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Next generation lineage tracing and its
applications to unravel development

Check for updates

Spencer Short1,2, Rodrigo García-Tejera3, Linus J. Schumacher4,5 & Daniel L. Coutu1,2

Lineage tracing remains an essential approach towards understanding cell fate, tissue formation, and
humandevelopment.Herein,we reviewadvancements in lineage tracing techniques, the integrationof
sequencing and imaging technologies, and computational tools for analysis. We report on recent
lineage tracing applications, including integrative techniques (MADM-CloneSeq), in situ hybridization
(DART-FISH), and modern workflows (BaSISS), which hold an essential role in our aim to unravel
lineage hierarchies and, ultimately, human development.

Lineage tracing cannot be defined in terms of a single technique or
approach, but as any experimental design aimed at establishing hierarchical
relationships between cells. Modern flagship studies are rigorous and
multimodal, validating hypotheses by a multitude of distinct methods. It is
not unusual for such studies to incorporate advanced microscopy, state-of-
the-art sequencing technology, and multiple biological models. The
resulting datasets continue to increase in size and complexity, necessitating
sophisticated and integrative approaches to experimental design and ana-
lysis. However, when broken into constituent parts, these studies are rooted
in the same fundamental concepts that define all lineage-tracing studies. In
brief, this review introduces lineage tracing, examines key historical devel-
opments, highlights recent advancements in imaging-based lineage-tracing
techniques (new and old), examines up-to-date analytical and modelling-
based tools, and provides an outlook on an integrative future of lineage
tracing.

Studies applying lineage tracing may investigate cell/tissue morphol-
ogy, differentiation, clonal expansion, and gene inheritance/expression. The
resolution andmethodological approachwill define the limits of an analysis,
in either precision or generalisability. For example, the low specificity of a
particular label may prevent discrimination between particular cell types.
Alternatively, excessive labelling can lead to close proximity of clonal
populations in situ, limiting a study’s ability to perform clonal analysis.
Experimental constraints such as these often restrict a study to making
inferences about a cell ‘population’, which may not represent a uniform
population of cells, but a group of cells sharing a particular trait (a shared
phenotype, gene-of-interest, etc.). For example, the transcription factor
Sox9 identifies osteochondral stem and progenitor cells, remaining present
until after commitment to the chondrocyte lineage1—as such, to discuss
‘Sox9+ cells’wouldnot refer to a single-cell type, but a spectrumof cell types
with a shared marker. This is not to imply that higher specificity is uni-
laterally superior; population-level analyses assist in generalising

observations made in single cells (or cell types) or forming associations
between discriminant cell types.

Although rooted in developmental biology, lineage tracing has been
implemented to answer biological questions for a wide range of topics.
Lineage-tracing data can provide insight into cellular origins, proliferation,
and differentiation. Depending on experimental design, lineage tracing can
answer questions about regenerative models, cancer development, and
disease progression. In regeneration, lineage tracing has established cell
origin and fate inmodels spanning embryonic development to adult tissues.
Tracing cancer cell lineages has determined mutations critical to cancer
progression and lineage-specificity for therapeutics. In diseasemodels, these
same techniques are used to measure changes in cell potential and stem cell
exhaustion.

Over the past twenty years, non-imaging tools (e.g., scRNAseq)
have become a vital tool in formulating and validating lineage-tracing
hypotheses2,3. As sequencing technologies improve in their power,
accessibility, and cost, what were once expensive and exceptional
approaches are increasingly becoming a requisite tool in modern
lineage tracing work. Despite this, traditional imaging-based approa-
ches remain central to lineage-tracing studies.When investigating less-
studied cell lineages (e.g., skeletal or epithelial stem cells, cutting-edge
technologies are frequently not applicable, either due to unavailability
or an insufficient understanding of the underlying lineage hierarchy.
Therefore, it is important as researchers to have a comprehensive
understanding of not only the technological cutting-edge, but the
foundational techniques on which our field is built and are largely still
applicable and often necessary. Since its conception, lineage tracing has
remained of central importance in biology, and imaging has persisted
as the fundamental tool in performing lineage tracing both qualita-
tively and quantitatively. Herein, we highlight recent advancements
and implementations of imaging-based lineage-tracing techniques
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(new and old), provide context in contrast to previous iterations, and
offer readers a concise summary of how these techniques have and/or
may be applied.

