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Single-cell transcriptomic profiling of
immune landscape in triple-negative
breast cancer during neoadjuvant
chemotherapy
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Triple-negative breast cancer (TNBC) is the most aggressive subtype, typically requiring neoadjuvant
chemotherapy (NAC) as an obligatory component of the treatment regimen. Achieving a pathological
complete response to NAC is associated with improved long-term outcomes for patients with TNBC.
The functional status of the immune system plays a critical role in NAC efficacy. Herein, we presented
the investigation of systemic and local immune landscape during the initial course of NAC treatment
and identify factors that contribute to chemotherapy resistance of TNBC. Using single-cell RNA
sequencing, we demonstrated that the transcriptional profile remained stable in a patient who
responded to NAC, while a non-responder exhibited significant dysregulation in the expression of
genes involved in stress response, apoptosis, immune cell proliferation, and differentiation within
lymphocyte and monocyte populations. During the first course of NAC, circulating cytotoxic CD8 T
cells in the non-responder patient overexpressed granzymes B and H, granulysin, and perforin. In
contrast, expression of these factors decreased in CD8 T cells within the tumor. Finally, we identified
for a first time a signature of myeloid-derived suppressor cells (MDSC) within the S100АhighMHClow

monocyte population and calculated an MDSC score for both the responder and the non-responder
TNBC patients. An elevated MDSC score in the non-responder was validated using data from an
independent cohort of patients with poor NAC response. Our data underscores the importance of
immune system functionality in determining chemotherapy efficacy in TNBC.

Breast cancer is a highly prevalent disease affecting women worldwide1,2.
There are four intrinsic molecular subtypes of breast cancer: luminal A,
luminal B, humanepidermal growth factor receptor 2 (HER2) enriched, and
triple-negative. Each subtype is characterized by unique gene signature,
prognosis, clinical behavior, and treatment response3–5. Moreover, specific
molecular subtypes are also distinguished according to the immune
microenvironment profiles6. Triple-negative breast cancer (TNBC) has the
poorest prognosis among all four types and is the most difficult to treat7.
TNBC, defined by the lack of estrogen receptor (ER), progesterone receptor
(PR), and human epidermal growth factor receptor 2 (HER2) expression,
accounts for up to 15% of all breast cancer cases4,7. Unlike ER or PR positive

and HER2 subtypes that present specific targets for therapy, TNBC has no
distinctivemolecularmarkers, andno targeted drugs are currently available.
While recently checkpoint inhibition has been approved for early-stage
TNBC, NAC remains the backbone of the systemic treatment in early-
stage TNBC.

It is well known that local and systemic immunity controls cancer
development, therapy response, andprogression8–12.However, conventional
cytotoxic chemotherapy has a mixed impact on the antitumor immune
response. On the one hand, it always induces leucopenia12. On the other,
chemotherapy leads to immunogenic cell death of malignant cells, elim-
ination of immunosuppressive populations such as T regulatory
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lymphocytes (Tregs) or myeloid-derived suppressor cells (MDSCs), and
enhancement of the antitumor immune response12–14. Notably, a func-
tionally active immune system is required tomediate the antitumor effect of
chemotherapy15–18. However, the specific immune parameters that asso-
ciated with the effectiveness of cytotoxic treatment have yet to be
determined.

Preoperative neoadjuvant chemotherapy (NAC) is a widely used
treatment strategy for non-metastatic TNBC. NAC favors breast-
conserving surgery by reducing tumor size and down-staging lymph node
status, eradicates micro-metastases19,20. In addition, pathological complete
response (pCR) in TNBC is associated with improved long-term outcomes
compared to patients with a residual tumor19,20. Nonetheless, not all TNBC
patients benefit from NAC, which highlights the importance of differ-
entiating between responders and non-responders. To date, a higher
number of tumor-infiltrating lymphocytes (TILs) is considered a favorable
factor for achievingpCRof tumors afterNACand increasing thedurationof
the relapse-freeperiod21,22. In youngTNBCpatientswithoutNAC,high level
of TILs ( > 75%) also a positive predictive factor for long-term prognosis23.
Therefore, patients with favorable and unfavorable outcomes in TNBC
exhibit distinct immune compositions. However, the association of other
immune cell populations in the tumor microenvironment and circulating
blood to chemotherapy sensitivity is poorly characterized.

In this study, we hypothesized that NAC-induced changes in systemic
and local immune responses differ between favorable and unfavorable
outcomes in TNBC. Using single-cell RNA sequencing (scRNA-seq) of
peripheral bloodmononuclear cells (PBMCs) and tumor tissue fromTNBC
patients, one responder and one non-responder to NAC, we examined the
dynamics in systemic and local immune parameters during the first
course of NAC.

