are involved in the metabolism of long-chain fatty acid (-oxidation:
FAOXC160, FAOXC10080m, FAOXC142C122m, FAOXC183C163Gm
and FAOXC18480x, leading to reprogramming of this pathway. Fatty acid

metabolism plays a central role in cancer, serving not only as structural
components of membranes, but also as important secondary messengers
and potential fuel sources for energy production”*. We observed an
increased consumption of galactose in the following reactions: GALKr in the
cytosol, and GALASE10ly, GALASE11ly, and GALASEI12ly in the lyso-
some. Other significant reactions include PEPCKm with increased oxa-
loacetate consumption and phosphoenolpyruvate production, and GTHS
with higher reduced glutathione production.

In the pool of 151 reactions significantly affected by AuNHC exposure
(Fig. S1C), we found twelve reactions that involve long-chain fatty acid beta-
oxidation, and four isomerization reactions of fatty acids all of which show
significantly reduced flux in the treated model compared to the control
(FAOX(C2452256x%, FAOXC164C165m, FAOXC164C143m, FAOXC164m,

FAOXC165C164m, FAOXC103C102m, FAOXC102C103m,
FAOXC102m, FAOXC143C123m, FAOXC123m, FAOXC102C81m,
FAOXC81C61m, FAOXC123C102m, FOX61, FAOXC225C226x,

FAOXC226C225x). As said, this metabolic process is pivotal in cancer
development. Another cluster of significant reactions involves
N-acetylglucosamine 6-O-sulfotransferase in the lysosome and Golgi
(S6TASE10ly, S6TASEl6ly, S6TASE20ly, S6Tlg, S6T2g, S6T3g,
S6TASE17ly, S6TASE21ly), with a general 32% reduction in flux in
these reactions in the treated model. N-Acetylglucosamine 6-O-
sulfotransferase-2 is expressed in mucinous carcinomas and ovarian
cells” and a decrease in the flux of some reactions involved in this
pathway may indicate another pathway affected by the drug. Finally,
several reactions involved in beta-galactosidase, all of which reverse
their flux compared to the treated model, consume D-galactose in the
lysosome (GALASEO9ly, GALASE8ly, GALASE7ly, GALASES6ly,
GALASES5ly, GALASE4ly, GALASE3ly).
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Like AuNHC and aurothiomalate, Au(NHC), has numerous sig-
nificant reactions related to fatty acid beta-oxidation, resulting in an overall
reduction in acetyl-CoA production (Fig. S1ID). Two reactions with the
highest fold change between control and treatment involve lysosomal
N-acetylglucosamine 6-O-sulfotransferase, like monocarbene, with an
inverted flux. Among the significant reactions, there is a significant flux
reduction in the ACONT reaction, leading to the formation of isocitrate
from citrate. Notably, mutations in isocitrate dehydrogenase (IDH)
downstream of ACONT contribute to tumourigenesis. Therefore, reduced
isocitrate production may contribute to reduced activity in the reactions in
which it is involved*®*".

This dataset of reactions that appear to be stimulated by exposure to the
different gold-based compounds allows us to test whether the four gold-
based compounds elicit a common response at the level of the whole
metabolism (Fig. 4C). As expected, we found that the lactate exchange
reaction is shared by contextualized monocarbene, dicarbene and auranofin
models, an observation that reflects the limitation of models based on
extracellular metabolite concentration (Fig. 4B).

Five reactions are shared by aurothiomalate and the two gold
N-heterocyclic carbene. Apart from pyruvate exchange (which shows a
reduced positive flux in all three drug-treated conditions, hence less

secretion, Fig. 4D), the remaining four reactions revolved around the
metabolism of GDP-L-fucose (reactions FK, FIPGT andGFUCS and
GMAND, Fig. 4D), showing a general reduction in fluxes. Although without
statistical support, the same trend was observed in the analysis of auranofin
context-specific models (data not shown). Thus, according to our simula-
tions, the reduction of intracellular fluxes around the GDP-L-fucose node
could represent a general response of A2780 cells to gold-based treatment. It
is interesting to note that cancer progression has been shown to be asso-
ciated with increased GDP-fucose production, which may support tumor
cell proliferation and survival®. The availability of the high-energy donor
GDP-fucose can lead to aberrant fucosylation, i.e. the process of transferring
fucose from GDP-fucose to its substrates, a mechanism that has been shown
to play a relevant role in many aspects of cancer biology".

