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Combination antiretroviral therapy controls human immunodeficiency virus-1 (HIV) but cannot
eradicate latent proviruses in immune cells, which reactivate upon treatment interruption. Anti-latency
therapies like “shock-and-kill” are being developed but are yet to succeed due to the complexity of
latency mechanisms. This review discusses recent advances in understanding HIV latency via
mathematical modeling, covering key regulatory factors and models to predict latency reversal,
highlighting gaps to guide future therapeutic approaches.

HIV latency remains a major barrier to achieving a HIV cure. When HIV
enters a susceptible cell, its RNA is reverse-transcribed and integrates semi-
randomly1 into the host genome, forming a provirus [Fig. 1a]. The provirus
can follow one of two developmental fates: active-replication or latency.
Actively replicating proviruses sustain a relatively high gene-expression
activity, driving HIV proliferation and acquired immunodeficiency syn-
drome (AIDS) progression. In particular, after ~40h2 of activity, the accu-
mulation of viral products within the intracellular space drives host-cell
lysis, allowing the hundreds of assembled virions3 to diffuse and infect
nearby susceptible cells [Fig. 1b, c]. Antiretroviral therapy (ART) acts dis-
rupting the critical steps of the HIV replication program, interrupting viral
proliferation, and allowing the progressive depletion of productively-
infected cells. However, even after decades of fully-effective treatment, ART
interruption causes almost certain viremia rebound within 2-8 weeks4,5.
Evidence suggest that this rebound is due to long-lived proviruses activating
from latency6–8 [Fig. 1d]. Latent proviruses are unbale to sustain significant
viral activity9 due to molecular blocks hindering their gene-expression
program. However, their dormancy is reversible and they switch to active
replication as soon as the blocks are lifted.Moreover, as long as the provirus
is silent, the hosting cell is virtually indistinguishable from its healthy
counterpart, allowing the provirus to survivewithout replicating. Therefore,
given their ability to potentially ignite HIV proliferation after years of
dormancy, latent proviruses represent themain obstacle for curingHIV10,11.

Curative strategies now aim at reducing the reservoir of latent HIV
proviruses. Themost studiedmethod is called shock-and-kill12. Thismethod
implies using molecules known as latency reversing agents (LRAs) to dis-
rupt themechanisms that keep the provirus silent (shock phase). Then, once
activated, the provirus would be cleared by cytolytic effects and immune
response (kill phase) [Fig. 1e, f]. Developing effective LRAs is critical. It

requires identifying the molecular factors regulating proviral latency and
their mechanisms of action [Tables 1–3].

Initial observations suggested that proviral activation is a secondary
effect of the host-cell immune-activation13,14. In other words, the state of a
provirusdependson the state of its host15.However, efforts to reverse latency
solely by altering the host-cell state has proven this principle to be
inaccurate16. Proviruses do not always enter latency when the host-cell
becomes quiescent, and some latent proviruses fail to activate when the
immune system is active16,17. Mathematical modeling applied to single-cell
experimental data has revealed that HIV self-regulates its transcription
through an intrinsic mechanism based on the viral protein transactivator of
transcription (Tat)17–20. Thesemodels demonstrated that HIV latency is not
simply an “OFF” state but rather a dynamically maintained basal regime,
characterized by low Tat levels. When Tat accumulates beyond a critical
threshold, it triggers a positive feedback-loop that bypass host
regulation17,19,21, amplifies viral transcription18,20,22, and shift the provirus
into a robust viral regime [Fig. 1b, d]. Subsequent findings suggested that
proviral fate is also regulated by post-transcriptional steps, including spli-
cing, nuclear export, and translation23. Host factors such as RNA-binding
proteins (e.g., MATR3, PTB, and PSF) and specific microRNAs act to
sequester, degrade, or otherwise inhibit the efficient export and translation
ofHIVRNAs, thereby enforcing ablock to virus reactivation24.According to
these findings, the development of anti-latency strategies requires under-
standing of what host factors are regulating basal transcriptional and post-
transcriptional activity, and how the Tat circuit reacts to basal activity20,25–29.
Experimental assays that reveal themolecularmicroenvironment (MME)of
integrated proviruses, together with HIV gene-expression models were
developed to aid the design of personalizedLRAs, predicting the efficacy of a
given treatment through in-silico experiments30–34.
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Recent literature reviews on HIV latency and anti-latency therapies
primarily focus onmolecularmechanisms, latency-reversing agents, andhost
factors driving viral persistence35–38. In contrast, our review adopts a systems
biology perspective, examining HIV gene-expression as a circuit influenced
by feedback loops, stochastic events, and regulatorymotifs. In thefirst section
of this review, we present themodels developed to understand the basal HIV
gene-expressiondynamics27–29, and themain factors regulating its steps. In the
second sectionwe focus on theTat circuitmodels, developed to elucidate how
Tat reacts to the basal expression activity and identify the threshold to active-
replication17,18,20,25,26. Building on the knowledge reviewed in these first two
sectionwe conclude showing themodels developed to simulate perturbations
to the HIV gene-expression circuit and predict the efficacy of anti-latency
therapies, to proceed with their development39–44. By bridging virology with
quantitative modeling, our interdisciplinary approach offers fresh insights
into HIV latency mechanisms and provides a framework for optimizing
therapeutic interventions, paving the way for future research at the nexus of
systems biology and HIV treatment.