Results
Study design and analysis of blood single immune cell profiling
To resolve the landscape of the systemic immune response induced byNAC
in early-stageTNBCpatients, we collectedperipheral blood beforeNACand
on days 3 and 21 after first course of NAC (Figure 1A, Supplementary Data
1). Then targeted scRNA-seq was performed using BD Rhapsody Immune
Panel. Data fromboth patientswere integrated using theHarmony tool (Fig.
1C). After standard data processing and quality control procedures, we
obtained transcriptomic profiles for 6473 cells. The cells were divided into
severalmajor types according to their canonical lineagemarkers and cluster-
specific marker genes (Fig. 1B, D). CD4+ T lymphocytes, CD8+ T lym-
phocytes, B cells, monocytes, and dendritic lineage cells were re-clustered to
separate immune cell subtypes. Using the most significantly upregulated
genes in each cluster, we identified 21 cell subtypes in total (Supplementary
Data 2). CD4+T cells were subdivided intofive classes: TRBC2+ naiveCD4+

T cells (CD4 Naive TRBC2), CCR7+ naive CD4+ T cells (CD4 Naive),
effector memory CD4+ T cells (CD4 EM), terminal effector memory CD4+

T cells (CD4 TEM), and FOXP3+ regulatory T cells (Treg) (Fig. 1B, D;
Supplementary Data 2). CD8+ T cells were subdivided into four classes:
LEF+CCR7+ naive CD8+ T cells (CD8 Naive), GZM+ effector memory
CD8+Tcells (CD8TEM),MAITcells (MAIT), and innateNK-like cytotoxic
CD8+ T cells (iNKT). In addition, we identified three major B cell subsets:
IGHM+ and IGHD+ naive B cells (B Naive), POU2AF1+ IGHA1+ memory
B cells (B Memory), and plasma cells, or so-called antibody-secreting cells
expressinghigh levels of immunoglobulingenes, suchas IGHA1, IGHG1 and
MZB1 (Plasma cells). A population of plasmacytoid DCs (pDCs) was also
identified. Two populations were annotated as γδT cells, including γδT cells
of the Vd2 and non-Vd2 subsets. Possibly due to the fact that we analyzed
PBMCs of patients undergoing NAC, we found a small population of pro-
liferative lymphocytes. As for myeloid cells (including monocytes and
dendritic cells), we identified four transcriptionally distinct subsets:
CD14highCD16−S100A+ classical monocytes (CD14MnS100A) exhibiting
migratory properties (Supplementary Data 3), CD14highCD16−MHC+ clas-
sical monocytes (CD14MnMHC) exhibiting inflammatory properties
(Supplementary Data 3), CD14−CD16high nonclassical monocytes (CD16

Mn), andCD1c+ conventionalmyeloidDCs (mDCs).These subtypesof cells
were then used for downstream analyses.

Responder and non-responder patients exhibit different immune
profiles during chemotherapy
We compared the PBMC transcriptomic profiles of the non-responder
with those of the responder to NAC. We calculated the proportions of
various cell subsets in the blood samples of both patients normalized
to the total number of adaptive and innate immune cells (Fig. 1E). The
innate immune response differed between patients, with a higher
proportion of iNKT cells in the PBMCs of the non-responder and a
more prevalent NK cluster in the responder’s PBMCs. We assessed
changes in the proportions of various immune cells associated with
chemotherapy. Eight cell populations, including CD4+ and CD8+

lymphocytes, Tregs, NK cells, and two populations of classical
monocytes differed in their proportion dynamics between patients
with poor and good response to NAC (Fig. 1E; Supplementary Data 4).

Dynamic changes in the transcriptomic profile of lymphocyte
populations during NAC. None of the naive CD4+ populations showed
markedly differences between the responder and the non-responder
during the NAC (Fig. 1E). However, an increase in CD4 TEM cells was
observed only in the non-responder by day 21. CD8 TEM cells decreased
in the responder by day 21 only but increased in the non-responder. B
memory cells decreased in the responder by days 3 and 21, while in the
non-responder, they increased by day 3 and decreased by day 21.
Meanwhile, the percentage of naive B lymphocytes remained unchanged
in the non-responder but decreased in the responder.

Regarding the innate immune response, the iNKT cell percentage
decreased in the non-responder, while iNKT cells were almost absent in the
responder. By klday 21, NK cell counts decreased in the responder and
increased in the non-responder. Tregs exhibited an increase by day 3 and a
subsequent decrease by day 21 in the responder, whereas in the non-
responder, they decreased by day 3 and recovered by day 21 day.

To explore the dynamics of the transcriptome profile of immune cell
populations induced by NAC, we applied the Limma package (Supple-
mentary Data 5)24. This approach allowed us to identify statistically sig-
nificant transcriptome dynamics over three research points (before NAC
and 3 and 21 days afterNAC) in responder and non-responder patients. For
all lymphocyte populations, the top DEGs were factors related to stress
response (FOSB, JUN, JUNB, DUSP1, and DUSP2), apoptosis (BAX), and
immune cell proliferation, differentiation, migration and cytokine produc-
tion (EGR1, TNFa, RGS1, and CXCR4) (Fig. 2A, B; Supplementary Fig. S2,
Supplementary Data 6). This appears biologically relevant since the patients
were receiving chemotherapy. Key transcription factors of proliferation and
differentiationEGR1 andRGS1were significantlydecreased in the responder
up to day 21 but increased in lymphocyte populations of the non-responder
(Fig. 2B). It is noteworthy that the lymphocytes of the responder expressed
stress response factors and transcription factors of proliferation and differ-
entiation throughout the entire course of NAC. In contrast, cells from the
non-responder produced these factors at a very low level.