A brief historical perspective
Lineage tracing has remained of central importance in biology since the late
1800s,whenCharlesWhitman reported the direct observationof germ layer
differentiation in leeches4. In 1887, direct observation was the sole method
for interpreting cell lineage, anddata collectionwasultimatelydependent on
the visual observations of an experimenter in real time. As a result,
experimental models would have been limited to those that afforded
observable changes via light microscopy (Box 1)4,5. Cell arrangement, dif-
ferentiation events, and counts would have been visually monitored and
recorded manually.

Labelling allows experimenters to distinguish andmonitor cells by
means other than continuous observation, and has greatly increased in
sophistication since its conception. Non-specific labels were originally
applied to lineage tracing by Eric Vogt, who fate mapped an amphibian
blastula in 1929 using Nile Blue6. A more modern implementation of
non-specific labelling is nucleoside analogues (BrdU, EdU, etc.), in
which a modified nucleoside is incorporated into cellular DNA and is
subsequently labelled with fluorescent dye7,8. Nucleoside analogues are
applied to identify proliferating cell populations, which will incorpo-
rate the dye more quickly than slow-cycling populations and are still
frequently used today, with the natural disadvantage of label dilution
proportional to cell proliferation.

The late 20th century wasmarked by the exponential development
of gene editing technologies, which were particularly useful in refining
imaging methodologies for lineage analysis. By manipulating the
expression of reporter genes, labelling technologies circumvented
many of the limitations posed by earlier approaches. Starting in the
1980s, the first transgenic approaches involving enzymatic reporters
were produced9, a key example of which is the E. coli-derived
β-galactosidase (which can convert substrate X-gal into a dark blue
precipitate)10. At this time, the expanding literature on transgenic
modalities allowed for gene incorporation either by direct injection,
viral transduction, or plasmid transfection by 199011,12. The Cre-loxP
recombinase system was also introduced during this period, being
implemented in mammalian cells in 198813, and in mice in vivo in
199414. The year 1994 also saw the introduction of green fluorescent
protein (GFP) as an endogenous reporter, which marked a massive
shift for lineage tracing, giving cells the potential to express reporters
without the need for an external stimulus15,16. Taken together, these
tools laid the technological foundation for lineage tracing in the
modern era (Fig. 1).

Image-based lineage-tracing techniques
Site-specific recombinases
Central to imaging-based lineage-tracing research are site-specific recom-
binase (SSR) systems, of which Cre-loxP remains one of the most funda-
mental and commonly used. The widespread availability, versatility, and
ease of use all uphold the Cre-loxP system as the gold standard in lineage-
tracing studies.These systems canbeused toknock-in/knock-out alleles and
influencegene expressionwith agreat degreeof cell and temporal specificity.
In the context of lineage tracing, Cre-loxP systems are commonly applied in
clonal analysis studies, during whichCre recombinase often excises a STOP
codon between two adjacent loxP binding sites, activating a fluorescent
reporter gene. The specificity of this activation is dependent on Cre, whose
expression can be driven by cell-type-specific promoters or ubiquitously
expressed. These approaches traditionally consist of a single fluorescent
reporter tied to a single gene of interest, the concepts of which have been
reviewed at length in the literature17. However, the Cre-loxP system con-
tinues to be applied to develop advanced lineage-tracing techniques,
including dual SSR systems, multicolour models, and more advanced
methods.

Analyses using single fluorescent reporters can provide population
data but are largely limited in their ability to resolve cell populations at the
single-cell level. This largely stems from the difficulty (and often impossi-
bility) of distinguishing clonal groups within a homogenously labelled
population. Despite this, sparse labelling approaches can be used to cir-
cumvent this. For example, in sparse labelling, the activating agent in
induciblemodels (e.g., Tamoxifen in CreERT2models) can be titrated such
that recombination is limited to a limited number of cells within the
population (thus allowing for spatial separation)18. This has the added effect
of increased specificity, as cells with greater promoter expression will be
preferentially labelled19. Unfortunately, the natural limitation to sparse
labelling approaches is the natural increase in sampling required (meaning
increased biological replicates, analyses, and lower reproducibility).