Basal HIV gene-expression control
Analyzes of basal HIV gene-expression reveal that viral activity is generally
low on average and subject to significant intrinsic variability27 – often
described as transcriptional noise. Knowing that latency exit occurs sto-
chastically, understanding the mechanisms of transcriptional noise and its
main regulatory factors could provide strategies to reverse latency. Early
modeling efforts attributed this intrinsic noise to stochastic fluctuations
inherent in themRNAsynthesis anddegradationprocesses. This hypothesis
led to the development of the constitutive model of HIV gene-expression30

[Fig. 2a]. In this model the HIV promoter—located in the 5’ long-terminal-

repeat (LTR) – actively sustains HIV transcription (mRNA), leading to the
synthesis of viral proteins (P).
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Although the constitutivemodel could not be validatedbiologically27,45,
later studies proposed an alternative explanation. They suggested that the
HIV promoter stochastically alternates between active and inactive states,
promoting or inhibit transcription, respectively. This mechanism forms the
basis of the two-state, or random telegraph, model of HIV expression27,45–47

[Fig. 2a]. In this model, stochastic transitions between LTR states generate
randomly timed transcriptional bursts.
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These postulated LTR “ON” and “OFF” states could be explained
biologically. In fact, fluctuating molecular interactions at the provirus
integration site (IS) dynamically alter the LTR configuration, “locking” and
“unlocking” transcriptional steps28,29. According to this view, identifying the
factors interactingwith the LTR and shaping its configurationwould lead to
regulatory factors of HIV transcription, and potential transcription-control
strategies.These factors canbedividedbasedon the transcriptional step they
regulate (i.e., initiation, elongation). Transcription initiation requires an
LTR surrounded by open chromatin, and successful recruitment of positive
transcription factors (TFs) and general transcription factors (GTFs)48. This
configuration allows RNA polymerase II (RNAPII) to dock and start pro-
cessing the viral genome. Subsequently, transcription elongation requires
RNAPII maturation and nucleosome-1 displacement19,49,50.

Subsequent studies using single-molecule RNA microscopy showed
that theHIVpromoterfluctuatesover two independently-regulated inactive
states, characterized by two distinct time scales28. The first time scale
represents the time-delay between subsequent emergence of LTR config-
urations favorable for transcription initiation. Whereas the second time
scale is shorter and represents the interval between elongation-free LTR
configuration, characterizing the length of transcriptional bursts. It was also
observed that transcriptional bursts are characterized by convoys of RNAPII
that reinitiate transcription upon successful elongation.Moreover, the same
studies demonstrated thatRNAPIIpausing is not obligatorybut stochastic29.
These observations led to the development of the multi-scale HIV bursting
model28,29 [Fig. 2b].
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Fig. 1 | HIV developmental fate upon CD4+ T cell infection. aHIV cell infection,
proliferation, and latency reversal. Once HIV enters a susceptible cell (i.e., active
CD4+ T-lymphocyte), is reverse-transcribed, and integrates within the host gen-
ome, forming a provirus. b Transitioning into active-replication. Upon sufficiently-
high transactivator of transcription (Tat) production, a provirus enters active
replication, forcing the host-cell to fabricate and release virions. c host-cell loss and
HIV proliferation. The accumulation of viral products leads to host-cell apoptosis
within ~40 h of active replication. d Transitioning into latency. Conversely, upon
low Tat concentrations, the provirus remains silent. As opposed to what was initially
believed, active replication and latency can be detected both in active and resting
lymphocytes, represented by green and purple cells, respectively. e Latency-reversal.
Upon increased Tat levels a dormant provirus activates from latency. The shock-
and-kill therapy employes latency reversing agents to enhance Tat production and
facilitate latency-reversal. [Created in BioRender. Palma, P. (2025) https://
BioRender.com/0fw3cwk].
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Table 1 | Models addressing the basal (host-driven) HIV gene-expression activity

Study Aims Data Results

Basal HIV
Gene-Expression

A. Singh et al.27 Understand the mechanisms
underlying basal HIV gene-
expression dynamics.

Flow cytometry analysis of GFP
expression, sampled from30Jurkat T-cell
iso-clones infectedwith a single LTR-GFP
HIV model vector with diverse IS.

(i) Provirus-specific basal HIV gene-expression is highly
variable (noisy); (ii) The observed variability is poorly
explained by the constitutive LTRmodel. Instead, it is well
reproduced by a two-state (on/off) random telegraph
model underlying randomburstingactivity; (iii) During host
phase, the LTR produces bursts with average size of
2–10 mRNA.

A. Singh et al.75 Understand which viral gene-
expression model (constitutive
vs bursting) prevails during the
host-phase

Flow cytometry analysis of GFP
expression, sampled from Jurkat T-cells
iso-clones infectedwith a single LTR-GFP
and LTR-mCh HIV model vector with
diverse IS.

(i) promoter toggling between an active and inactive state
is the main source of noise in basal HIV gene-expression.

