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Prostate cancer is the second leading causeof cancer-related death amongAmericanmen,with a new
diagnosis made every 2min in the United States. Advanced cases are commonly treated with
androgen deprivation therapy (ADT). Despite its effectiveness, treatment failure remains inevitable for
many patients, necessitating better predictive tools for clinical management of disease. This study
presents a data-driven mathematical modeling approach that integrates patient-specific prostate-
specific antigen (PSA) time-course data with experimentally measured PSA expression rates to
improve the prediction of ADT failure. Our findings suggest that post-nadir PSA dynamics, rather than
initial decline, hold greater prognostic value and can inform PSAmonitoring schedules. By employing
virtual clones of individual patients, our model integrates routinely collected PSA measurements to
dynamically predict ADT failure probabilities at future clinic visits. If implemented in clinical practice,
this personalized framework could empower oncologists to make proactive, informed treatment
decisions and guide timely interventions.

Recent statistics from the American Cancer Society highlight alarming
trends in prostate cancer (PCa), which ranks as the most commonly diag-
nosed and second-deadliest cancer among men in the United States. These
data indicate a significant rise in PCa incidence, along with notable racial
and economic disparities1. Furthermore, projections from a Lancet
Commission2 suggest that the global number of PCa cases will more than
double in the next two decades, with deaths expected to rise from375,000 in
2020 to an estimated 700,000 by 2040. These statistics underscore a critical
need for improvements in screening, early diagnosis, and better prediction
of recurrence post-treatment.

PCa is a complexdisease characterizedby cancer cells that express high
levels of the androgen receptor gene, which encodes the androgen receptor
and drives hormone dependency in early-stage PCa3. Consequently,
androgen deprivation therapy (ADT) or hormone therapy has been a pri-
mary management strategy for PCa for over 80 years4. However, in its
advanced stages, PCa cells often display amplification and/or mutation of
the androgen receptor, leading to treatment failure and recurrence4,5.

PCa cells secrete prostate-specific antigen (PSA), a serine protease that
is transcriptionally activated by the androgen receptor5. Serum PSA levels,
commonly elevated in men with PCa, serve as the primary biomarker for

detecting anddiagnosing thedisease.However, serumPSAcorrelates poorly
with tumor burden due to delays between tumor growth and PSA6, posing a
challenge for physicians in accurately assessing the response of patients to
therapy7. Despite these limitations, the simplicity of measuring serum PSA
continues to support its use as a prognostic tool for treatment response and
metastasis development.

Given the challenges of directly correlating PSA levels with tumor
size, we develop a data-drivenmathematicalmodeling approach to better
understand what information can be reliably gleaned about individual
patients fromminimal PSA time-course data. Ourmodel approach helps
clarify the limitations and potential of PSA data in predicting the
response of an individual patient’s tumor to ADT. Additionally, our
approach investigates the optimal timing and frequency of PSA mea-
surements to maximize their prognostic utility. We also forecast ADT
failure and patient-specific, progression-free survival (PFS) times,
enabling oncologists to proactively plan alternative treatment strategies.
Importantly, we extend our findings to a diverse patient cohort, identi-
fying tumor-specific characteristics that have a significant impact on PFS
times. This key finding underscores the broader applicability and
potential of our model in clinical oncology.
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Indeed, a wealth of mathematical models of PCa growth and control
have been proposed, spanning the spectrum from purely theoretical
investigations to data-driven approaches with clinical applications.Many of
these models focus on optimizing hormone-based treatment schedules and
estimating the time of treatment failure; for a review, see ref. 8. Of note,
Brady et al.9 employ a mathematical model calibrated and validated with
longitudinal PSA data from individual patients to simulate and predict the
dynamics of PCa stem and non-stem cells during intermittent ADT. Their
analyses reveal dynamics associated with treatment resistance and suggest
ways in which PSA dynamics can be utilized to personalize therapy and
prolong the time to progression. A significant recent study10, published after
the review conducted in8, presented a new evolutionary perspective on
mathematical methods for predicting treatment failure using PSA and
androgen data from a clinical trial of intermittent ADT. They proposed two
new biomarkers with high predictive accuracies for ADT resistance. Taking
amore theoretical approach, Phan et al.11 apply three distinctmodels as case
studies to examine the identifiability and uncertainty of model parameters.
They discovered that PSA time-course data generally fail to uniquely
determine model parameters, with even identifiable parameters showing
significant uncertainties.