Dual recombinase systems
The Cre-loxP system can also be implemented in combination with ana-
logous technologies to create dual recombinase systems. Dre-rox is a
common heterospecific and efficient alternative to Cre-loxP in which Dre
recombinase is specific for rox sites20,21. Dual recombinase systems take
advantage of the site specificity of recombinases and offer multiple experi-
mental design strategies beneficial to lineage tracing (i.e., expression occurs
following recombination of (i) either Cre or Dre, (ii) both Cre and Dre, (iii)
Cre in the absence of Dre)22. Several dual systems have been implemented,
Cre-loxP/Dre-rox being one of the most common, and possess numerous
applications in lineage tracing. For example, a Cre/Dre dual system was
recently used to determine the origin of regenerative cells in remodelled
bone, distinguishing otherwise homogenous periosteal tissue into distinct
layers and evaluating layer contributions in fracture regeneration23. Cre/Dre
was also applied to investigate the cellular origins of alveolar epithelial stem
cells post-injury and distinguish contributions made by multiple epithelial
cell populations simultaneously24. Dual recombinases were also applied to
develop novel genetic techniques for evaluating senescence during liver
fibrosis, offering an approach to discriminating between senescent cell
populations expressing analogous senescent markers25.

Multicolour lineage-tracing approaches
A major advance in imaging-based lineage tracing was the introduction of
multicolour reporter cassettes. The first of these was ‘Brainbow’, capable of
expressing up to four different fluorescent proteins and driven by stochastic
Cre-loxP-mediated excision and/or inversion26. In this design, multiple
pairs of loxP sites are arranged within the cassette, facilitating mutually
exclusive recombination events. Recombination will ultimately result in a
reordering/removal of fluorescent protein sequences and—given only the
first fluorophore in sequence will be transcribed—expression of a different
fluorescent protein. This technology has since been adapted to several
experimental models and inspired numerous analogous technologies27,28.

Box 1 | Landmarkmicroscope technology
contextualises the genesis of fatemapping

Early studies into cell lineage were predated by several key
advancements in lightmicroscopy. In themid to late 1800s, efforts from
Carl Zeiss, Ernst Abbe, andOtto Schott led to the development of high-
performance light microscopes with optimised resolutions nearing the
diffraction limit of light (~ 200 nm)—a limit which would not be broken
until 199480. Of note, stand-basedmicroscopeswere developed for the
first time (1857), Abbe’s theory led to the development of the
apochromat lens, which corrected for chromatic aberration (1873), and
oil immersion lenses were developed to offer greater magnification
(1877)80. These advanceswould serve to push the technological limit of
microscopy until the development of the confocal microscope in
195781, and provide the means for the burst of imaging-based
technologies to come.
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Oneof themost popular adaptations is theR26R-Confetti reporter, given its
widespread applicability to existing Cre models. Lineage-tracing studies
now incorporate confetti reporters as a means to perform clonal analysis at
the single-cell level in a broad range of tissues, including hematopoetic29,
epithelial30, kidney31, and skeletal32 cells. Multicolour models are also being
applied in live-imaging studies, for example, confetti reporters have recently
beenused in intravital imaging to tracemacrophage origin andproliferation

in mammary glands in real time33. The protocol used in this study was
subsequently publishedby the authors and carries promising applications in
future organogenesis studies34.

Mosaic analysis with a repressible cell marker (MARCM) is a tracing
technique that identifies lineage tree branches based on mitotic recombi-
nation. Originally developed in Drosophila, MARCM uses the FLP-FRT
system (analogous to Cre-loxP) to induce recombination between homo-
logous chromosomes during mitosis, ultimately resulting in a single
daughter cell inheriting a reporter35. Pre-recombination, a ubiquitously
expressed transcriptional repressor prevents reporter expression; following
mitotic recombination, the repressor and reporter genes are partitioned into
corresponding daughter cells by chromosomal segregation. This technology
was improved to incorporate two repressor/reporter pairs (twin-spot
MARCM) and analogously developed for the Cre-loxP system as mosaic
analysis with doublemarkers (MADM)36,37. Both systems offer unparalleled
specificity in fatemappingby labellingbranchesof a lineage tree inamitosis-
dependentmanner. Recombination events exclusively occur duringmitosis,
and daughter cells are asymmetrically labelled, meaning lineage branches
are labelled at their origin point and sibling cells can be independently
traced. A major limitation of mitotic recombination systems was their
availability for each chromosome, but as of 2021, a genome-wide library for
MADM is available, with knock-in cassettes for all 19 autosomes38. MADM
has now facilitated highly specific lineage tracing of neural stem and pro-
genitor cells during cortical development39,40 and seed populations
responsible for breast and ovarian cancer (these and other applications are
summarised in Table 1)41,42.MADM-based clonal analysis has recently been
paired with single-cell sequencing techniques (MADM-CloneSeq) to per-
form lineage tracing of the murine midbrain at the single-cell level43. In this
multimodal technique, imaging is used to identify clones (viaMADM), after
which RNA is isolated from individual cells-of-interest for sequencing.
Techniques such asMADM-CloneSeq bridge the gap between imaging and
sequencing technologies—an approach built on foundational technologies
that will likely prove versatile in a broad range of models. In parallel to Cre
and other SSR-based approaches, advances in the field of image-based
spatial transcriptomics have expanded our ability to spatiotemporally
visualise transcriptional targets in situ.