R. D. Dar et al.45 Understand what viral gene-
expression model (i.e.,
constitutive, bursting) better
explains provirus-specific basal
gene-expression activity.

Flow cytometry analysis of GFP
expression, sampled from 8000 Jurkat
T-cells iso-clones infected with a single
LTR-GFP HIV model integrated in a
different genomic locus.

(i) Promoter toggling between an active and inactive state
is the main source of noise in basal HIV gene-expression;
(ii) The MME at the provirus IS modulates both burst
frequency and size; (iii) Below an average gene-
expression level, MMEs modulates only bursting
frequency,whereasabovesuch threshold,MMEs regulate
only burst size; (iv) Transcriptional activators (i.e., TSA,
TNF-α) regulate burst frequency and size along a provirus-
specific constrained region.

K. Tantale et al.28 Understand the mechanisms
underlying basal HIV
transcription, and the host
factors modulating those
mechanisms.

Single-molecule RNA fluorescence in situ
hybridization (smFISH) analysis of
isogenicMCP-GFP-expressingHeLaFlp-
in H9 cells infected with an MS2-labeled
HIV model vector in the same IS, high Tat
production.

(i) HIV mRNA is produced by closely-spaced RNAPII
convoys allowed by a Mediator-driven mechanism; (ii)
RNAPII convoys are spaced by ~hundred nucleotides due
to DNA torsional stress; (iii) The LTR displays stochastic
bursting activity on two time scales, referred to as multi-
scale bursting: The first underlie the rate of RNAPII
convoys, the second the LTR activation rate.

K. Tantale et al.29 Understand howRNAPII pausing
regulate basal transcription.

smFISH analysis of three distinct isogenic
MCP-GFP-expressingHeLaFlp-inH9cell
lines infected with an 128xMS2-labeled
HIV model vector, characterized by low,
medium, and high Tat expression.

(I) RNAPII enter a long-lived pause (>20 min) in silent LTR,
limiting viral transcription; (ii) RNAPII pausing is not
obligatory but stochastic. Only a small fraction of RNAPII
undergo long-lived pausing in basal regime;

Table 2 | Models addressing the viral protein Tat-circuit architecture

Study Aims Data Results

Tat feedback-loop &
Proviral Fate

L. Weinberger
et al.20

Understand the factors and
mechanisms regulating HIV
developmental fate.

GFP expression sampled from Jurkat T-
cells, infected with a single LTR-GFP-
IRES-Tat (LGIT) HIV model vector.

(i) Proviral developmental fate (active replication vs
latency) is regulated by Tat. (ii) Proviruses showing a
relatively high basal gene-expression rate (high Tat),
experience active replication; (iii) Provirus clones showing
relatively low basal gene-expression rate (low Tat) face a
stochastic decision between high and negligible
activity (PheB);

B. S. Razooky
et al.18

Understand the relationship
between proviral fate (active vs
latent) and host-cell state (active
vs resting)

GFP expression sampled from Jurkat and
CEM T-cells infected with HIV-d2GFP
virus env-mutated (avoid expansion).

(i) The LTR is intrinsically capable of generating bimodal
ON/OFF expression, even in the absence of Tat; (ii) Tat
slows LTR toggling, shifting, and expanding the regime of
LTR bimodality ultimately characterizing a stabler active
replication regime;

L. Weinberger
et al.25

Understand the mechanisms by
which Tat-positive feedback is
counteracted, allowing the
existence of a stable
transcriptionally-off state
(latency).

GFP expression sampled from Jurkat
cells, infected with LTR-GFP and LTR-
GFP-IRES-Tat (LGIT) HIV model vector.

(i) The Tat-feedback circuit lacks bi-stability and self-
cooperativity; however, it exhibits pulsatile activity
patterns triggered by stochastic basal activity; (ii) An
enzymatic Tat-resistor reduces the Tat-amplification
susceptibility to transcriptional noise, explaining the HIV
off (latent) state and the pulsatile HIV gene-expression
activity.

K. H. Aull et al.58 Understand the mechanisms by
which the Tat-positive feedback
is counteracted, allowing the
existence of a stable
transcriptionally-off state
(latency).

flow cytometry and single-cell imaging (i) The Tat-feedback circuit exhibits a transient threshold
lasting ~40 h before disappearing (ii) whose lifetime is
shortened by promoter activation;

L. Weinberger
et al.26

Understand how Tat-feedback
strength modulates the pulsatile
HIV gene-expression dynamics.

GFP expression sampled from TNF-α-
stimulated76,77 (10 ng/ml) Jurkat T-cells (J-
Lat full-length clone 10.6 74) infected with
a single LTR-GFP or LTR-GFP-IRES-Tat
(LGIT) HIV model vector.

(i) Tat positive-feedback extends viral gene-expression
lifetime 2-6 fold. (ii) weak Tat-amplifications provide a
shortened gene-expression pulse, favoring the latent
phenotype.

B. S. Razooky et.
al. 17

Understand the relationship
between proviral fate (active vs
latent) and host-cell state (active
vs resting)

GFP expression sampled from activated
(CD25+ CD69+) and resting (CD25−

CD69-) Jurkat and CEM T-cells infected
with HIV-d2GFP virus env-mutated (avoid
expansion).