Flux sampling on context-specific GEMs and comparison with
measured metabolites

Next, we used FS to investigate the metabolic reprogramming induced by
exposure to gold-based compounds in A2780 cells. First, we compared the
predictions of context-specific models with the measured intracellular levels
of metabolites. We limited this comparison to those metabolites whose
change in intracellular concentration was significant when comparing
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treated and untreated samples. As shown in Fig. 4E, we found that the
context-specific model predictions agreed with the experimental data in
about 70% of the cases (13 out of 19). For each of the four treatments, we
then searched the context-specific models for reactions with a significant
change in flux in the treated vs. untreated comparison that could reveal the
hidden metabolic consequences of gold drug-exposed cells.

Auranofin. The FS data for auranofin suggested an overall increase in
glutathione production and a decrease in arginine and alanine produc-
tion, trends consistent with the measured levels of these metabolites (Fig.
3E). For this increase in GSH production, the model suggests an alter-
native pathway involving the utilisation of aminobutyric acid instead of
cysteine”. Our simulations identify reactions involving the production of
aminobutyric acid, specifically ABTArm, as increasing its flux. This
reaction results in the production of aminobutyric acid along with
2-oxoglutarate while consuming glutamate. Instead, cysteine is mainly
consumed by the PPNCL2 reaction. With regard to asparagine, the major
reaction involving this metabolite is r1630, which is responsible for its
transport out of the cytosol, leading to a decrease in its intracellular
concentration. Cytosolic asparagine is essential for protein synthesis and
some studies suggest that intracellular asparagine is a critical suppressor
of apoptosis in many human tumors**.

For alanine, we observed a general decrease in the flux distributions of
reactions using it as a substrate, although none of the distributions were
statistically significant from the controls. Concerning GHS metabolism, in a
recent paper, Chiappetta et al. showed the up-regulation of the NRF2-
controlled proteins GCLC and GCLM in AF-treated cells”. Notably, these
proteins are involved in GHS biosynthesis and the AF context-specific
model predicted an increased flux through the corresponding reactions
compared to the control model.

Aurothiomalate. Regarding aurothiomalate, the significant metabolites
in the experiments, also present in the model, showed the same trend of
fold change in two cases: glutamate (decrease) and succinate (increase)
(Fig. 3E). For succinate, there is a general increase without a specific
response, providing insight into a metabolic pathway that specifically
contributes to its increase. For glutamate, however, we found a significant
change in the flux of the reaction PSERT (phosphoserine transaminase),
which leads to glutamate consumption and 2-oxoglutarate production
with a flux four times higher than the control. Interestingly, this reaction
could also explain the change in succinate concentration, as
2-oxoglutarate can feed the TCA cycle, leading to an increase in its
production.

AuNHC. In the context of gold N-heterocyclic monocarbene treatment,
three metabolites show consistent flux direction with experiments,
namely glycine (decrease), UDP-N-acetylglucosamine (UDP-GIcNAc)
(decrease) and UDP-N-acetylgalactosamine (UDP-GalNAc) (decrease,
Fig. 3E). According to our model, glycine is mainly consumed via the
GTHS reaction (glutathione synthetase), resulting in reduced glutathione
production in the cytosol. The activity of this reaction is supported by the
transport of glycine in the cytoplasm by the reaction GLYSNATS5tc: in
contrast to the control models, in the model resembling the monocarbene
treatment, this reaction shows a significant import flux, thus potentially
favoring the activity of the GTHS reaction. Conversely, the THRGLYexR
reaction (threonine-glycine exchange reaction) facilitates the export of
glycine from the cytosol and the import of threonine, although with a
reduced flux compared to the former reaction.