The work presented here adds unique value to the current literature in
several ways. First, although some previous studies have explored model
identifiability, they have yet to take the next logical step of applying this
information toward enhancing model predictions. Moreover, while many
modeling studies use individual PSA profiles to forecast treatment failure
timelines, we take a novel approach by combining patient-specific PSA
time-course data with experimentally measured PSA expression data. This
integration enables the generation of realistic virtual patient clones, allowing
us to predict tumor volume fold change (TVFC) and PSA levels at the time
of ADT failure. We then extend our investigations to a more diverse virtual
cohort to uncover broadADT failure trends and quantify which parameters
are drivers of PFS. Our innovative application of the model to evaluate the
impact of PSAmeasurement timing onADT failure demonstrates its ability
to integrate seamlessly with routine clinical workflows, providing dynamic
predictions of ADT failure probability for upcoming patient appointments.

Results
PSA expression data
Figure 1 shows the PSA levels per cell for an androgen-sensitive (LNCaP)
and castration-resistant (CR) (C4-2B) cell line for various concentrations of
a synthetic androgen (R1881) that approximates concentrations of dihy-
drotestosterone (DHT) in vivo. These data are used to estimate the rates of
PSA expression per cell under androgen-rich and androgen-deprived
conditions for androgen-sensitive (ρn) and CR (ρm) cells (see Eq. 3). Ranges
within one standard deviation for values of ρn and ρm are summarized in
Table 1. We note that the PSA expression data for 0nM concentration of

R1881 was ignored in these calculations because this would mimic perfect
androgen deprivation, which is unlikely to be achieved in practice.

We used the 0.1 and 1 nM doses of R1881 to estimate the range of
values for α = ρm/ρn and derived virtual clones of our six patients as
described in the Methods. These doses represent biologically realistic levels
of androgens under ADT conditions.

Simple model accurately predicts PSA dynamics across diverse
patient profiles
We fit the four model parameters to patient-specific PSA time-course data
and perform profile-likelihood analysis (see “Methods” section “Parameter
profile-likelihood analysis”) to determine 95%confidence intervals (CIs) for
each parameter for each patient. Results for a representative patient
(UM10001) are shown in Fig. 2, and the results for all other patients can be
found in the supplementary information (Supplementary Figs. S1–S5).
Figure 2b–e plots the negative log-likelihood (NLL) as a function of the fold
change in each profiled parameter. The horizontal line in Fig. 2b–e is the
95% CI threshold, and the parabola is the profile-likelihood curve of the
parameter on the x-axis. Taken together, these results show that all model
parameters are identifiable from PSA data.

Wealsoperformedprincipal component analysis (PCA) tounderstand
the relationships and identify inherent correlations between the four para-
meters that define the six patients in our clinical cohort. We found that
tumor growth rates donot primarily distinguish patients in this cohort, with
net PSA expression rates (rN and rM) being the dominant factors (see
Supplementary Fig. S6).

PSA fold change is a poor predictor of tumor burden
Figure 3 shows themean and standard deviation of the predictedTVFC (see
Eq. 6) from the start of ADT to clinically determined progression to cas-
tration resistance. These values are plotted against the PSA fold change over
the same period for the virtual clones of six clinical patients. Notably, small
PSA fold change values can correspond to either large or small tumor
volumes, highlighting the limitations of PSA fold change as a reliable
indicator of tumor response to ADT.

Although PSA fold change is an unreliable biomarker for ADT-driven
tumor volume dynamics, our mathematical model, informed by patient-
specific PSA time-course data and experimentally measured PSA

Fig. 1 | Impact of the synthetic androgenR1881 on
prostate-specific antigen (PSA) production of
prostate cancer cell lines. Prostate cancer cells C4-
2B (a) and LNCaP (b) were treated in triplicates with
R1881 at afinal concentration of 0, 0.1, 1, and 10 nM.
Forty-eight hours after treatment with R1881, con-
ditionedmediawas harvested andmeasured for PSA
by ELISA, and the cells were harvested and counted.
Data shows the means ± SEM, * denotes p value
< 0.05 versus LNCaP 0.1 nM.

Table 1 | Range of PSA expression per cell for castration-
resistant (M) and androgen-dependent (N) cells

R1881 dose ρm ρn

0.1 nM, 1 nM [4.50E-04, 1.58E-03] [1.81E-03, 3.59E-03]

10 nM [1.13E-03, 1.82E-03] [1.64E-03, 2.23E-03]
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expression, predicts—and quantifies the uncertainty in—TVFC measured
from the start of ADT to the onset of castration resistance for individual
patients. As can be seen from Fig. 3 (vertical axis), there is significant
variability in tumor volume responses to therapy at the level of an individual
patient. For instance, patient UM10001’s average tumor volume at ADT
failure is more than 100% larger than at treatment initiation, whereas
UM10003 and UM10099 exhibit substantial tumor reductions despite
treatment failure. Since PSA alone fails to capture these diverse tumor
responses, model-based analysis is essential for accurately assessing treat-
ment impact, providing a more meaningful measure of tumor progression
than PSA readouts alone (see also Supplementary Fig. S7).