(i) HIV gene-expression persists in acutely-infected cells
after transitioning to their resting state (ii) Tat circuit is
autonomous and regulates proviral fate (iii) Host factors
stochastically ignite Tat amplification.
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Despite the validity of the discussedHIV circuit models, recent studies
showed that viral expression is also regulated during transcription com-
pletion, and post-transcriptional steps, including splicing and nuclear
export23. These observations led to the development ofmore comprehensive
models to understand how these steps affect the HIV expression dynamics
and what are the involved molecular factors51,52.

From a broader perspective, the LTR state and subsequent post-
transcriptional steps, depend on the epigenetic profile and the composition
of the molecular cluster fluctuating at the provirus IS. These factors are
dynamically regulated by the host and characterize the provirusMME45,53,54

[Fig. 3a]. The host configures the MMEs along its genome to control the
gene-expression activity of the genomic entities in-location. Therefore,
MMEs at diverse genomic coordinates would be subjected to diverse reg-
ulatory inputs over time [Fig. 3b–d]. This explains why different IS shows
different expression distributions and why non-specific stimuli, such as the
host-cell immune activation, do not homogeneously affect all proviruses.
Following this scheme, the range of expression levels that a provirus can
potentially experience depends on the genomic entities populating the
IS27,46,55,56. For example, the MMEs of transcriptionally-repressed locations,
such as centromeric heterochromatin, would never shift to favorable con-
figurations, underlying a null expression potential. In contrast, MMEs at
genic or intergenic regions are eventually regulated by the host to induce or
inhibit local activity, underlying a variable activation potential.

Proviral fate
Host-driven HIV expression alone is not sufficient to explain the gene-
expression levels, which clearly distinguish active-replication from latency18.
The transition between these two regimens requires the interplay of viral
factors. In-vitro experiments using the LTR-GFP-IRES-Tat (LGIT) HIV
model vector showed that the transition from latency to active-replication is
strongly regulated by the viral protein Tat. Upon a threshold level of Tat
expression, clones experience a phenotypic bifurcation towards either one of
the two developmental fates20. Whereas below and above the threshold,
clones stably maintain latency and active-replication, respectively20. Bio-
chemical studies showed that Tat promotesHIV gene-expression bypassing
the host during transcriptional andpost-transcriptional steps. Tat augments
its own production forming a positive feedback-loop, which amplifies viral
expression up to ~100 folds57.

Stochastic models were developed to capture the Tat circuit archi-
tecture and predict proviral activation20,25,26,34,58. The first models [Fig. 4a]
tracked the Tat-driven reactions aimed at lifting elongation blocks20,34,
recruiting the positive transcription elongation factor (pTEFb) and
nucleosome remodeling complexes (i.e., SWI/SNF)59. Emphasis was given
to pTEFb recruitment by deacetylatedTat, and binding to the TAR element,
forming and unfolding the Tatd LTR complex. Then Tat is reversibly
acetylated, by the host histone acetyltransferase p30059,60, activating, and
forming Tata LTR. According to this model, Tat and pTEFb acetylation/

deacetylation toggling would explain the stochastic time to activation60.
Acetylated Tat promote transcription, then it is released in its deacetylated
form and eventually recycled61. Coupling this Tat circuit with an always-
active LTR, viral protein synthesis, and reactions of mRNA import/export,
was sufficient to well predict phenotypic bifurcation in-vitro62.
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This model set the foundation to simulate and predict proviral fate
in-vitro. Moreover, its analysis suggested that enhancing Tat acetylation
facilitate the transitioning to active-replication34. However, the circuit’s
intrinsic instability, which allows the two phenotypes to emerge, also causes
high sensitivity to small thermal fluctuation. This sensitivity is reflected in a
very low probability of observing longer times to activation (TTA), and
therefore, long-term latency25. Real-time expression kinetics at the single-
cell level showed that basal activity drivesTat pulses, suggesting the presence
of some counteracting motif to Tat-amplification25. In the absence of any
explicit repressivemechanisms, such as bi-stability and self-cooperativity, it
was proposed an enzymatic resistor basedon SirT125. This resistorwould act
rapidly deacetylating Tat and competing with the p300-driven acetylation,
decreasing the circuit sensitivity60,63. According to this model stronger
resistors accompanied by weaker feedback-loop determine shorter Tat
pulses following basal inputs25,26. Subsequent flow cytometry and single-cell
imaging analyses on Jurkat cells highlighted the presence of a transient
single-molecule threshold, requiring excess of inactive Tat to achieve at least
one active molecule58. This result was modeled, introducing an additional
Tat inactive state. Therefore, at its core, the Tat circuit is a non-latching
positive feedback loop that generates transient pulses of expression, with the
strength of the response varying with the regulatory inputs17,18.

According to this view, a provirus transit to active-replication—acti-
vates—when its basal activity is sufficiently high to trigger the self-
maintenance of high Tat levels20. As discussed, the basal expression levels is
stochastic and the distribution is regulated by the host through the provirus

Table 3 | Models addressing the effects of MME reconfiguration of HIV gene-expression

Study Aims Data Results

Latency
Reversal

A. K. Chavali et al.30 Understand the factors and mechanisms
related to the MME that modulate HIV gene-
expressionnoise, eventually inducing latency-
reversal upon induced MME reconfiguration.