Next, we evaluated the involvement of lymphocytes in the anti-tumor
immune response (Fig. 2B). The expression of the key antitumor immune
response cytokine gene TNFa by lymphocyte populations was consistently
high in the responding patient at all time points, while it was absent in the
non-responder (Fig. 2B). Interestingly, INFg expression increased only in
the non-responder by day 21.Among the factorsmediating themigration of
lymphocyte populations, the dynamics of CXCR4 expression was most
prominent (Fig. 2B). In the responding patient, CXCR4 expression
increased from day 0 to day 3 and decreased by day 21, while the opposite
was true for the non-responding patient.

While populations of lymphocytes shared similarities in the expression
patterns of genes involved in stress response, proliferation, and differ-
entiation, individual variations were also noted for each population. As
shown by the Limma statistical analysis (Fig. 2C), naive TRBC2, naive CD4,
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and Treg cells differed in theNAC-associated expression dynamics of genes
responsible for T lymphocyte proliferation, activation, and differentiation,
such as CD44, CD27, CD52, and CD6925–28. However, the differences
between the responder and the non-responder were not very distinctive,
although statistically significant. In the CD4TEMpopulation, transcription

factors IKZF1 and BCL11B, which determine the differentiation of CD4+

cells towards Th2 polarization, decreased in the responder but increased in
the non-responder during the follow-up29–32.

Notably, the genes differentially expressed in blood lymphocytes
duringNACbetween responder and non-responder patients are also linked

Fig. 1 | ScRNA-seq profiling of peripheral immune response induced by NAC in
TNBC patients. A Schematic overview of the experimental design. B ScRNA-seq
data integration via Harmony tool. Cells were colored according to their samples.
C UMAP visualization of 6473 PBMCs grouped into 21 immune populations.
D DotPlot of expression patterns across cell populations. The Y axis display the
populations. The expression-related color depicts the average expression level, and
the dot size depicts the percentage of cells expressing the genes across the population.
EHistogram indicating the proportion of PBMCs of responder and non-responder

patients. FHistogram indicating the proportion of PBMCs in both TNBCpatients at
three time points: before NAC and on days 3 and 21 after the 1st NAC course. TNBC
triple negative breast cancer, PBMCs peripheral blood mononuclear cells, NAC
neoadjuvant chemotherapy, NR_1 non-responder before NAC, NR_2 non-
responder on days 3 after NAC NR_3, non-responder on days 21 after NAC, R_1
responder before NAC, R_2 responder on days 3 after NAC, R_3 responder on days
21 after NAC, Prolif proliferative T cells, Plasma plasma cells, Tregs regulatory
T cells, MAIT mucosal-associated invariant T cells.
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Fig. 2 | Transcriptomic dynamics of immune cell populations following NAC in
responder and non-responder patients. Violin plots showcase the significant var-
iations in gene expression identified by Limma analysis (adjusted p-value < 0.0001).
A UMAP of T/NK populations from all samples. B The variations in gene expression
dynamics of lymphocytes in responder andnon-responderpatients.Commongenes for
T and NK cells are shown. C Violin plots reflect the variations in gene expression
dynamics of lymphocyte populations in responder and non-responder patients. Dot-
Plot demonstrates the transcriptional dynamics in responder and non-responder up to
day3 and21afterNACand transcriptional changes between thepatients.DCorrelation

between the CD27, СD52, CD69, and IKZF1 gene expression in tumor and overall
survival in independent cohort of TNBC patients. E UMAP of monocyte populations
from all samples. F The gene expression dynamics in responder and non-responder
patients. Common genes for CD14-positive monocytes are shown. G Violin plots
demonstrate the gene expression dynamics of monocyte populations in responder and
non-responder patients. DotPlot shows the transcriptional dynamics in responder and
non-responder up to day 3 and 21 after NAC and transcriptional changes between the
patients. R responder, NR non-responder.
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to cancer outcome in an independent cohort ofTNBCpatients.Weused the
Kaplan-Meier plotter tool to correlate overall survival with DEGs from
lymphocyte clusters that were found significant according to Limma33. This
analysis showed that overexpression of CD27, CD52, CD69, and IKZF1
markers in TNBC was observed in the patients with the better prognosis
(Fig. 2D).

According to the Limma analysis, responder and non-responder
patients differed in the expression patterns ofPRF1, IL2RB, andCD38 genes
inNKlymphocytes.However,PRF1 and IL2RBwere expressed athigh levels
both in responder and non-responder NK cells, with a slight increase on
day 21. Only CD38, involved in the implementation of cytotoxic function
and secretion of perforins and granzymes by NK cells34,35, demonstrated
differences and was significantly upregulated up to day 21 in the non-
responder.

Dynamic changes in the transcriptomic profile of monocytes
populations during NAC. The population of classical monocytes,
including CD14MnMHC and CD14MnS100A, markedly decreased by
day 3 and then dramatically increased by day 21 in both patients (Fig. 1E).
However, for the CD14MnS100A population, this increase was more
pronounced in the responder than in the non-responder.