Fig. 1 | A historical perspective of lineage tracing and developmental biology.Key
technological andmethodological advances have driven large shifts in progress since
the 1800s (a). Results returned from a PubMed search of the term “lineage tracing”

(b). Timeline highlighting key discoveries that have laid the foundation for modern
lineage tracing (c). Created using BioRender.

Table 1 | Reported experimental models for MARCM-, FISH-,
and ISS- lineage-tracing approaches

Origin Technique First use Experimental
model

Tissue type

MARCM Twin-
spot MARCM

200936 Drosophila Neuronal

MADM 200537 Mouse Brain
Breast & Ovarian
Cancer

zMADM 202279 Zebrafish Embryological

MADM-
CloneSeq

202443 Mouse Brain

FISH MEMOIR 201752 Mouse ESC

intMEMOIR 202154 Drosophila
Mouse

Brain
ESC

baseMEMOIR 202456 Mouse ESC

FISHnCHIPS 202457 Mouse
Human

Brain, Kidney
CRC Biopsy

DART-FISH 202458 Human Brain
Kidney

ISS HybISS 202064 Mouse
Human

Brain

dRNA-HybISS 202265 Mouse Brain

PciSeq 202060 Mouse Brain

BaSISS 202263 Human Breast Cancer

ESC embryonic stem cells, CRC colorectal cancer.
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Spatial transcriptomics and its applications to lineage
tracing
In situ hybridisation
In situ hybridisation (ISH) encompasses a broad range of techniques based
on detecting nucleic acid (NA) sequences (DNA or RNA) of interest
through complementary binding of labelled single-stranded sequences.
Once bound, probesmay thenbe detected in situ during imaging.Originally
developed in the late 1960s, early approaches to ISH involved auto-
radiography of tritium (3H)-incorporated RNA sequences44. The advent of
fluorescentprobes togetherwith technological advancements inmicroscopy
led to the development of fluorescent in situ hybridisation (FISH). The early
1980s saw twomajor advancements to ISH, inwhich (1) detection of biotin-
labelledprobes by immunofluorescence45 and (2) directfluorescent labelling
of RNA probes46 were used to detect NA sequences. The decades that
followed saw the development of single-molecule FISH (smFISH), enabling
the detection of individual copies ofmRNA47,48. smFISHwas then improved
on once again to develop sequential FISH (seqFISH), a multiplexing
approach capable of detecting hundreds of genes (at a single mRNA level)
via barcoding over sequential rounds of hybridisation and imaging49–51.
These developments culminated in transforming a once cumbersome
technique into a broad spectrum of methodologies with applications
spanning basic science to clinical diagnostics.

In 2017, seqFISH was applied in combination with CRISPR/Cas9-
based mutagenesis to develop a method named Memory by Engineered
Mutagenesis with Optical in Situ Readout (MEMOIR)52. This ground-
breaking technique enables in situ recording of lineage information via
permanentmodifications to a set of cellular barcoded ‘scratchpad’ recording
elements. Scratchpads are irreversibly collapsed by Cas9/gRNA as cells
proliferate in a stochastic order, enabling cells to record their own lineage
information. Scratchpads are then analysed in situ via seqFISH to determine
the now-modified scratchpad state for each cell, in parallel with spatial and
gene expression data, providing a multimodal illustration of single-cell
behaviour. For interested readers, the concepts of cellular recording on
which MEMOIR is based have recently been reviewed in detail53.