LTR-driven GFP expression
of 105 HIV-infected Jurkat
T-cell clones upon Aza and
TNF stimulation.

(i) The two- and three-state LTR models captures the mechanisms by
which basal HIV gene-expression may induce latency-reversal; (ii) The
Fano-factor proves to be a useful noise metric to compare models’
prediction. (iii) The three-state LTR model well captures changes in
basal viral activity after LRAs-driven MMEs reconfigurations.

V. G. Wong et al.31 Understand the factors and mechanisms
related to the MME that modulate HIV gene-
expressionnoise, eventually inducing latency-
reversal upon induced MME reconfiguration.

time-resolved, single-cell
transcriptional data over
multiple IS upon NF-κB
stimulation.

(i) The TNF-induced increase of transcription variability at the provirus
level is higher than its mean HIV transcripts count; (ii) TNF-induced
NF-kb activation correlates with latency-reversal. (iii) NF-kb levels,
must be combined with chromatin structure and RNAPII regulation to
explain the observed provirus-specific variability

Y. Cao et al.34 (i) Identify targetable key reactions critical for
Tat-amplification to shorten stochastic delays
and speed-up latency reversal; (ii) Build HIV
gene-expression model for in-silico LRAs
efficacy testing

Parameters estimates taken
from the literature

(i) TheTat circuit exhibits abimodal probability landscape,whereapeak
is associated with latency, and another with the active fate; (ii)
Enhancing Tat acetylation may increase Tat and viral production; (iii)
Increasing the binding affinity between the LTR and Tat may induce an
easier transition to the viral-phase; (i) Adopting amodeling framework is
a valid approach to search and discovery potentially effective
therapeutic strategies and compounds
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MME27,46,55,56. It follows that theMMEat theprovirus IS impacts the random
TTA55— defined as the time required by a provirus to overcome the Tat
activation threshold. A provirus exposed to a favorable MME would
experience an early transition to active-replication. Conversely, proviruses
with a relatively unfavorable MME would eventually activate later in time.
This delaywouldbe causedby an increasedLTR togglingbetween active and
inactive states due to increasingly significant molecular fluctuations, which
lower the average transcriptional activity and increase the noise. Moreover,
since the TTA is intrinsically stochastic, identical proviruses exposed to the
same MME would transit to active replication at different times20,64.

Subsequent studies showed that Tat has other functions: it opens the
chromatin at the LTR and aids GTFs recruitment, facilitating transcription
initiation. Moreover, Tat promotes mRNA export and engages the cellular

translation machinery, enhancing post-transcriptional steps. Direct evi-
dence of Tat’s differential role in pediatric HIV infection during viral acti-
vation remains sparse, necessitating further investigation to uncover age-
specific variation in Tat function and their implications for optimizingHIV
management in children.

HIV latency and latency reversal
TheMME at the proviral IS orchestrates proviral activity. Long-term latency
arises when theMME strongly represses viral expression, even though the IS
potentially allows more permissive MME configurations. According to this
view, latency reversal occurs when the MME is reconfigured into a per-
missive state. These reconfigurations can happen spontaneously, driven by
host-cell reactionnetworkdynamics, orbe induced artificially throughLRAs.

Fig. 2 | Basal HIV gene-expression models. a Bursting model. In this model the
HIV promoter is allowed to switch between an active and inactive state, represented
by LTRON and LTROFF, respectively. The transition is driven by the rates kon and koff,
which represent the frequency of the molecular interactions dynamically shaping
the LTR configuration that push the LTR towards a favorable or inhibited state,
respectively. The LTR becomes active when the epigenetic editors (EE) allow for an
open chromatin, and when the positive transcription factors (TFs), transcription
machinery components (i.e., general transcription factors), and positive elongation
factors (EF) are successfully recruited by the LTR. On the other hand, the LTR
inactivates when the EE promote the formation of thick chromatin, when negative
TF and/or EF are recruited and their positive counterparts are dismissed. When the
LTR is transcriptionally-active, viral RNA is transcribed at rate kbasal, representing
successful recruitment of RNA polymerase II (RNAPII), and viral proteins are
synthesized by it at rate kP. Simultaneously, viral transcripts and proteins are lost by
degradation at rate dm, and dP, respectively. bMulti-bursting model. In this model