Using Limma, we detected a trend toward overexpression of genes
FOSB, JUN, JUNB, DUSP1, DUSP2, RGS1, ARL4C, NAMPT, PIK3AP1 in
the CD14MnS100A andCD14MnMHCmonocyte populations of the non-
responder up to day 21, compared to the responder (Fig. 2E, F). Thisfinding
was similar to that described above for lymphocyte populations. In addition,
CD14MnMHC and CD14MnS100Amonocytes showed altered expression
of genes associated with inflammation andmigration, respectively (Fig. 2G;
Supplementary Data 6). On the 3rd day, differences were observed in the
expression of adhesion and migration factors such as S100A9, S100A12,
ICAM1, and ITGAX between the non-responder and the responder
(Fig. 2E, F). However, their levels had returned to baseline by day 21. The
level of FCER1G, which encodes the Fc fragment of IgE receptor Ig and is
mainly expressed by monocytes/macrophages in the tumor micro-
environment, decreased from day 3 in CD14MnS100A monocytes of the
responder patient compared to the non-responder. In the CD14MnMHC
population, gene expression of proinflammatory factors, such as IL1B and
interferon-induced transmembrane proteins IFITM2 and IFITM3,
remained steady in the responder, but decreased by day 3 and increased by
day 21 in the non-responder (Supplementary Data 6). Notably, TNFa
expression was almost absent in this monocyte population in the non-
responder, while it was preserved in the responder on days 0 and 3 of NAC.
InCD14MnMHCcells, the dynamics of the hemoglobin scavenger receptor
gene CD163 also differed between responder and non-responder. After
3 days of treatment, CD163 expression was undetectable in the responder,
whereas it remained stable in the non-responder.

Granzyme expression in CD8 cells differs between tumor and
blood immune cells in the non-responder
CD8 cytotoxic lymphocytes that produce proteases, granzymes, and small
protein granulysins, and perforins are key effectors of antitumor adaptive
immunity36. Low tumor levels of CD8 T cell infiltration, granzyme B, and
perforin-1 are associatedwith poorprognosis in breast cancer37–41.Given the
prognostic significance of granzyme and perforin-1 expression in breast
cancer, we were interested in exploring how their expression in tumor-
infiltrating CD8 T cells correlates with their expression in circulating CD8
T cells during NAC.

Tumor biopsies from the non-responder were available for analysis
only ondays 3 and 21days afterNAC (Fig. 1A).We evaluated a total of 1542
cells from biopsy specimens and identified 10 immune cell populations
(Fig. 3A). Cell typeswere identified by taking the top canonical cellmarkers,
marker count coupled with average expression, and the greatest mean
expressionof themarker genes alone (Fig. 3B; SupplementaryData 2). Thus,
populations of memory B, naive B, macrophages, T regs, naive CD4, CD4
TEM, CD4 follicular helper (CD4 fh), NK, NKT, and CD8 cells were

identified. For further analyses, we focused only on the CD8 TEM popu-
lation in the blood and tumor as major producers of granzymes and per-
forins (Supplementary Data 7)36. Transcription levels of granzymesGZMB,
GZMY, and GZMH and perforin PRF1 differed between blood and tumor
cells during NAC (Fig. 3C). While their expression increased in cytotoxic
CD8T blood cells fromday 3 to 21. The opposite dynamics was observed in
the tumor: the expression of GZMB, GNLY, GZMH, and PRF1 was
decreased in CD8 T cells (Fig. 3C). Thus, the transcription patterns of
granzymes and perforin duringNACwere opposite in the blood and tumor
of the non-responder patient (Fig. 3C).

Co-expression network analysis of monocytes reveals NAC
response-associated gene modules
Next, we usedHdWGCNA to identify the keymolecular features of PBMCs
in the responder and non-responder42. HdWGCNA is a comprehensive tool
for analyzing co-expression networks in high-dimensional transcriptomics
data. Following analysis of differential gene expression in PBMCs, we
revealed five co-expression modules and calculated relative monocyte
populations (Fig. 4A; Supplementary Fig. S3; SupplementaryData 8). Of the
five modules, Mn-M3 showed the highest expression of genes: S100A12,
S100A9, TREM1, F5, FCN1, GAPDH, CD14, CLEC4E, CD36, MGST1,
VNN2, ITGAM, andCD163 (Fig. 4B, C; SupplementaryData 6) overlapping
with the signature of monocytic myeloid-derived suppressor cells
(moMDSC) according CellMarker 2.0 annotation43. Based on the
moMDSCs signature, we calculated an MDSC score. We evaluated the
temporal changes in the MDSC score of the Mn-M3 module in the
responder and the non-responder throughout NAC. In the responder, the
MDSC score dramatically decreased on day 3 after NAC, whereas the non-
responder’s score increased from the point before NAC to the 21st day after
treatment (Supplementary Fig. S4). When comparing the MDSC score
between the responder and the non-responder patient, it was found that the
MDSC scorewas significantly higher in the non-responder on day 3 and day
21st after NAC (p < 0.001) (Fig. 4D).