MEMOIR has since undergone several methodological improvements
to improve memory capacity and accuracy. An integrase-editable version
(intMEMOIR) has been developed, which improves on the scratchpad,
introducing a three-state memory element with an initial and two end
barcode states (in contrast to the scratchpad’s single end state),whichgreatly
increases storage and the accuracy of lineage-tracing analyses spanning
multiple generations54. In addition, the developers of MEMOIR have pub-
lished an image-based barcode readout approach, termed ‘Zombie’55. In
Zombie, DNA barcodes are transcribed post-fixation by phage RNA
polymerases, amplifying the barcode sequence into an RNA cluster for
subsequent analysis at single-nucleotide resolution. This allows in situ
readout of CRISPR base edits post-fixation and circumvents any need for
continuous barcode expression in live cells. Moreover, this approach allows
the readout of dense barcode libraries and amuch greater memory capacity
than MEMOIR. Ultimately, these developments have culminated in the
development of baseMEMOIR, which incorporates three-state memory,
base-editing techniques, and Bayesian inference methods into the existing
MEMOIR protocol56: In brief, a series of editable dinucleotide arrays were
incorporated upstream of barcode labels, which undergo three-outcome
stochastic mutagenesis at a rate proportional to cell division. These arrays
provide each cell with a 792-bit phylogenetic memory (396 editable dinu-
cleotides), which can then be amplified and read using an updated Zombie-
FISH approach. Lastly, lineage trees are then constructed using a Bayesian
phylogenetic reconstruction framework. These improvements have allowed
for accurate lineage tracing of mouse embryonic stem cells over six gen-
erations. A remaining limitation of baseMEMOIR is that it cannot account
for transient cell states, cell death, or other events that cannot be recorded at
the experimental endpoint.

Fluorescence in situ hybridisation of cellular heterogeneity and gene
expression programs, or FISHnCHIPs, is a recently developed method that
boasts improved sensitivity of cell typing and gene expression over

traditional FISH methods57. FISHnCHIPs uses scRNAseq-based gene
expression profiles to design probes capable of targeting a set of co-localised
genes, increasing fluorescence by up to 20 times in a given cell type.
Leveraging co-expression patterns improves the efficiency of cell typing,
enabling a user to image larger tissue sections at reduced magnification—a
powerful tool when performing lineage tracing on elusive and rare cell
populations. Moreover, applying co-localisation patterns to cell typing
improves one’s accuracy indistinguishing closely related expressionprofiles,
which can allow researchers to identify lineage hierarchieswithin previously
uniform cell populations. Validated in mouse tissue(s) and human cancer
tissue, this 2024 method shows broad applicability for future spatial omics
and lineage-tracing studies.

Another modern approach to ISH, published in 2024, is decoding
amplified targeted transcripts with fluorescence in situ hybridisation, or
DART-FISH58. DART-FISH incorporates novel embedding and cyto-
plasmic staining protocols into a padlock probe-based ISH approach, which
offers increased throughput and computational image deconvolution at the
single-pixel level. The result is a high-throughput RNAmapping technique
capable ofmultiplexing hundreds of genes in situ, including smallmolecules
and human tissues. In the approach, target RNA is used to generate cDNA
via reverse transcriptase, which is subsequently hybridised to padlock
probes to undergo rolling circle amplification (RCA). RCA products are
then efficiently decoded using an isothermal and enzyme-free decoding
procedure, and an open-source computational method (SparseDeconvo-
lution, SpD) performs image deconvolution at the single-pixel level. Nota-
bly, this method implements a polyacrylamide embedding protocol, which
enhances feature retention (and therefore sensitivity) by 1.5-fold. This is
facilitated by a 5’ acrydite addition to the padlock probe primers, enabling
gel incorporation prior to RCA. This 5’ sequence is also co-opted for use in
cytoplasmic labelling prior to barcode decoding (coined Ribosoma), in
which fluorescent probes complementary to the universal 5’ sequence are
used to visualise probe spatial distribution and are effective in visualising cell
body morphology. As a proof-of-concept, DART-FISH was used to image
and decode 121 genes in a 0.3 cm2 tissue section of human neocortex in less
than 10 h. In summary, DART-FISH is a rapid, cost-effective approach to
cell typing and morphology that introduces novel embedding and staining
protocols without the need for high-magnification imaging (>20x) or spe-
cialised equipment. By employing cost and time-effective protocols using
standard microscopy equipment, techniques such as DART-FISH simplify
the implementation of modern ISH technologies and improve accessibility
to next-gen lineage tracing.