the molecular interactions regulating the two transcriptional steps initiation and
elongation are explicitly tracked. The LTR switches to its active state LTRON at rate
kon, allowing transcription initiation, while it becomes transcriptionally inactive,
LTROFF at rate koff. The LTR activates upon removal of epigenetic blocks, and
recruitment of positive TF andGTFs. Upon RNAPII recruitment transcriptionmay
be paused at rate kpause, alternatively, it is successfully performed at rate kbasal. The
pausing takes place when elongation blocks are in place, such as recruitment of
negative EF and/or nucleosome-1 positioning. In that case the LTR assumes a
paused configuration LTRpause. When transcription is paused, RNAPII may abort
transcription at rate kabort, or is released and produces elongated transcripts at rate
krelease. This dynamic results in the production of RNAPII convoys. The convoys
were modeled considering the number of RNAPII involved (Npol), their time-
spacing (tspace), the elongation rate vel and the time before completing an iteration,
tproc, (convoys not depicted). [Created in BioRender. Palma, P. (2025) https://
BioRender.com/6uc4cie].
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Initial studies on latency reversal employed transcriptionactivators and
chromatin remodelers to facilitate transcription initiation. Activators, such
as TNFα and PKC agonists (i.e., prostratin and bryostatin) act as TFs
enhancers and were observed to amplify mean HIV expression levels in-
vitro48, thoughwith limited efficacy ex-vivo and in-vivo16. The combineduse
of chromatin remodelers, such as histone deacetylase inhibitors (HDACi)
(i.e., vorinostat, panobinostat, and romidepsin),methylation inhibitors, and
bromodomain inhibitors has demonstrated a synergic effect, significantly
enhancing treatments’ efficacy44,65,66. Moreover, when the intrinsic sto-
chastic nature of gene-expression was discovered67, expression variability
was included as a diagnostic metric33. This inclusion led to the discovery of
noise modulators33 and the development of a theory explaining LRAs
synergies27,45. The theory states thatwhile transcription activatorsmainly act
lifting transcription initiation blocks, increasing the average expression
(burst frequency kon↑), noisemodulators act relaxing the elongation blocks,
increasing the expression noise (burst size kbasal/koff↑). Therefore, each class
independentlymodulates one transcriptional step and their combinedusage
lead to synergistic effect, amplifying HIV expression level [Fig. 5a–c]. This
theory was validated experimentally, leading to the selection of novel
LRAs33.

Building on detailed insights into basal and Tat-activated HIV
expressiondynamics, researchers have developedmathematicalmodels that
simulate the effects of latency LRAs to predict treatment efficacy30–32,42.
These models typically extend the random telegraph framework, introdu-
cing the effect of LRAs on specific steps of the expression program. A recent
model includes dose-dependent parameters that represent the nuclear levels
of TFs – accounting for both their baseline release and the boost provided by
PKC agonist stimulation [Fig. 5d]. In this framework, an active LTR drives
transcription at a basal rate in the absence of Tat. Once Tat is acetylated,
transcription is significantly enhanced. Both in basal and viral regime,
HDACis stimulation further increase the transcriptional output. By cou-
pling the stochastic promoter activity with pharmacokinetic equations, this
integrative model forecast the overall reactivation probability of latent cells
under different LRA dosing regimens and the kinetic patterns of viral
reactivation42. Ultimately, such models serve as quantitative tools for opti-
mizing “shock-and-kill” strategies in HIV cure research – enabling perso-
nalized predictions of LRA efficacy based on the specific transcriptional
blocks a given provirus experiences.
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Personalized medicine is inherently challenged by both inter-
individual and intra-individual variability. This important level of
heterogeneity complicates the direct applicability of traditional
models to predict individual responses. To address this challenge,
advanced modeling strategies must be employed68. One promising
approach is stochastic modeling, which captures population-level
variability and can simulate a wide range of patient responses. In this
context, patient-specific parameterization—where models are fine-
tuned for individual patients or groups with similar characteristics—
proves particularly effective69. Training such models on rich datasets
(e.g., virological, and immunological information, including high-
throughput single-cell transcriptomics and proteomics) enables them
to reflect the unique molecular profile of each patient. Furthermore,
the use of Bayesian methodologies allows for real-time updates70. As
new patient data become available, predictions can be refined con-
tinuously, thereby supporting the ongoing optimization of ther-
apeutic strategies.

Discussion and conclusions
Despite extensive research, significant gaps remain in understanding
the mechanisms that regulate HIV gene-expression, particularly
concerning the transition from latency to active-replication, known
as viral reactivation. These gaps present substantial obstacles to the
development of effective LRAs and the accurate prediction of viral
rebound—defined as the resurgence of detectable virus levels—fol-
lowing ART interruption. One critical challenge is elucidating how
extracellular stimuli impact the MMEs along host-cell DNA and
modulate HIV gene-expression. Host factors, such as TFs, tran-
scriptional machinery components (i.e., GTFs, RNAPII), and epige-
netic editors, play pivotal roles in regulating the activity of the LTR,
shaping its molecular configuration. However, comprehensive models
that integrate how variations in MME at the provirus IS influence
HIV gene-expression dynamics, such as transcriptional burst size and
frequency, are still lacking. Mathematical and computational mod-
eling plays a crucial role in bridging these knowledge gaps, providing
tools to predict and simulate the behavior of latent reservoirs under
different conditions. Modeling helps clarify the interactions between
host factors and viral elements that govern HIV latency and reacti-
vation. By capturing how MME variations affect transcriptional noise
and activation thresholds, models allow researchers to identify key
regulatory mechanisms and predict how latent proviruses transition
to active-replication. This predictive capability is essential for
developing personalized LRAs tailored to target high-risk proviruses
based on their IS and reactivation potential.

The location of IS within the host genome, along with the nature
and frequency of extracellular stimuli, profoundly affects whether a
provirus goes dormant or becomes actively-replicating. Developing a
comprehensive reactivation likelihood map, informed by robust
modeling, that links specific MMEs to the probability of latent pro-
viruses to synthesize Tat and transition to active-replication in
response to stimuli, such as immune activation, would be invaluable.
Such a map, generated through modeling, would enable clinicians to
identify high-risk provirusesmore prone to reactivation and tailor LRA
therapies more effectively.