We then tested whether the module signature follows the same
expression pattern in an independent sample of patients. We used publicly
available data from a study by Axelrod and colleagues that described the
associationofbloodmonocyteswith the efficacyofNAC44. For this cohort of
breast cancer patients, we selected bulk RNA-seq PBMC data from nine
patients with TNBC who received NAC with anthracyclines/cyclopho-
sphamide or taxanes alone (Fig. 4E).Within the bulk RNA-seq cohort, four
patients had a complete pathologic response toNAC and five demonstrated
residual disease. As bulk RNA-seq was used in this study, we applied
deconvolution to convert data to a single-cell framework (Fig. 4E). Fol-
lowing deconvolution, 9 immune cell clusters were isolated, which had
canonicalmarkers corresponding to themarkers of our single-cell RNA-seq
clusters: B cells, CD4 T cells (CD4 T), CD8 cells (CD8 T), T regulatory cells
(Treg), gamma delta T cells (gdT), NK cells (NK), non-classical СD16
positive cells (CD16Mn), classicalCD14positiveCD14MHChigh, andCD14
S100Ahigh cells (CD14MnMHC and CD14Mn S100A) (Fig. 4F). The Mn-
M3 co-expression module was detected in the CD14S100 cluster of
monocytes from the public data. The MDSC score of the Mn-M3 module
was significantly higher in patients with residual disease compared to those
in the pCR group (Fig. 4G).

Discussion
TNBC patients who do not respond to NAC have the poorest prognosis
compare to responders. Previously, immune-related factors were identified
to be associatedwithNAC response in TNBC. Specifically, high neutrophil-
to-lymphocyte and platelet-to-lymphocyte ratios, along with low hemo-
globin, albumin, lymphocyte, and platelet levels, were considered risk fac-
tors for poor NAC efficacy in TNBC45. However, to our knowledge, limited
data are currently available on the transcriptional profiles of individual
immune cell populations or the molecular pathways underlying the
immune system’s role in NAC response. In this study, we investigated the
temporal dynamics of immune cells in early-stage TNBC patients
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undergoing NAC and identified features of the immune landscape asso-
ciated with NAC efficacy. Our findings indicate that the immune profile is
linked to both NAC response and disease prognosis.

This studyhighlights the differences in the immune landscape between
the NAC responder and non-responder. Initial differences in the compo-
sition of immune cells were detectable even before therapy. This primarily
applies to lymphocytes mediating the innate immune response, natural
killers, and iNKT cells. NK cell function is known to be impaired in breast
cancer patients due to tumor-produced TGFb and PGE246,47. However, in
our study, the responding patient showed an increased percentage of NK
cells in the blood during NAC, whereas the non-responding patient
appeared to lack a resource of NK cells to facilitate the effects of che-
motherapy. Interestingly, the iNKT population showed the opposite trend,
predominating in the non-responding patient during chemotherapy.
iNKT cells are T lymphocytes with characteristics of both T cells and NK
cells, and they have antitumor activity through the recognition of lipids and
glycolipids presented by the monomorphic MHC-like molecule CD1d and
through cytotoxic activity48. Nevertheless, this mechanism seems less
effective in the non-responding patient. It is likely that despite the high
proportion of iNKT cells, the lack of other interacting elements, such as

adequate presentation of tumor antigens on antigen-presenting cells, which
is often limited in tumors, may reduce their efficacy49.

Monocytes showed similar changes duringNAC in both the responder
and the non-responder. There was a sharp decrease in the monocyte
populationbyday3, followedby recovery byday 21.This pattern alignswith
observations in other oncological contexts, where monocyte levels typically
reach aminimumaround days 5–7 days50.We suggest that this trend can be
attributed to the biology of monocytes, as these cells have a short life span
and are rapidly replenished in the bloodstream.

The TNBC patients demonstrated distinct gene expression signatures
in immune cells depending on their response to NAC. In the responder,
lymphocyte and monocyte populations consistently produced stress
response factors such as FOSB, JUN, and JUNB51. In monocyte clusters,
dual-specificity phosphatases DUSP1 and DUSP2 showed similar expres-
sion patterns in both patients. In T/NK cells, however, DUSP1 and DUSP2
remained stable in the responder patient but increased by day 21 in the non-
responder. Notably, the level of EGR1, a transcription factor involved in
differentiation and cytokine production, was stable throughout NAC
treatment in the responderbut increaseddramatically in thenon-responder.
EGR1 expression is known to be triggered by mitogen-activated kinase

Fig. 3 | Expression of perforins and granzymes in tumor and blood cells of the
non-responder. A UMAP visualization of 1542 cells from TNBC tissues grouped
into 10 immune populations. B DotPlot of expression patterns across cell popula-
tions. The Y axis display the populations. The expression-related color depicts the
average expression level, and the dot size depicts the percentage of cells expressing

the genes across the population. СDynamics of granzymes and perforin expression
in blood and tumor tissue in the responder and non-responder up to day 3 and 21
after NAC. D Correlation between the GZMB, GNLY, GZMH, and PRF1 gene
expression in tumor and overall survival in independent cohort of TNBC patients.
GZMB granzyme B, GNLY granulysin, GZMH granzyme H, PRF1 perforin 1.
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Fig. 4 | Monocyte co-expression modules and NAC response in TNBC. AUMAP
plots as in Fig. 1C colored by co-expression modules. BMn-M3 module regulatory
network. COverlap of monocytic MDSC signature with the signature of monocytes
co-expressionmodules.D TheMDCS score in the responder and non-responder up
to day 3 and 21 after NAC. E Schematic overview of public dataset processing.
FHistogram indicating the cell proportion of PBMCs of pCR and RD cohorts from