For UDP-GIcNAG, ten significant reactions are likely to induce a major
reprogramming of its pathway. Four reactions contribute to the overall
reduction of UDP-GIcNAc: two are associated with increased metabolite
consumption with UDP, GALNAC T2g and HMR_7180 production, while
two show reduced production compared to the control (AG13T2g and
AG13T1g). The R0845 reaction is active in the treated model and mediates
UDP-GIcNAc transport. In addition, the AG13T17g reaction consumes

UDP-GIcNAc in the control but shows no flux in the treated model,
GALNACTS5g consumes less in the treated model, AG13T16g, inactive in
the treated model, consumes UDP-GIcNAc in the control and GALGT1
CORE2GTg is responsible for its production. Interestingly, the HMR_7180
reaction consumes not only UDP-GIcNAc but also the Tn antigen, which is
associated with disease progression many tumor™. The third significant
metabolite in the experiments that shows a congruent trend in our flux data
is UDP-GalNAg; in this case, no significant reactions contribute to its
reduction, but two significant reactions lead to its production: GALGT1 and
GALNACT1g. Another reaction, UGALNACtg, reduces transport from the
cytosol to the Golgi. However, the decrease in UDP-GIcNAc upstream in the
pathway leading to UDP-GalNAc production may explain its overall
decrease in the treated model”.

Au(NHC),. Metabolites that show significant changes in the experimental
data with consistent flux patterns include alanine (decrease), asparagine
(decrease), glutathione (decrease), phenylalanine (increase), UDP-N-
acetylglucosamine (UDP-GIcNAc) (decrease), UDP-N-acetylgalactosamine
(UDP-GalNAc) (decrease) and D-lactate (increase) upon dicarbene treat-
ment (Fig. 4C and Supplementary Fig. S1D). Alanine is affected by significant
transport-related reactions to and from the cytosol: ALAGLYexR, r1701,
r1918 and r1883 show a reduced flux compared to the control, indicating
reduced extracellular transport. However, reaction r1563 shows an inverted
flux and an increased transport out of the cytosol. The change in asparagine
concentration is mostly related to transport-related reactions, such as
ASNPHEAT?2tc, with an inverted flux and increased transport outside the
cytosol, whereas r1837 and r1757 show a significant decrease in flux in the
opposite direction. Phenylalanine shares a transport reaction with aspar-
agine, ASNPHELAT2tc, which increases its transport into the cytosol.

The model reflects an increase in lactate through a single significant
reaction (EX_lac__L_e), indicating increased extracellular transport. UDP-
GIcNAc decreases, in agreement with experimental data, mainly in the
GALNACT?2g reaction, with an inverse flux leading to UDP-GIcNAc
consumption. However, other reactions contribute to increased UDP-
GlcNAc production, such as AG13T18g, or decreased consumption com-
pared to the control, such as AG13T16g and UAG4E;, the latter resulting in
reduced production of UDP-GalNAc, another important metabolite. No
significant GHS-related responses were observed.

Discussion

NMR metabolomics studies previously performed in our laboratory on
A2780 ovarian cancer cells showed that the patterns of changes induced by
four representative cytotoxic gold compounds, ie. auranofin, aur-
othiomalate, and the two gold-N-heterocyclic carbenes, are quite different
from one another, suggesting that different modes of action are operative in
each case. To decipher, model and predict the system-level metabolic
responses to the treatment of these drugs, we constructed a general GEM
model of A2780 cancer cells. We contextualized such reconstructions using
extracellular metabolomic and gene expression data and generated recon-
structions specific to each gold drug treatment. Such models were able to
correctly predict the change in concentration of approximately 70% of the
experimentally measured metabolites included in the A2780 reconstruction.
In-depth analysis of these responses revealed the occurrence of distinct
metabolic responses to each gold drug, suggesting that while there are some
common features in cancer cell responses to these gold drugs, each drug
induces specific changes in the cellular metabolic network. Ideally, under-
standing which parts of the metabolism are most affected by the drugs may
help to optimize these treatments, for example by suggesting potential
(metabolic) adjuvants and/or complementary drugs to be used in combi-
nation with the drugs discussed here*. Overall, the integration of metabo-
lomic data with genome-scale metabolic modeling has confirmed the idea
that gold compounds can directly or indirectly target multiple metabolic
pathways in tumor cells, leading to profound changes in tumor cells and
their microenvironment*. Together with a recent and comprehensive study
from Meeson and Schwartz”, this work provides one of the first genome-
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wide descriptions of the metabolic reprogramming occurring in ovarian
cancer cells, also highlighting the importance of integrating -omics data with
computational models to address context-specific issues in medical sciences.