The MME at the provirus IS is quantitatively determined using a
combination of high-throughput sequencing and advanced compu-
tational analyses. IS sequencing precisely maps the locations where
HIV integrates into the host genome across different cells and tissues,
providing a spatial framework. This mapping is then complemented
by epigenomic profiling techniques such as ChIP-seq, which detects
histone modifications indicative of active or repressive chromatin
states, and ATAC-seq, which measures chromatin accessibility.
Additionally, RNA-seq data help correlate these epigenetic signatures
with transcriptional activity, offering insights into the activity sur-
round the IS. Computational models integrate these
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multidimensional datasets to generate quantitative scores represent-
ing the MME. These scores encompass parameters like DNA
methylation levels, nucleosome positioning, histone mark distribu-
tions, and the presence of regulatory elements such as enhancers or
promoters. While many models have been initially validated using
data from resting CD4+ T cells, recent advances allow them to be
adapted to other HIV-harboring cell types, including macrophages
and tissue-resident cells, by incorporating cell-specific71. Thus, with
comprehensive data integration, these models are broadly applicable
and not confined to specific cell types, enabling tailored analysis of
the MME in diverse biological compartments.

Predicting viral rebound following ART interruption remains a
significant challenge in HIV cure research. While viral reactivation marks
the initial process by which latent proviruses become transcriptionally
active, viral rebound represents the clinical manifestation of renewed
virus replication and detectable levels in plasma. Current predictive
models, largely based on population-level dynamics, often fail to capture
the heterogeneity of proviruses within an individual’s latent reservoir.
Proviruses integrated at different MME may exhibit distinct latency-
reversal rates, complicating accurate predictions of viral rebound.
Mathematical modeling can incorporate data on IS-specific reactivation
potential into viral dynamics models, significantly enhancing predictive

Fig. 3 | HIV molecular microenvironment and basal gene-expression potential.
a Molecular microenvironment (MME) at the provirus integration site (IS).
MMEs represent the epigenetic profile and the cluster of diffusing molecules at
a given genomic location. The epigenetic profile is determined by the level of
DNA methylation and nucleosomes positioning. The molecular cluster is
composed of molecular groups, each regulating specific transcriptional and
post-transcriptional steps. These main groups are the positive and negative
transcription factors (TF+/ TF−) in yellow, positive, and negative elongation
factors (EF+/ EF−) in purple, transcription machinery component in blue, and
epigenetic editors (EE) in green. The cluster composition affects what reaction
would likely rearrange the LTR configuration, and drive splicing and nuclear
export. On the other hand, the epigenetic profile determines the chromatin
thickness and affect the ability of surrounding molecules to interact with the
LTR. b Heuristic representation of MME favorability and allowed MME con-
figurations range. An MME characterized by open chromatin and a favorable
molecular cluster composition would favor gene-expression activity. Different
ISs would experience the formation of different range of MMEs, depending on

the genomic entities populating the location. For example, IS1 represents a
provirus integrated within a repressed region, characterized by the static
unfavorable MME1. This provirus would eventually experience only a negligible
expression activity. Conversely IS2 and IS3 are within expressed regions and
their MME can assume different configurations, allowing, in turn, a variable
range of gene-expression distributions. c Heuristic representation of basal HIV
expression distribution vs IS genomic coordinates and basal HIV expression
potential. The MME characterizing a provirus IS also determines the provirus’
basal activity. This activity is modulated both in terms of average and variability
(noise). ISs within diverse genomic regions would be potentially exposed to
different MMEs depending on the nature of the surrounding genomic entities.
According to this view, the basal gene-expression potential – the area under-
lined by the possible MMEs configurations – is a single-values metric describing
the viral expression energy associated with a single genomic location. d Holistic
representation of basal HIV expression distributions vs MME. The MME at the
provirus IS modulates the basal expression activity. [Created in BioRender.
Palma, P. (2025) https://BioRender.com/4la57ft].
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accuracy. These improved models can guide treatment decisions and
better manage patient expectations

A deeper understanding of the mechanisms by which host factors
regulateHIV transcriptionwill enable thedevelopment of predictivemodels
that map reactivation potential across different genomic regions. Such
models will facilitatemore accurate predictions of time to viral rebound and
support the creation of personalized LRAs targeting high-risk proviruses.
Enhanced modeling approaches also enable the development of in-vitro
systems that accurately simulate latency and reactivation dynamics, pro-
viding a platform to evaluate the efficacy of novel LRAs and optimize
therapeutic strategies.