public dataset. G The MDSC score after NAC in patients with RD and pCR calcu-
lated from public dataset. Mn co-expression module, MDSCs myeloid-derived
suppressor cell, R responder, NR non-responder, NS no significant, NAC neoad-
juvant chemotherapy, TNBC triple negative breast cancer, PBMCs peripheral blood
mononuclear cells, pCR pathological complete response, RD residual dis-
ease. ***–p < 0.001.
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(MAPK) signaling pathways, including the dual-specificity MAPK-reg-
ulatory phosphataseDUSP152,53. The regulatory role of EGR1 in lymphocyte
response to chemotherapy and its relationshipwithMAPKsignaling should
be further explored. In the responder, RGS1 and CXCR4 that enable cell
migration were consistently expressed in T/NK cells and upregulated at day
3 in monocytes54,55. In the non-responder, RGS1 expression was only
detected in monocytes on day 21. Additionally, T/NK cells in the non-
responder demonstrated downregulation of an anti-tumor cytokine TNFa.
Our findings suggest that immune cells in theNAC responder are in amore
favorable functional state associated with a better prognosis.

Markers of naïve CD4 cell activation, such as CD52, CD69, CD27, and
CD44, showed high expression in the responder and the non-responder,
indicating that both patients have the potential for an antitumor immune
response25,56–58. However, according to Limma statistics, their expression
wasmore pronounced in the responder. Interestingly, CD4TEMcells in the
non-responder significantly upregulated factors linked to Th2 polarization,
such as IKZF1 and BCL11B, during NAC, whereas their expression
remained stable in the responder. IKZF1 inhibits the interferon pathway in
T cells, and its co-expression with BCL11B directs T cells toward Th2
differentiation31,59,60. It is also noteworthy that markers, which differed in
expression duringNACbetween the responder and the non-responder, also
showed prognostic significance in an independent cohort of patients
undergoing a similar chemotherapy regimen. Improved overall survival
correlated with elevated levels of CD27, CD52, and CD69, which are linked
to the activation of T lymphocytes, along with IKZF1, known for its role in
anti-inflammatory response (Fig. 2D). Furthermore, we observed increased
expression of granzymes GZMB, GZMH, granylisin GNLY, and perforin
PRF1 in circulating CD8 T cells of non-responder, whereas in the tumor
tissue of the same patient granzymes and perforin-1 were downregulated.
This aligns with the findings of a similar study, which reported that high
expression of cytotoxic signature in blood correlates with residual disease
after NAC in TNBC61. Thus, increased levels of cytotoxic T cell granzymes
and perforin-1 in peripheral blood are associated with TNBC persistence,
while increased levels of granzymes in tumor correlatewith active antitumor
defense and improved overall survival (Fig. 3D). The association of GZMB
expression in tumor tissue with overall survival was demonstrated
recently40. In summary, the involvement of lymphocytes in both blood and
tumor plays an important role in determining disease outcome.

Current data indicate that the state of monocytes is associated with
therapeutic outcome in breast cancer44,62–64. At the same time, our under-
standing of monocyte populations is evolving with advances in single-cell
analysis. In this study, we identified two clusters within the CD14+ classical
monocytes based on enrichment of either S100А or MHC transcripts:
CD14MnS100 and CD14MnMHC (Fig. 1C). Within the CD14MnS100
monocyte cluster, we identified a phenotypic subset with a signature of
monocytic MDSC (moMDSC; Fig. 4). However, differences between
monocytes, enriched by S100A transcripts (S100АhighMHClow) and the
traditional MDSC monocytic lineage are still not fully understood. Given
the distinct MDSC gene expression signature in CD14MnS100 monocytes,
we hypothesize that CD14S100АhighMHClow cells may belong to the
moMDSCpopulation. Previously,moMDSCcells ormonocyteswith low in
MHC expression (CD14S100АhighMHClow) detected by single-cell
sequencing or flow cytometry have been described as exhibiting an
immunosuppression65–67. In our study, the non-responder TNBC patient
showed an elevated MDSC score, which we validated using data from an
independent cohort of patients with poor response to NAC (Fig. 4E, H).
Probably, CD14S100АhighMHClow cells belongs to immunosuppression
population and may be as a marker of low NAC efficacy.

Although this study provides some evidence on the association of the
immune cell parameters with NAC efficacy in TNBC patients, it has some
limitations. The inherent limitations of the 1 vs 1 comparison responder to
non-responder, which makes statistics challenging. In addition, analysis of
cryopreserved samples, which means that granulocytes and granulocyte
MDSCs were lysed during sample processing and are therefore absent;
hence only blood mononuclear cell populations were analyzed. Finelly,

protein validation is not included in this study. Hence these limitations
indicate further directions for the research progression.