Material and methods
Metal compounds
Au(NHC)CI and [Au(NHC),]PF; are two gold(I) carbene complexes fea-
turing a 1-butyl-3-methyl-imidazole-2-ylidene moiety as the NHC ligand,
coordinated to the gold center via a direct gold-carbon bond. These com-
pounds differ in their second ligand: a chloride in Au(NHC)CI or another
NHC ligand in [Au(NHC),]PFg; this second ligand influences the lipophilic
character of the two gold complexes (Table S2). The synthesis of both gold
compounds was carried out according to the procedure reported in the
paper of Messori et al.”.

Sodium aurothiomalate (Merck, cod: 157201) and auranofin (Enzo
Life Sciences, Farmingdale, New York), were used. While auranofin is a
linear gold(I) complex with triethylphosphine and tetracetylthioglucose
ligands, Aurothiomalate is a (1,2-Dicarboxyethylthio)gold disodium salt
hydrate with a more intricate structure’’, indeed its oligomerization in
solution has been extensively studied using various physical techniques™”.
Auranofin and Au(NHC)Cl exhibit comparable low solubility in aqueous
buffer, as evidence by their similar logP value (Table S2). Conversely, AuTM
demonstrates a significant solubility in water, in line with its negative logP
value (Table S2).

Cell lines and drug treatment experiments

The cytotoxicity of the four gold(I) compounds on A2780 cells was eval-
uated via the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) assay. The procedure, reported elsewhere, involved determining
the half-maximal inhibitory concentration (ICs,) values of each compound
after a 72-hour exposure of cells to the metal compound.

Samples for metabolomics were prepared using equitoxic amounts of
each metal compound for 24h, ie. treating cells for 24h with a con-
centration of the gold(I) compound equal to the corresponding ICs, value
measured at 72 h, following a well-established approach™.

Metabolomics

Untargeted metabolomics analyses on cell lysates and growth media were
performed as in previous reports'***”’, using a Bruker 600 MHz spectro-
meter (Bruker BioSpin) optimized for metabolomic analysis, operating at
600.13 MHz proton Larmor frequency and equipped with a 5 mm PATXI
'H-"C-"N and *H-decoupling probe including a z-axis gradient coil, an
automatic tuning-matching (ATM) and an automatic refrigerated sample
changer (SampleJet, Bruker BioSpin). The spectra of cell lysate samples were
acquired with the Carr-Purcell- Meiboom-Gill (CPMG) sequence; those of
the growth media were acquired with a 1D nuclear Overhauser enhance-
ment spectroscopy (NOESY)-presaturation pulse sequence. Spectra pro-
cessing was performed using TopSpin 3.6 (Bruker Biospin srl).

Metabolomic data analysis

Well-resolved peaks were assigned to metabolites and their intensities used
to quantify the metabolite concentrations in the sample. The assignment
was performed using the Chenomx software. The relative quantification of
the NMR signals was performed using an R script developed in-house; 32
metabolites were quantified both in the cell lysate spectra and in the growing
medium spectra (same number but not the same molecules). In the growth
media, the metabolites were divided into two different classes, i.e. those that
are taken up from the medium (20 metabolites) and those that are released
into the medium (12 metabolites).