In pediatric populations, the dynamics of viral reactivation differ sig-
nificantly from adults due to factors such as immune system maturation.
Children, especially infants, havedeveloping immune systems characterized
by higher thymic activity and a greater proportion of naïveT cells compared
to adults. This influences both the establishment and reactivationof theHIV
reservoir. Research indicates that early initiation of ART in children can
reduce reservoir size and lower reactivation risk. However, adherence to
ART remains a critical challenge; adolescents often face adherence

difficulties, leading to higher rates of virological failure and increased risk of
viral rebound compared to adults. Mathematical models that incorporate
age-specific immune dynamics and adherence patterns are necessary to
predict reactivation risk more accurately in children and to design effective
interventions. The EPIICAL consortium’s study on perinatally infected
infants who initiated ART early highlighted that faster CD4 T-cell recon-
stitution correlates with viral load resurgences, emphasizing the complex
interplay between immune recovery and viral reactivation in pediatric
populations72–74.Modeling these interactions offers critical insights into how
immune recovery influences reactivation risk, guiding personalized treat-
ment strategies and improving outcomes.

In conclusion, a thorough understanding of how host factors regulate
HIV transcription, aided by advanced modeling, is crucial for creating
predictive reactivationmaps across various genomic regions. These models
improve predictions of time-to-reactivation and guide the design of per-
sonalized LRAs to target high-risk proviruses. By integrating mathematical
modeling with experimental data, researchers can develop accurate in vitro
models of latencydynamics andLRAeffectiveness,moving closer to the goal
of HIV eradication.

Fig. 4 | HIV gene-expression, Tat feedback-loop, and proviral activation. a HIV
gene-expression model with Tat feedback-loop. In this model the LTR toggles
between an active state LTRON and inactive state LTROFF, with rates kon and koff,
respectively. An active LTR transcribes viral RNA at rate kbasal , which is exported in
the cytoplasm at rate kExp�mRNA . Subsequently, viral proteins are synthesized from
themRNA at rate kP , and the protein Tat is synthesized at rate kTat . Simultaneously,
viral transcripts, Tat and the other proteins are lost by degradation at rate dm; , dTat ,
and dP , respectively. Subsequently, Tat reversibly binds to the LTR at rates kbind and
kunbind forming theTatdLTR complex. ThenTat can be acetylated by the host histone
acetyltransferase p300 at rate kacetyl , and deacetylated by SirT1 at rate kdeacetyl . Finally,
acetylated Tat triggers transactivated HIV mRNA transcription at rate ktransact ,
resulting the release of Tat in its deacetylated form the LTR, where it can be

eventually recycled.bHeuristicmodel illustrating the relationship betweenTTAand
MME favorability at the proviral IS. (Top Panel) A schematic representation shows
how the TTA decreases as the favorability of the MME at the proviral IS increases
(black lines). Due to the intrinsic stochasticity of HIV gene expression, the TTA for
eachMME level is not a single value but rather a distribution—illustrated by the bell-
shaped curves along the x-axis. The gray lines delineate the expected TTA bound-
aries for eachMME,while the shaded regions indicate the range ofMME favorability
associated with two distinct ISs. (Bottom Panel) The lower portion of the figure
displays the dynamics of Tat expression for proviruses subjected to different MME
conditions, demonstrating how variations in MME favorability impact Tat-driven
feedback and viral reactivation. [Created in BioRender. Palma, P. (2025) https://
BioRender.com/s0hgdfm].
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Fig. 5 | LRA synergy theory and in silico simulation of LRA-based therapy. a LTR
state, blocks to transcriptional steps and LRAs. The schematic illustrates the key
transcriptional blocks at the HIV LTR. Basal transcriptional activity is inhibited by
blocks at the initiation step, while elongation blocks cause RNApolymerase pausing.
In this context, LRAs that act as transcription activators are designed to overcome
the initiation blocks, and the ones that act as noisemodulators are intended to relieve
elongation blocks. b HIV gene-expression modulation. HIV gene expression is
characterized by bursting dynamics. Here, the burst frequency, kon , is primarily
governed by the removal or persistence of initiation blocks, whereas the burst size,
kbasal=koff , reflects the extent to which transcription is paused at the elongation
checkpoint. c LRAs synergy. According to the synergy theory, when transcription
activators are applied alone, they shift the system state along a diagonal representing
constant burst size (path 1). In contrast, noise modulators alone increase the burst
size (path 2). When combined, these LRAs act synergistically, producing an

amplified increase in the average transcriptional output (path 3). d HIV gene-
expressionmodel explicitly considering LRAs treatment. This schematic illustrates a
model of HIV transcription incorporating the modulatory effects of LRAs, specifi-
cally PKC agonists andHDACIs. In this framework, the transcription factor NFκB is
released into the cytoplasm at a basal rate kNFkB , a process enhanced by PKCagonists,
φPKCa . NFκB translocate to the nucleus, kImp�NFkB and binds theHIV LTR at rate kon ,
forming the LTR-NFκB complex that initiates basal transcription, kbasal . HDACIs
further amplify this transcriptional activity, φHDACI , by altering chromatin structure.
The transcribed HIVmRNA is exported to the cytoplasm, kExp�mRNA and translated
into viral proteins (kP), including Tat, kTat . Deacetylated Tat is imported into the
nucleus, kImp�Tat , binds the active LTR, kbind , and undergoes acetylation, kacetyl . The
acetylated Tat-LTR complex significantly enhances transcription (ktransact), estab-
lishing a positive feedback loop that drives robust viral gene expression. [Created in
BioRender. Palma, P. (2025) https://BioRender.com/ygeoibo].
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