Progression-free survival analysis of a heterogeneous
population
To complement the earlier results derived from the virtual clones of six
patients with clinical data, we conducted a PFS analysis on a more diverse
population beyond the limited clinical dataset. Specifically, we generated a
heterogeneous virtual cohort of 6000 patients, as detailed in “Methods”
section “Virtual patients,” and predicted tumor growth and PSA dynamics
for each individual in the cohort. Figure 4a shows the PFS curve, repre-
senting the fraction of the virtual cohort remaining progression-free over
time, while the accompanying table indicates howmany patients remained
therapy-failure-free at each time point. Our analysis reveals that nearly 50%
of patients experience therapy failure within the first year, while less than
20% remain progression-free after 3 years.

Figure 4b further supports thesefindings by illustrating thedistribution
of ADT failure times across the cohort.Most patients fail treatmentwithin 3
years, and only a small subset exhibits limited disease progression beyond 6
years. Our findings emphasize the variability in treatment responses within
a heterogeneous virtual population and demonstrate the utility of our
approach in identifying rare outcomes, such as patients who benefit sub-
stantially from therapy by experiencing very late treatment failure.

Figure 5a shows the parameter distributions for the 6000 virtual
patients in our heterogeneous cohort, revealing three natural clusters (low,
medium, high) for each of the four tumor growth parameters. This obser-
vation led us to investigate differences in PFS among these parameter-based
groups. To ensure balanced group sizes and avoid dealing with propensity
scorematching, we selected a subset of 3000 patients—1000 patients each in
the low, medium, and high ranges.

Figure 5b–e compares PFS across these clusters. Notably, rM (net PSA
expression at the start of ADT) and μonM (net growth rate under ADT) of the
CR cells strongly influence PFS, as evidenced by the distinct responses in Fig.
5d, e. Low values of rM and μonM yield median PFS times of 1.5 and 6.4 years,
respectively, whereas high values reduce PFS to 0.34 and 0.67 years, under-
scoring the dominant effect ofμonM ondisease progression. Because rM encodes
the initial populationofCRcells (Eq.3), these results suggest that although this
initial cell burden matters, CR cell growth rate is far more critical.

In contrast, the corresponding androgen-dependent (AD) cell para-
meters exert minimal impact on patient outcomes (Fig. 5b, c). This finding
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Fig. 2 | Parameter estimation and identifiability. a Best fit (blue curve) of model
parameters (μonn ; μonm ; ρn; and ρm) to PSA serum time-course data for patient
UM10001 (red asterisks). The data point associated with ADT failure is circled.
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to the clinically determined progression to castration resistance across virtual clones
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implies that earlyPSAdeclines followingADThave limitedprognostic value
beyond confirming that most of the tumor is AD.

ADT-induced initial decline inPSAhas limitedpredictive value for
ADT failure timing
The above results suggest that ADT-induced decreases in PSA levels may
not reliably predict therapy failure times. To explore this further, we
focus on virtual clones of patients in our clinical dataset. For each patient,
we examine how the number and timing of PSA measurements taken
prior to the serum PSA nadir affect the model’s predictions of time to
ADT failure.

Using the orthogonal design strategy outlined in the section “Ortho-
gonal design,” we introduced up to three theoretical PSA measurements
between the start of ADT and the PSA nadir for each patient. We also
sequentially added clinical PSA measurements taken after the nadir.
Incorporating additional post-nadir PSA measurements mimics how the
predictive model evolves alongside a patient’s clinical management. With
each clinic visit and additional PSAdata, uncertainty in parameter estimates
decreases, and consequently, the model’s accuracy in forecasting ADT
failure improves. This process is visualized in short movies (see Data
Availability statement), which show how successive post-nadir PSA mea-
surements refine the predicted failure times by reducing the uncertainty in
the selection of a patient’s virtual clones.

Figure 6 presents screenshots of these movies for two randomly
selected patients, UM10001 (top row) and UM10035 (bottom row). Each
panel for a givenpatient corresponds to a row in theorthogonal designTable
4 and displays the PSA time courses and the predicted versus actual ADT
failure times for each patient clone. In each panel, the yellow dashed line
marks the earliest time of ADT failure among all clones of the patient, while
the PSA time courses for individual clones are shaded yellow from the point
of their respective ADT failures. Serum PSA at the actual time of clinical
progression is marked by two concentric circles. The panels correspond to
distinct experimental protocols outlined in the orthogonal design trial table,
with “known” PSA data shown as black asterisks and “future” PSA data as
red asterisks. The selected snapshots illustrate instanceswhere the predicted
ADT failure time remained unchanged despite incorporating additional
post-nadir PSA measurements (red asterisks). Similar screenshots for all
other patients are available in the Supplementary Information (Supple-
mentary Figs. S9–S12).