In situ sequencing
In situ sequencing (ISS) was first developed in 201359, representing a major
development for the spatial transcriptomics field and demonstrating great
potential for lineage-tracing studies as an alternative methodology to ISH
approaches in hypothesis-driven analyses. In contrast to ISH, ISS sequences
individual transcripts directly in situ to preserve spatial information at a
subcellular resolution. To accomplish this, ISS employs padlock probe,
RCA, and (originally) sequencing-by-ligation technologies to detect and
amplify endogenous RNA sequences. The capacity of ISS as a spatial gene
expression technology was originally validated using human breast cancer
tissue, in which ISS was successful in spatially quantifying the multiplexed
expression for 31 transcriptswithan average of 25 readsper cell using typical
epifluorescent microscopy59. ISS techniques have since been applied in
neural tissue inmice60,61 andAlzheimer’s disease inhumans62 and cancer59,63.

Since its development, ISS has undergone several iterative improve-
ments. In 2020, hybridisation-based in situ sequencing (HybISS) was
developed64. A major limitation of ISS was the efficiency of sequencing-by-
ligation, constrained by its design (a multi-step, enzyme-driven pathway).
HybISS implemented sequencing-by-hybridisation afforded by a newprobe
design, which allows for non-competitive direct hybridisation and resulted
in increased labelling intensity and signal-to-noise ratio. In 2022, ISS saw
further improvement in methodology wherein direct RNA detection was
achieved (dRNA-HybISS), avoiding the need for reverse transcription from
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cDNA65. Removal of cDNA synthesis and having padlock probes hybridise
directly to mRNA improved transcript detection efficiency by more than
fivefold. This improved transcript detection allows a user to investigate
challenging genes-of-interest (i.e., low detection rate, limited expression)
over larger areas (magnifications as low as 10X). ISS methodologies remain
limited to a select number of tissues and experimental conditions (having
only been around for a littlemore than a decade), however, they continue to
improve in efficiency and applicability with each iteration.

ISS has also been implemented in multimodal lineage-tracing strate-
gies, such as probabilistic cell typing by in situ sequencing (pciSeq)60. PciSeq
is a technique inwhich scRNAseqdata is used to identify a list of ~100 genes
capable of distinguishing cell type by ISS.Once established, this list is used to
generate a padlock probe library and implement ISS. Cell types are then
determined via a probabilistic model based on the ISS expression level and
scRNAseq profiling, providing insight into spatial organisation. Impor-
tantly, this synergistic method provides an opportunity to directly link
imaging-based data (morphology, anatomical location, niche) to a given cell
population’s complete transcriptomic profile, not otherwise available
through imaging alone.

Another multimodal lineage-tracing strategy applying ISS is the base-
specific in situ sequencing (BaSISS) workflow, which best exemplifies the
potential ISS holds for imaging-based lineage tracing63. Herein, ISS tech-
nology is applied as a part of a multimodal strategy to identify sub-clonal
lineages and their individual growth patterns in whole-tumour sections. In
the BaSISS workflow, whole genome sequencing (WGS) is first performed
to determine subclone populations and lineage hierarchy. Branch-specific
mutation markers (capable of distinguishing individual phylogenetic
branches) are then determined. BaSISS then applies ISS techniques to
develop padlock probes capable of differentiating clonal populations. Once
sequencing is complete, each cell’s ISS signals and corresponding genotypes
(from WGS) are used to derive quantitative clonal maps using Bayesian
modelling. These results can then be integrated with additional layers of
spatial data (using additional tissue sections). By identifying mutations of
interest prior to imaging, clonesmay be analysed across large tissue sections
(>cm2) at relatively low cost. Given there is sufficient tissue for WGS, ISS,
and any additional spatial sequencing, this iterative technique offers a
comprehensive and affordable (per region of interest) approach to lineage
tracing.

Computational approaches to data analysis and
interpretation
As lineage-tracing datasets increase in size and complexity, so toomust our
approaches to analysis and interpretation. Even today, some imaging ana-
lyses are performed by traditionalmeans (e.g., manual cell counting), but as
technological advancements increase image volume, resolution, and mul-
tiplexing, imaging datasets are often pushed into the 100+GB range. Thus,
bulk processing methods, machine learning algorithms, and artificial
intelligence become more commonplace (and often essential).

Image segmentation
Image segmentation is central to many image-based lineage-tracing work-
flows. Segmentation algorithms are commonly available as a feature in
microscopy software, allowingusers toprocess regionsof interest thatwould
otherwise be too large to quantify by traditional means. These features are
beneficial in that they are widely available, easy to use, and help reduce
experimenter bias. However, the incorporation of ultra-high resolution and
multiplexed images into lineage-tracingworkflowshas createdademand for
more sophisticated segmentation methods. These advanced methods must
be able to handle complex, heterogeneousdata that simpler algorithms, such
as those based on thresholding, watershed, or simple feature-based classi-
fiers, cannot.