In conclusion, we demonstrate transcriptomic immune changes dur-
ing the first course of NAC in two TNBC patients: one who achieved pCR
with chemotherapy and another with non-pCR and rapid progression. We
observed that NAC responder displayed anti-tumor immune activity
through high expression of TNFα and IL1β in monocytes, as well as TNFα,
IKZF1, EGR1, and RGS1 in lymphocytes. The strategy of the non-respon-
der’s immune system characterized by deficiency in immune activation,
manifested as impaired stress-response genes expression, dysregulation of
cytotoxic anti-tumor activity and increased presence immunosuppressive
cells with CD14S100АhighMHClow phenotype. Additional research involving
a larger patient cohort is necessary to validate the findings for potential
application in clinical practice.

Materials and Methods
Patients
The study enrolled two women who had been diagnosed with TNBC and
underwent NAC (Supplementary Data 1). Their ER, PR, and HER2 status
was determined in accordance with the American Society of Clinical
Oncology/College of American Pathologists (ASCO/CAP) guidelines68.
Both patients received 2–4 courses of adriamycin with cyclophosphamide
followed by 4 NAC courses of taxanes before surgery. The first patient
received a partialmastectomy and showedno evidence of tumors cells in the
breast tissue or lymph nodes (regardless of the presence of an in-situ
component) during postoperative pathological evaluation, which was
defined as pCR. This patient remained disease-free for more than
36 months. In contrast, the second patient demonstrated progression of
TNBCduring the fourth cycle ofNAC. Therefore, theNACwas interrupted
and a radical mastectomy was performed. Two months after the surgery,
metastases developed in her pelvic bones, leading to the patient’s death two
months later. In the context below, the patient with a poor response to
therapy and unfavorable outcome will be referred to as ‘Non-responder,’
while thepatientwith a good response and favorable outcomewill be termed
‘Responder’. The sample collection timelines are described in the Results
section (Fig. 1A). The study was approved by the Ethics Committee of the
Саnсеr Rеsеаrсh Institute of Tomsk National Research Medical Center of
the Russian Academy of Sciences (Study ID: No. 16 of 29 August 2022). All
subjects gave written informed consent in accordance with the Declaration
of Helsinki.

Sample collection and processing
Peripheral blood samples were collected from both TNBC patients at three
timepoints: beforeNACandondays 3 and21 after the administrationof the
1stNACcourse. The chemotherapy process tookplace in oneday, beginning
with an intravenous injection of Adriamycin and subsequently adminis-
tering cyclophosphamide. PBMCs were separated using Ficoll density
gradient centrifugation within 1 h of blood collection and preserved in a
freezing medium consisting of 90% fetal bovine serum (FBS) and 10%
DMSO for future use.

For non-responder patient were available biopsy samples of tumor
tissue on days 3 and 21 after the first course of NAC. The sample taken
before NAC largely consisted of adipose tissue and could not be included
into experiment. Each sample was collected using two 16-gauge needles.
Samples were placed in the RPMI-1640 medium (Gibco, USA) and enzy-
matically digested no more than 20min after collection. Tissues were
washed extensively with 1× PBS with 200U/mL penicillin. For collagenase/
hyaluronidase treatment, tissue specimens were mechanically dissociated
using a scalpel to remove vascular material, transferred to a solution of
300U/ml collagenase and 100 U/ml hyaluronidase (STEMCELL Technol-
ogies, USA) in DMEMmedia, and then incubated at 37 °C and 600 × g for
30min in a shaking incubator (BioSan TS-100, Poland). Once mucin clots
formed, 5 U/ml of DNA hydrolyzing enzyme DNAase I (Sigma Aldrich,
USA) was added to the suspension, followed by incubation under the same
conditions for 10min. To remove cell aggregates and debris, the cell
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suspension was filtered using a sterile cell strainer with a 70 μm pore dia-
meter (Becton Dickinson, USA). Immediately after dissociation, the cell
suspension was incubated with ROCK inhibitor (10 μM/ml) for 1 h, fol-
lowed by cryopreservation in a solution of 95% FBS with 5%DMSO on ice.

After isolation, cryovials with PBMCs or tumor cell suspensions were
transferred in Mr. Frosty Freezing Containers (Thermo Fisher Scientific,
USA) containing isopropyl alcohol for gradient cooling and placed in a
freezer, where they were stored for 24 h at −80 °C. Then the tubes were
transferred to liquid nitrogen for long-term storage for up to 6 months at
−196 °C. For scRNA-seq, cells were removed from storage and rapidly
thawed by immersion in a 37 °C water bath with gentle agitation. Each
cryovial was thawed individually until only a small amount of ice crystals
remained. Samples were immediately transferred to round-bottom tissue
culture tubes. Then, 10ml of RPMI 1640 containing 10% FBS was added
over 4min with agitation, and the tubes were centrifuged immediately at
300 × g for 5min. The cells were then suspended in PBS containing 2%
bovine serum albumin, followed by cell counting and viability assessment.