For all patients, the prediction of ADT failure time is unaffected by the
number of measurements taken before the PSA nadir. These findings
suggest that pre-nadir PSA measurements have minimal influence on the
accuracy of ADT failure time predictions.

Capturing PSA levels post-nadir enables accurate predictions of
time to ADT failure
Wenow examine how the number and timing of PSAmeasurements taken
after the PSA reaches its nadir influence the model’s predictions of time to
ADT failure for patients in the clinical dataset.

Using the orthogonal design strategy outlined in the section “Ortho-
gonal design,” we introduced up to six theoretical PSA measurements,
equally spaced between the PSA nadir and the final clinical PSA measure-
ment for each patient. Clinical PSAmeasurements before the nadir were left
unchanged. As in the previous subsection, we sequentially added theoretical
post-nadir measurements to mimic how the predictive model evolves
alongside a patient’s clinical management. ADT failure times were com-
puted for each clone and each patient. As before, the model’s accuracy in
forecasting ADT failure improved with each additional PSA data point
collectedduring the theoretical clinic visits. Theprocess is visualized in short
movies (see “Data availability” statement).

Figure 7 presents screenshots from these movies for a randomly
selected patient (UM10003). As before, each panel corresponds to the
indicated row number in the orthogonal design table (Table 3) and displays
PSA time courses and the predicted time of ADT failure for each patient
clone. Our model also predicts the probability that the patient will be
determined to have progressed to ADT failure at each future clinical visit,
with these probabilities displayed directly below the planned visit times in
each panel. These probabilities are calculated as the percentage of virtual
clones that will fail treatment at each respective visit. Similar screenshots for
all other patients are available in the Supplementary Information (Supple-
mentary Figs. S13–S17).

Taking Panel 1 in Fig. 7 as an illustrative example, we see that with five
PSA measurements post-nadir, the model predicts with 100% confidence
that thepatientwill failADTby thenext visit, aligning closelywith the actual
failure time (two concentric circles). Similarly, the other panels demonstrate
that themodel canmaintain high confidence in predicting treatment failure
even with fewer post-nadir PSA measurements. For instance, in Panel 2,
with just a single PSA measurement post-nadir, the model predicts with
100%confidence that thepatientwill failADTat the second scheduled clinic
visit from the present time. This prediction would provide the treating
clinician with ample notice of likely disease progression. In general, highly
probable predicted ADT failure times align closely with actual failure times,
with slight discrepancies arising from the fact that themodel uses theoretical
PSA measurement times rather than the exact timing of patient visits.

These results are qualitatively consistent across all patients in the study,
suggesting that our simple model is representative of actual patients and
possesses good predictive value.

Fig. 4 | Progression-free survival and distribution of ADT failure times in a
heterogeneous virtual patient cohort. a The progression-free survival (PFS) curve
showing the fraction of the virtual patient cohort remaining progression-free over
time. The accompanying table shows the number of patients for whom therapy had

not failed at each time point. b Distribution of ADT failure times across the cohort,
highlighting the variability in patient responses. Vertical black lines represent the six
patients in the clinical dataset.
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Fig. 5 | Tumor-specific characteristics mediate therapy failure in virtual patient
cohorts. a Distributions of the four tumor growth and PSA expression parameters
characterizing the heterogeneous virtual patient cohort, showing natural clustering
into groups with low, medium, and high parameter values. Vertical back lines

indicate maximum likelihood parameter values for the six patients in the clinical
dataset. b–e Progression-free survival curves for virtual patients stratified by low,
medium, and high ranges of each parameter. The accompanying table shows the
number of patients for whom therapy had not failed at each time point.
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Fig. 7 | Predictive power of post-nadir PSA increase. Patient UM10003. The eight
panels correspond to the indicated row numbers in the orthogonal design trial table
(Table 3). Dark gray asterisks represent the “known” data points used to inform
model parameters. Red asterisks indicate “unknown” data points that have not yet
been incorporated into the model. The last gray asterisk represents the present time.
The gray asterisk within a single circle denotes the clinically measured PSA nadir,
and the red asterisk within two concentric circles marks the time of clinical failure.

The yellow vertical dotted line represents the earliest predicted ADT failure time.
The yellow shaded area indicates the 95% confidence interval during the period
when treatment failure is predicted. The light gray shaded area represents the 95%
confidence interval before therapy meets the failure criterion. Bar plots below each
panel indicate probability that the patient will be determined to have progressed to
ADT failure at each future clinical visit.