StarDist, developed in 2018, is a deep-learning algorithm tailored for
segmenting star-convex shapes such as cell nuclei66. It performs well in
densely packed, overlapping samples and is built around a trainable CNN,
with pre-trained models available for common tasks (e.g., H&E or DAPI-

stained images). StarDist is open-source, Python-based, and integrateseasily
with platforms like QuPath, ImageJ/Fiji, and Napari. Its compatibility with
Python libraries (e.g., Scikit-image, OpenCV, Dask, TensorFlow) allows for
flexible and scalable workflows. However, StarDist focuses on nuclear seg-
mentation, leaving cytoplasmic boundary determination for post-
processing steps, such as nuclear expansion, which can introduce error.
For more comprehensive segmentation in multiplexed imaging datasets,
Mesmer employs Feature Pyramid Networks to determine both nuclei and
whole-cell boundaries67, while Cellpose (2021) offers broader flexibility by
adapting amodifiedU-Net architecture,which is capable of handling awide
variety of cell shapes and sizes without requiring star-convex assumptions68.
To detect subcellular features such as RNA or protein puncta—common in
lineage-tracing studies—PunctaFinder (2024) provides an efficient, Python-
based solution that relies on traditional image-processing techniques,
making it particularly effective in high-SNR, low-resolution regions68.
PunctaFinder has been successfully applied, for example, to automate the
quantification ofAtg9-positive vesicles, whereas previousmethods relied on
manual counting of these structures.

Often, image size can exceed the reasonable capacity of standard
software (longer processing times, computer crashes, etc.) and research
groups are driven to develop their own software. Analysis of 3-D multi-
plexed confocal or light sheet imagingdatasets in the100+GBrangehas led
to unreachable hardware requirements during post-segmentation analysis
(both in duration and rendering capacity). This spurred the development of
XiT, an open-access software developed in 2018, which exports only the
statistical parameters necessary for analysis, reducing workspace size by
three orders of magnitude (100 GB to 100 MB)69. Developments such as
these allowwhat otherwise would require state-of-the-art computing power
to be accomplished on any modern laptop. Sharing open-access software
within the research community provides opportunities for collaboration
and knowledge dissemination while guiding development companies as
they design future software releases.

Live-cell tracking
Another key step in various image-based lineage-tracing approaches is cell
tracking, particularly in live-imaging experiments where cells are followed
dynamically through division events. Unlike lineage-tracing methods that
rely on fluorescent markers inherited by daughter cells to infer lineage
relationships in later snapshots, live-imaging approachesuse computational
tracking to follow individual cells and their progeny over time70. For
example, time-lapsemicroscopy and 3D imaging enable detailed tracking of
cellular trajectories, however, the accuracy of tracking algorithms is often
limited by the quality of segmentation. This prompted the development of
TrackMate 7 in 2022, distributed as a Fiji plugin, which facilitates the
integration of advanced segmentation algorithms, such as StarDist and
Cellpose, into its built-in tracking pipelines71. TrackMate 7has recently been
used to automate the tracking of osteoblasts, replacing manual annotation,
to study the dynamic cellular response following trypsin exposure72.

Mathematical modelling
Modern technologies often integratemathematicalmodelling and statistical
analysis to interpret complex biological data, such as inDART-FISH, where
tools analysemultiplexed imaging data to identifymRNAtranscriptswithin
tissue contexts58. SparseDeconvolution (SpD) aids in resolving signal
overlap in densely labelled samples73, and statistical methods ensure accu-
rate decoding by normalising signal intensities and calculating confidence
intervals. The processed data provides a spatial and quantitative repre-
sentation of gene expression patterns, essential for understanding cellular
hierarchies and lineage pathways.

Despite advances in segmentation and tracking, lineage tree recon-
struction remains challenging due to incomplete data and limited temporal
resolution. Mathematical models, such as MOLLUSC (2024), use spatial
lineage tracing to estimate branch lengths, spatial diffusion, and mutation
rates through maximum likelihood estimation (MLE)74. Similarly, Line-
ageOT (2021) integrates lineage snapshots with scRNA-seq data to infer
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developmental trajectories by mapping both to a common space75. In
addition to reconstructing lineage trees, recent methods aim to interpret
patterns within them to gain biological insight. For instance, Lineage Motif
Analysis (LMA) identifies statistically overrepresented cell fate patterns on
lineage trees, revealing potential signatures of committed progenitor states
or extrinsic interactions76. Applying LMA to datasets from zebrafish, rat
retina, and mouse embryonic development revealed the spatial and tem-
poral organisation in cell fate commitment and offered insights into the
evolutionary variation of retinal cell type proportions.