Single-cell RNA sequencing
The cellular viability of all PBMCs and tissue samples exceeded 75%, as
evaluated by Calcein (BD Bioscience, USA) vs DRAQ7 (Thermo Fisher
Scientific, USA) via flow cytometry. According to the manufacturer’s pro-
tocol, 8 samples (6 PBMCs and 2 tumor cells suspensions) were labeled by
SampleTag andpooled for single-cell capturewith theBDRhapsody Single-
Cell Analysis system (BD Bioscience, USA). 1,700 cells from each sample
were included in the pool. Single-cell suspensionswithPBSwere loaded into
microfluidic devices using the BD Rhapsody Single-Cell Analysis System
(BD Bioscience, USA). Subsequently, the scRNA-seq libraries were con-
structed according to the protocol of the Immune Response Targeted Panel
(Human) Single Cell RNA Library Kit (BD Bioscience, USA). Individual
libraries were diluted and pooled according to the manufacturer’s recom-
mendations. Finally, Illumina NextSeq 2000 sequencing was performed
using NextSeq 2000 P2 reagents (100 cycles).

Single-cell RNA-seq data analysis
FASTQfileswere processed via the standardBDRhapsody analysis pipeline
with default parameters (BD Biosciences) on Seven Bridges (https://www.
sevenbridges.com) per the manufacturer’s instructions. Initial processing
included quality control, read alignment, cell identification, UMI dedupli-
cation, and count gene-barcode matrix. Resulting gene-barcode matrices
with distribution-based error correction (DBEC) UMI counts were
imported to Seurat in the R environment for further analysis69. Gene-
barcode matrices were additionally filtered to retain cells with at least 25
detected genes and 100 UMI counts. SCTransform with default parameters
was applied to normalize gene expression and select variable genes for the
following dimension reduction and clustering70. Linear dimension reduc-
tion was performed with PCA on 150 features chosen with the SelectInte-
grationFeature function in Seurat. Harmony batch correction was applied
on the first 15 principal components (PCs) in order to remove the batch
effect from individual samples71. The first 15 harmony-corrected PCs were
used in Louvain clustering under resolution = 0.5 and UMAP dimension
reduction with default parameters in Seurat. Clustering resulted in 21 cell
clusters, which were annotated using SingleR automatic annotation with
default parameters using Monaco et al. as a reference and manually by
cluster markers using the Human Protein Atlas database with the Human
Blood Atlas (Supplementary Fig. S1)72. Marker detection was performed
using the Wilcoxon test in the FindAllMarkers function on the RNA assay
after log normalization in the NormalizeData function of Seurat. Marker
genes having log2FC > 0.58 and FDR < 0.01 (Benjamini-Hochberg correc-
tion) were considered significant. High-dimensional weighted gene co-
expression network analysis (HdWGCNA) was performed to identify key
gene modules associated with NAC response using default settings and
minModuleSize = 10, mergeCutHeight = 0.15 for modules detection42.
Module scores were calculated using top 25 hub-genes via UCell method73.
Coexpression network plots were generated using the

HubGeneNetworkPlot function from the hdWGCNA package, visualizing
the top 20 hub genes within each correlation module. Module significance
was evaluated by theWilcoxon test. PBMC populations were selected from
scRNA-seq data to create a gene expression correlation matrix, construct
weighted gene co-expression networks, and perform module detection.
Module-trait relationship analysis identified modules significantly asso-
ciatedwith theNACefficacy, andhubgeneswithin significantmoduleswere
identified based on their intra-module connectivity. Time-point and group-
wise analyses of differential gene expression were performed using the
Limma package with the limma-trend mode, which was shown to have
robust performance in identifying differentially expressed genes (DEGs) in
scRNAseq data24,74. Gene set enrichment analyses was performed for cell
cluster functional annotation and NAC-induced differential pathway
annotation using the enricher function in clusterProfiler with default
settings75. Visualizations were created with Seurat, ggplot2, and pheatmap
packages76,77. Complete information about all packages producing the
results of the publication is available in the supplementary materials as the
output from session info in R environment (Supplementary Note 1).

Public data collection and analysis
The PBMC data from a bulk RNA-seq of nine TNBC patients after NAC
were obtained from the NCBI GEO dataset under the accession number
GSE201085 (Supplementary Data 1). Cell type deconvolution tools, namely
DWLS andGranulator with NNLS, were employed to estimate the cell type
proportions78. Our PBMC scRNA-seq was used as reference in the DWLS
and the bulk Monaco et al. PBMC RNA-seq reference in the NNLS72,79,80.
The bulk deconvolution process was implemented in R.

The KM-plotter tool which includes clinical cohorts from Gene
ExpressionOmnibus (GEO), EuropeanGenome-phenomeArchive (EGA),
andTheCancerGenomeAtlas (TCGA)was used to evaluate the correlation
between gene expression and survival rates in 333 TNBC patients (https://
kmplot.com/analysis/)81. All patients had a basal subtype of breast cancer
defined according to the St Gallen and PAM50 recommendations. All
patients had NAC treatment. The log-rank test was used to estimate the
difference in Kaplan-Meier survival analysis with a p-value < 0.05 con-
sidered statistically significant.

Data availability
Single cell RNA-Seq data were deposited into the Gene Expression
Omnibus database under accession number GSE289825 and are available
at the following URL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE289825.
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