Fig. 6 | Limited predictive power of pre-nadir PSA decline. a Patient UM10001
and b patient UM10035. The four panels correspond to the rows in the orthogonal
design trial table (Table 4). Dark gray asterisks represent the “known” data points
used to informmodel parameters. Red asterisks indicate “unknown” data points that
have not yet been incorporated into the model. The last gray asterisk represents the
present time. The gray asterisk within a single circle denotes the clinically measured

PSA nadir, and the red asterisk within two concentric circles marks the time of
clinical failure. The yellow vertical dotted line represents the earliest predicted ADT
failure time. The yellow shaded area indicates the 95% confidence interval during the
period when treatment failure is predicted. The light gray shaded area represents the
95% confidence interval before therapy meets the failure criterion.
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Discussion
This study presents a data-driven mathematical modeling approach that
integrates patient-specific PSA time-course data with experimentally mea-
sured PSA expression to predict tumor volume dynamics and ADT failure
times in PCa patients. This approach is particularly crucial given the pro-
jected global rise in PCa incidence2 and the well-documented limitations of
relying solely on PSA profiles for prognosis6,12,13. By bridging these gaps in
current clinical practice, ourmodel provides a basis formore individualized
patient care and a deeper understanding of disease progression.

Our findings indicate that inter-patient variability in serum PSA
dynamics is driven primarily by differences in PSA expression rates at the
onset of treatment, rather than by tumor growth rates under androgen
deprivation. This aligns with earlier work6, which demonstrated that
variability in PSA production rates can lead to significant differences in
serum PSA levels among patients with similar tumor burdens. Some
mathematical models of ADT have incorporated distinct PSA expression
rates for different cancer cell types10,14, whereas others have assumed uni-
form expression rates9,15, potentially overlooking clinically relevant inter-
patientdifferences.Consistentwith recentfindings16, our results suggest that
failing to account for PSA production variability may lead to an over-
estimation of its prognostic value. Furthermore, we show that PSA fold
change during treatment is an unreliable surrogate for tumor burden,
underscoring the need for complementary biomarkers or modeling
approaches to improve treatment evaluation and decision-making.

Through a virtual patient cohort analysis, we identified substantial
variability in TVFC at the time of ADT failure: some patients failed at
smaller tumor burdens than they had at treatment initiation, whereas others
progressed with larger tumors. This broad range of outcomes is consistent
with clinical findings in ref. 17, which showed that prostate volumes in
patients undergoing ADT could decrease by up to 28% or increase by as
much as 38%. We have previously demonstrated7 that changes in serum
PSA levels, including treatment-induced declines, can also correlate with
both tumor growth and shrinkage. This can be due to delays in PSA pro-
duction, intratumoral heterogeneity, tumor vascularmorphology, andother
biological factors6,18,19. Consequently, PSA alone may not reliably capture
true disease status.

Clinical evidence further supports the prognostic value of tumor
volume, with studies showing that tumor size at radical prostatectomy and
tumor-to-prostate volume ratios predict postoperative recurrence20, while
whole-body tumor volume estimates derived via PET imaging are sig-
nificant predictors of overall survival in advanced disease21. These findings
suggest that incorporating tumor volume measurements into our model—
alongside PSAdynamics—could enhance its predictive power, resulting in a
more comprehensive framework for oncologists to interpret PSA trends and
anticipate treatment outcomes.

The virtual patient cohort analysis also yielded population-level
insights into PFS under ADT. PFS varied widely, primarily driven by the
growth rate of CR cells and, to a lesser extent, their initial abundance at
therapy onset. Our framework also identified “rare” subpopulations with
exceptionally long PFS, underscoring its potential to guide more persona-
lized treatment. Notably, the median PFS in our full virtual cohort was
around 1 year—shorter than the 2–3 years reported clinically22. However,
sub-cohorts with medium-to-low CR cell proliferation rates or low PSA
expression at ADT onset had median survival times of at least 2 years. This
discrepancy suggests that the real-world population likely skews toward
these more favorable parameter ranges, whereas our full virtual cohort—
derived from a limited set of six clinical patients—overrepresents more
aggressive disease characteristics. As we incorporate additional patient data,
we expect these population-level estimates to align more closely with
observed clinical outcomes.

Our analysis of PSA measurement timing highlights a critical insight:
that the initial PSA decline after ADT offers limited prognostic value,
allowing clinicians to avoid intensivemonitoring during this phase. Instead,
measurements taken shortly after the nadir are farmore predictive of future
ADT failure, highlighting the importance of post-nadir dynamics.

Moreover, our model seamlessly integrates into clinical workflows: as PSA
data become available during routine check-ups, it dynamically estimates
the probability of ADT failure by the next visit. This real-time forecasting
capability enables oncologists to anticipate treatment outcomes and plan
interventions proactively, ultimately improving patient care and decision-
making.