All the statistical analyses were performed using the “R” software. The
nonparametric pairwise Wilcoxon-Mann-Whitney test was used for the
determination of the meaningful metabolites; a p value <0.05 was con-
sidered statistically significant. The Log, fold change (log,(FC)) was cal-
culated for each metabolite to display how the metabolite levels vary upon
the different treatments. FC is calculated as the median of the ratio of the

metabolite concentrations in the spectra of the two paired samples (treated
vs. control). For the growth media analysis, in the case of the released
molecules, lower/higher concentration levels upon treatment mean a lower/
higher release, while for the molecules that are taken up from the growth
media, lower levels upon treatment mean a greater consumption of nutri-
ents, i.e. increased uptake, and vice versa for higher levels.

Ovarian cancer genome-scale metabolic reconstruction

The context-specific genome-scale model of epithelial ovarian cancer cells
A2780 was created from the most complete genome-scale model of human
metabolism RECON3D™ which includes 13,543 metabolic reactions
involving 4140 metabolites. We constrained the RECON3D model with
transcriptomic data of A2780 cell line present in Cancer Cell Line Ency-
clopedia (dataset: CCLE_expression_full_22Q2 https://depmap.org/portal/
download/all/). The RNAseq values are inferred using the RSEM tool and
are reported after Log, transformation, using a pseudo-count of 1,
Log,(TPM + 1)”. In order to match the genes present in RNA-seq dataset
with the RECON3D gene identifiers, we used the approach present in
Weglarz-Tomczak et al.”' with MyGene.py tool version 3.1.0. Afterwards,
we applied Gene Inactivity Moderated by Metabolism and Expression
(GIMME), which uses quantitative gene expression data and one or more
metabolic objectives™ to build context-specific models. The algorithm
requires a threshold of gene expression value below which genes are declared
as inactive. However, this threshold is dataset-dependent and cannot be
reliably inferred a priori. For this reason, we used an “elbow strategy”
approach to define the most-reliable gene-expression threshold. We mea-
sured the number of metabolites, reactions, cancer-related reaction™ ™, that
were maintained in the context-specific reconstruction for different values
of GIMME threshold. The chosen threshold was the value beyond which the
ratio between these and their corresponding values in the original Recon3D
reconstruction remained constant. These simulations were performed with
COBRA Toolbox v3.0°° run in Matlab (version R2022b) and the Gurobi
solver (version 9).

Context-specific models reconstruction using metabolomic data
Meeson and Schwartz®, have recently proposed metabolic reconstructions
of subtype-specific ovarian cancer cells. In their work, they used tran-
scriptomic data to build context-specific models and to study how the
regulation of specific pathways links to individual phenotypes. Here, we
made use of both transcriptomic and metabolomic data to derive treatment-
specific metabolic reconstruction of A2780 cell line. More specifically, for
each experimental condition described before, we used the absolute con-
centration of each identified metabolite at t=0h and t=24h to compute
the overall nutrient uptake by ovarian cancer cells. We divided the absolute
concentration for 24 h and we set the corresponding exchange reactions in
the model to such positive (nutrients released in the medium) or negative
(nutrients uptake from the medium). Preliminary growth simulations were
performed using Flux Balance Analysis (FBA) optimizing for the biomass
objective function. However, to obtain more reliable flux distributions for
each condition (see below) we used FS, thus focusing on the estimated
probability distribution for each reaction’s flux in the network. The method
present in COBRApy OptGpSampler” allowed us to generate 100 samples
for each condition with a thinning factor of 100. Then we calculated the
mean of reaction flux for each treatment and its respective control.

Both in FBA and FS we calculated the p-value, via the Wilcoxon test (p-
value threshold 0.05), and the fold-change from the reaction flow between
treatments and controls with the R fold change function present in the R tool
package.

Data availability

The NMR data used as input for this study are available at the NTH Com-
mon Fund’s National Metabolomics Data Repository (NMDR) Web site,
the Metabolomics Workbench, (37) https://www.metabolomicsworkbench.
org where it has been assigned Study ID ST003416. The data can be accessed
directly via its Project https://doi.org/10.21228/M8C54]. This work is
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supported by NIH grant U2C-DK119886 and OT2-OD030544 grants. The
code and files for genome-scale model construction are available here:
https://doi.org/10.5281/zenodo.15262102.
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