Table 1 Stochastic version of the model
From: The effect of stochastic noise on antibiotic resistance in intestinal flora
No. | Reaction | Propensity function | State change vector |
---|---|---|---|
1 | →X | \({w}_{1}={r}_{p}(1-({k}_{1}\frac{X}{\Omega }+{k}_{2}\frac{Y}{\Omega }))X\) | (1,0,0) |
2 | X → :Z | \({w}_{2}={k}_{{PB}}\frac{{Z}^{2}}{{Z}^{2}+{a}^{2}{\Omega }^{2}}X\) | (−1,0,0) |
3 | X → | \({w}_{3}={d}_{p}X\) | (−1,0,0) |
4 | X → | \({w}_{4}={\eta }_{1}X\) | (−1,0,0) |
5 | →Y | \({w}_{5}={r}_{p}(1-({k}_{1}\frac{X}{\Omega }+{k}_{2}\frac{Y}{\Omega }))Y\) | (0,1,0) |
6 | Y → :Z | \({w}_{6}={k}_{{PB}}\frac{{Z}^{2}}{{Z}^{2}+{a}^{2}{\Omega }^{2}}Y\) | (0,−1,0) |
7 | Y → | \({w}_{7}={d}_{p}Y\) | (0,−1,0) |
8 | Y → | \({w}_{8}={\eta }_{2}Y\) | (0,−1,0) |
9 | →Z | \({w}_{9}={r}_{B}(1-\frac{Z}{\Omega })Z\) | (0,0,1) |
10 | Z → :X,Y | \({w}_{10}={k}_{{BP}}\frac{{({k}_{1}X+{k}_{2}Y)}^{2}}{{({k}_{1}X+{k}_{2}Y)}^{2}+{b}^{2}{\Omega }^{2}}Z\) | (0,0,−1) |
11 | Z → | \({w}_{11}={d}_{p}Z\) | (0,0,−1) |
12 | Z → | \({w}_{12}={\eta }_{1}Z\) | (0,0,−1) |