A major strength of our computational framework lies in its ability to
forecast the likelihood of ADT failure in real time, before patients return to
the clinic. To keep computations efficient and maintain high confidence in
parameter estimates, we made several simplifying assumptions. For
instance, we treated the tumor as comprising only two populations—AD
and CR cells—despite the well-known genetic and epigenetic heterogeneity
of human PCa. Given the challenges of inferring numerous subclones from
PSA data alone, these two populations were used to represent an “average
phenotype.”

We also assumed constant PSA expression rates throughout treatment
and immediate suppression of androgen levels by ADT. In clinical settings,
PSAproduction ismore variable, andADTeffects can be gradual. Adjusting
these assumptions in future studies is straightforward and could further
refine our model. Finally, because our work focuses on continuous therapy,
we neglected intercellular competition: under continuous ADT, CR cells
eventually outgrowAD cells. Should we explore adaptive therapy protocols,
competition dynamics would likely become more important and warrant
reintroduction into the model23.

Overall, this study advances our understanding of PSA dynamics by
integrating patient-specific PSAprofiles with experimentallymeasured PSA
expression rates. Unlike prior approaches, it offers novel insights into tumor
burden and PFS, reinforcing the utility of patient-specific modeling for
precision oncology. Future work will expand the model’s capabilities by
including additional biomarkers (e.g., genetic or molecular data) and vali-
dating its predictive power in prospective clinical trials. By filling key gaps in
monitoring and decision-making strategies, our findings underscore the
potential of mathematical models to enhance prognostic accuracy, guide
timely interventions, and ultimately improve patient outcomes.

Methods
Model development
We develop a mathematical model for PCa growth, with cancer cells
assumed to grow exponentially when untreated. We further assume the
presence of a small population of CR cells in the treatment-naive tumor,
with the majority of the tumor mass comprising AD cells. Under this
assumption, themodel equations forADandCRcells prior to treatment are:

dN
dt ¼ α off

n N � δoffn N ¼ μ off
n N ) NðtÞ ¼ ND e

μoffn ðt�tDÞ;
dM
dt ¼ α off

m M � δoffm M ¼ μ off
m M ) MðtÞ ¼ MD eμ

off
m ðt�tDÞ:

ð1Þ

Here,N(t) andM(t) are the numbers of AD and CR cells at time t. The
above equations are valid for tD ≤ t ≤ tXwhere tD is the time of diagnosis and
tX is the time at which treatment, in the form of ADT, is initiated. The
proliferation and death rates for each cell type under androgen-rich con-
ditions are α off

i and δ off
i , i = n,m, with μ off

i ¼ αoffi � δoffi > 0 representing
their net growth rates. ND andMD represent the initial populations of AD
and CR cells, respectively, at time tD.

The model equations for AD and CR cells, after ADT is initiated, are:

dN
dt ¼ α on

n N � δonn N ¼ μ on
n N ) NðtÞ ¼ NX e

μonn ðt�tX Þ;
dM
dt ¼ α on

m M � δonm M ¼ μ on
m M ) MðtÞ ¼ MX e

μonm ðt�tX Þ:

ð2Þ

The above equations are valid for t≥tX. The proliferation and death
rates for each cell type under ADT are α on

i and δ on
i , i = n, m, with μ on

i ¼
αoni � δoni representing their net growth rates.Under therapy,wewill expect
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μ on
n < 0 and μ on

m > 0.NX andMX represent the initial populations ofADand
CR cells, respectively, at the start of therapy. Note that NX and MX can be
determined from Eq. (1) as follows: NX ¼ NDe

μoffn ðtX�tDÞ

andMX ¼ MDe
μoffm ðtX�tDÞ.

For simplicity, serum PSA concentration is assumed to be a linear
combination of the N andM cells:

PðtÞ ¼ ρnNðtÞ þ ρmMðtÞ ¼ rne
μonn ðt�tX Þ þ rme

μonm ðt�tX Þ: ð3Þ

where ρn and ρm are the PSA production rates per AD and CR cell,
respectively, and rn = ρnNX and rm = ρmMX.

We note that the off-treatment model Eq. (1) is included here only for
completeness. Because our analysis focuses exclusively on continuous ADT
administration, the off-treatment parameters μ off

n and μ off
m donot influence

the results presented, and are consequently not estimated.
Finally, in this modeling framework, we do not explicitly include

competition betweenADandARcells (as in ref. 23), since such competition
terms typically represent the fitness cost of resistance and would be relevant
in intermittent treatment scenarios (e.g., adaptive therapy). Here, our ana-
lysis focuses exclusively on continuous ADT, where these competition
dynamics are less pertinent.