Probabilistic approaches are particularly well-suited for handling the
uncertainties inherent in biological systems, where experimental noise and
variability in cell behaviour complicate inference. In the baseMEMOIR
technique, targeted base edits accumulate in genomic sequences over time,
and their random accumulation can be modelled as a stochastic process56.
This randomness reflects both the intrinsic properties of CRISPR-based
editing tools and the dynamic state of cellular metabolism and division,
which influence editing efficiency. baseMEMOIR employs a Bayesian

inference framework to estimate themost likely lineage trees from observed
barcode distributions. This Bayesian approach integrates prior biological
knowledge—such as expected mutation rates or cell-cycle characteristics—
with the observed edits, iteratively updating lineage tree hypotheses by
computing the likelihood of the observed patterns under each scenario.

Mathematical modelling not only enhances the efficiency of lineage
tracing but also facilitates the integration of various hypotheses on tissue
architecture, which can subsequently be validated or refuted by lineage-
tracing experiments. For example, in 2021 a mathematical model was built
to explore the developmental origins of the hepato-pancreato-biliary organ
system77. By incorporating different hypotheses on the tissue architecture,
these models predict possible outcomes, which are then directly compared
with experimental lineage-tracing data to infer the most likely scenarios.
This approach highlights the power of mathematical modelling to integrate
diverse experimental observations into a common framework, enabling
insights that may be inaccessible through purely experimental methods.
Each of these tools serves a distinct purpose and addresses specific

Fig. 2 | Virtual human development (VHD) project workflow.New VHD-related
discoveries drive hypothesis formulation and inspire new lineage-tracing studies.
The results of these studies are analysed by new or existing methods, and the

resulting data is incorporated to improve and design mathematical models. In turn
these results are added to the existing VHD umbrella, validating/refuting existing
hypotheses and driving ongoing hypothesis formulation. Created using BioRender.
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challenges in lineage tracing and tissue architecture, and it is essential to
carefully select the appropriate method for each experiment. Collaboration
between experimentalists and computational experts is often crucial to
ensure the correct application and analysis of these techniques.

Next-generation lineage tracing begins with
collaboration
Starting as a single cell, developing organisms undergo rounds of mitotic
division and differentiation to achieve a diverse mosaic of tissue types and
cell populations. In an adult human, development results in an estimated 30
trillion cells andover 200 cell types, all ofwhich are genealogically connected
to that first zygote through cell lineage78. Mapping these relationships from
fertilised egg to mature organism—just as it was done for C. elegans in the
1983—is foundational to our understanding of development. As technol-
ogies improve at an ever-accelerating pace, each year brings new methods
and techniques to improve the resolution at which we understand cell
lineage. We have now seen the integration of next-generation sequencing
technologieswith traditional imaging-based lineage tracing (e.g., CloneSeq).
Advancements in ISH and ISS continue to drive novel lineage-tracing
approaches (e.g., DART-FISH, FISHnCHIPS,) and the underlying techni-
ques are being integrated into increasingly sophisticated workflows (e.g.,
BaSISS). The increasing size and complexity of these applications, in turn,
drives the development of high-throughput computational tools to process
data (e.g., XiT, SpD), and predict relationships (e.g., MOLLUSC). These
improvements in the breadth and specificity of lineage-tracing techniques
forecast an optimistic future for developmental biology and the virtual
human development (VHD) project (Fig. 2).

Collaboration has always been a pillar of high-quality research. As
experimental methods become increasingly multimodal—even within a
single experiment—interdisciplinary collaboration will be key not simply
between but within research teams. Complex computational models are
difficult to integrate without a strong mathematical background; likewise,
developing suitable models is challenging without a deep understanding of
the underlying biological systems they are based on. Collaboration must
remain paramount in pursuit of the VHD project, as we seek to bridge the
gap across tissue types, between fields of research, and merge findings
spanning individual genes to population-level epidemiology.

Data availability
No datasets were generated or analysed during the current study.
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