Experimental data
PCa cell lines LNCaP andC4-2Bwere used as they are androgen-responsive
and androgen-independent cell lines24, respectively, to reflect these aspects
of PCa. The cells were plated in triplicates in 12-well plates (Corning,
Corning, NY) at an initial cell density of 3 × 105 cells per 1mL in each well.
On the following day, cells were treated with a 1 μM stock solution of the
synthetic androgen R1881 (Millipore Sigma, Burlington, MA) to a final
concentration of 0, 0.1, 1, or 10 nM. Forty-eight hours after treatment with
R1881, conditioned media and cells were harvested. Cells were quantified
using a Countess II automated cell counter (Life Technologies, Carlsbad,
CA). PSA was measured in the conditioned media (in duplicates) using the
Human Kallikrein 3/PSA Quantikine ELISA Kit (R&D Systems, Minnea-
polis, MN) per the manufacturer’s directions. The PSA values were com-
pared as ng/mL (the original result from the ELISA) and ng/cell (ELISA
result divided by the cell count at the time of harvest). Statistical significance
was determined using one-way ANOVA and Fisher’s Least Significant
Difference for post-hoc analysis.

Clinical data
Patients were selected from a Human Subjects Internal Review Board-
approved de-identified internal retrospective database of genomically
sequenced PCa patients withmetastatic disease. The patients were screened
for having initiated ADT and if they had increasing PSA values at least a
week apart. Clinical characteristics of patients included in this study are
summarized in Table 2. This study involves analysis of pre-existing de-
identified patient data, and no newdata collection fromhuman subjectswas
conducted specifically for this work.

Parameter profile-likelihood analysis
To determine the practical identifiability of our model parameters given
each set of patient data, we use the profile-likelihood method described in
refs. 25,26. Practical identifiability examines how real-world data affects our
ability to uniquely estimate model parameters and is a means to quantify
uncertainty in parameter estimates. Briefly, this approach “profiles” a single
parameter by holding it fixed across a range of values, and estimating all
remaining parameters for each fixed value of the parameter of interest. The
likelihood profile for the fixed parameter is generated by identifying the
maximumvalue of the likelihood function (or the lowest value of the sumof
squares if employing least squares, which is equivalent to the NLL) for each
specific parameter value.

We also use the likelihood profiles to calculate likelihood-based 95%
CIs for each parameter. Specifically, the 95% confidence region for the ith
parameter is defined as the set encompassing all permissible values for this
parameter, as outlined below:

θi∣ 2ðLLðθ�i Þ � LLðθiÞÞ <Δ0:95

� �
with Δ0:95 ¼ χ2ð0:95; df Þ:

ð4Þ
Here, LL is the log-likelihood function, θ�i is the best-fit value of the

model parameter θi, the threshold Δ0.95 is the 0.95 quantile of the χ2-dis-
tribution, and df is the total degrees of freedom, that is, the number ofmodel
parameters. Specifically, we assume that as we profile a parameter, twice the
difference in log-likelihood is a chi-squareddistribution. Formoredetails on
how to compute these likelihood-based CIs, we refer the reader to ref. 27. In
our case, these CIs are computed with df = 4 and assuming the error in PSA
measurement data follows the standard normal distributionwith zeromean
and standard deviation σ = 8% of the measured value, as reported in ref. 28.

Virtual patients
In our computational framework, each “virtual” patient undergoingADT is
determined by four positive parameters:�μ on

n , the (negative)net rate ofAD
cell growth under ADT; μ on

m , the net rate of CR cell growth under ADT; rn,
the net level of PSA expression by AD cells at the start of ADT; and rm, the
net level of PSA expression by CR cells at the start of ADT.

Virtual clonesordigital twins29 of eachof our six patients are constructed
byconsideringall possible combinationsof themodelparametersμ on

n ,μ on
m , rn

and rm, that lie within their respective 95% likelihood-based CIs, as deter-
mined fromfitting to PSA time-course data. In addition, we define α(=ρm/ρn)
as the relative rateofPSAexpressionbyCRversusADcells, anduse it as afifth
parameter for our virtual patient. α is sampled uniformly from its mean plus
or minus one standard deviation, and is estimated from PSA expression data
as described in the section “PSA expressiondata.”Thus, each virtual patient is
represented by a vector of sampled values for these five parameters.

To create a more representative and diverse set of virtual patients,
reflecting a broader real-world population beyond the initial six individuals,
we independently sample the likelihood-informedparameter ranges for each
of the fourmodel parameters (ρn; ρm; μ

on
n ; μonm ). Specifically, we sample these

parameters one thousand times from their respective distributions for each
patient, resulting in six thousand values for eachparameter.We then employ

Table 2 | Clinical characteristics of patients

Gleason PSA at diagnosis PSA nadir
ID Age Ethnicity Race Score TNM stage ng/mL ng/mL

UM10001 67 NH C 9 T4N1M1 2.40 0.32

UM10003 53 NH C 9 TxNxM1 114.10 <0.01

UM10029 62 NH C 7 TxNxMx 7.96 0.1

UM10035 61 NH C 9 T2N1M0 9.48 <0.01

UM10055 62 NH C 7 TxN1Mx 9.20 0.1

UM10099 59 NH B 9 TxNxMx 285.70 10.8

NH Non-Hispanic, C Caucasian, B Black.
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Latin Hypercube Sampling to randomly group these parameter values,
creating a matrix 6000 × 4, each row of which represents a virtual patient.

Criteria for ADT failure
Following clinical protocols30,31, a virtual patient in our simulations fails
ADT when all three criteria are met:
a. The current PSA level is 25% higher than that at the nadir.
b. The current PSA level is 2 units (ng/mL) higher than that at nadir.
c. There have been at least two consecutive increases in the PSA

measurement.

Principal component analysis
We take individual patient parameters μ on

n , μ on
m , rn and rm as variables for

the PCA. Given that these parameters vary in units and magnitudes, we
standardize each variable by subtracting its mean and dividing by its stan-
dard deviation. This z-score normalization ensures that each parameter
contributes equally to the analysis, thereby avoiding any bias due to scale
differences.

zij ¼
θij � �θj

σ j
; ð5Þ

where θij is the ith value of the parameter θj, and �θj and σj are the mean and
standard deviation of parameter θj across all patients. The PCA was
implemented using thePCAfun function inMATLAB,whichuses singular
value decomposition to calculate the principal components.

Tumor volume fold change
We calculate the TVFC from the start of ADT (at time t = tX) to the clinical
determinationof progression to castration resistance (at time t = tC) for each
virtual patient clone as follows.

TVFC ¼ # of tumor cells at castration resistance
# of tumor cells at start of ADT

¼ NXe
μon
N

ðtC�tX Þ þMXe
μon
M

ðtC�tX Þ

NX þMX

¼ α rne
μon
N

ðtC�tX Þ þ rme
μon
M

ðtC�tX Þ

α rn þ rm
;

ð6Þ

where α = ρM/ρN is the ratio of PSA expression rates by CR and AD cells as
determined in the section “PSA expression data.”

Orthogonal design
We used an orthogonal design study32 to assess the impact of increasing the
number of clinical PSA measurements prior to its nadir on our model’s
ability topredict the time to androgenablation failure for a givenpatient.We
alsoused anorthogonal design study topredict timesofADTfailure for each
virtual patient based on equally spaced PSA measurements made after
its nadir.

Orthogonal design is an experimental methodology employed in
various fields, including operations research and healthcare33, to structure
experiments such that the effects of different factors can be independently
estimated without confounding. This approach emphasizes providing
maximum information with a minimal number of experiments.

To evaluate the impact of post-nadir PSA measurements on the
model’s ability to predict the time to androgen ablation failure, we assumed
six equally spaced possible measurement times post-PSA nadir and prior to
clinical failure for each virtual patient (pos1 through pos6), resulting in the
design Table 3 (six effects with two levels: 1 indicating a PSAmeasurement
was taken and 0 indicating a PSA measurement was not taken). With the
orthogonal study design, we need to test only 8 out of the 63 possible PSA
measurement schedules, significantly reducing the computational burden,
given that each patient in our study has 1000 digital twins, whose PSA
measurements are simulated in thismanner. Clinical PSAmeasurements at
these theoretical time points were approximated using the best-fit para-
meters from Eq. (3) for each patient.

To evaluate the impact of capturing the initial decline in PSA following
ADT, that is, early pre-nadir PSA measurements on the model’s ability to
predict the time to androgen ablation failure, we assumed three possible
measurement times pre-PSA nadir for each virtual patient (pos1 through
pos3), resulting in the design Table 4 (three effects with two levels: 1 indi-
cating a PSAmeasurement was taken and 0 indicating a PSAmeasurement
was not taken). The time intervals between these measurements were
patient-specific, with each time step representing an equivalent reduction in
PSA levels. To ensure consistency when comparing patients, the clinically
measured data points strictly between PSA at ADT onset and PSA nadir
were removed from this analysis.

Data availability
Thedatasets (movies) generatedduring the current study are available in the
GitHub repository, https://github.com/hjain-umduluth/PSADynamics_
ADT_2024.

Code availability
The underlying code for this study is posted on the GitHub repository
https://github.com/hjain-umduluth/PSADynamics_ADT_2024.
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