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Conditional universal differential
equations capture population dynamics
and interindividual variation in c-peptide

production
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Universal differential equations (UDEs) are an emerging approach in biomedical systems biology,
integrating physiology-driven mathematical models with machine learning for data-driven model
discovery in areas where knowledge of the underlying physiology is limited. However, current

approaches to training UDEs do not directly accommodate heterogeneity in the underlying data. As a
data-driven approach, UDEs are also vulnerable to overfitting and consequently cannot sufficiently
generalize to heterogeneous populations. We propose a conditional UDE (cUDE) where we assume
that the structure and weights of the embedded neural network are common across individuals, and
introduce a conditioning parameter that is allowed to vary between individuals. In this way, the cUDE
architecture can accommodate inter-individual variation in data while learning a generalizable network
representation. We demonstrate the effectiveness of the cUDE as an extension of the UDE framework
by training a cUDE model of c-peptide production. We show that our cUDE model can accurately
describe postprandial c-peptide levels in individuals with normal glucose tolerance, impaired glucose
tolerance, and type 2 diabetes mellitus. Furthermore, we show that the conditional parameter captures
relevant inter-individual variation. Subsequently, we use symbolic regression to derive a generalizable

analytical expression for c-peptide production.

Many current medical treatments and interventions have been devel-
oped and tested in clinical trials involving cohorts of individuals.
Whereas inter-individual variability in subjects included in clinical trials
is typically strongly characterized, prescription of treatment often
assumes that patients receiving respond similarly to the average
response in these clinical trials'. However, this assumption inherently
neglects physiological and environmental differences between people,
such as genetic variants or acquired exposures that may mediate disease
risk or response to treatment. Furthermore, the observed inter-
individual variation may not be due to just natural variability, but this
variation may be indicative of disease progression. Specifically, in the
development of type 2 diabetes mellitus (T2DM), the progressive decline
of -cell function, responsible for insulin release in response to glucose,
is a key characteristic of disease development”. Furthermore, residual f3-
cell function is indicative of treatment response and can therefore aid in
treatment selection™.

In recent years, personalized medicine, where treatments are tailored
based on specific characteristics, such as genetics5 or body composition“, has
emerged as a promising approach to improve health outcomes. In particular,
in the field of oncology, machine learning is increasingly being used to map
large datasets to clinical outputs, to identify more optimal treatment strategies
based on genetic data’ or machine learning-assisted analysis of tumor
biopsies’. Research suggests that these more personalized treatment regimens
have the potential to improve the long-term prognosis of patients’. However,
the direct application of machine learning methods that have shown success
in precision oncology to other medical disciplines has been hampered by
smaller sample sizes and a lack of publicly available clinical trial data'*".

The advantages of these purely data-driven approaches that have been
used successfully in precision oncology are that they allow flexible incor-
poration of various types and sources of data for accurate model output.
However, a downside of this flexibility in machine learning models is that
the volume of data required to train machine learning models is relatively
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large'””. The comparatively small sample sizes collected in human clinical
trials have greatly hampered the widespread deployment of machine
learning to biomedical problems". In addition, these machine learning
models can lack interpretability, particularly in the case of larger neural
networks"”. This interpretability can be retained by using inherently pre-
dictable models, such as ordinary logistic regression, for structured data with
meaningful features.

Alternatively, in cases where individual data is limited but biological
knowledge is abundant, systems of differential equations are constructed to
describe biological processes. These physiologically-based mathematical
models (PBMM:s) are powerful tools to disentangle the complexity of the
physiological basis underlying medical measurements'*'*. Previous research
has demonstrated that the estimation of model parameters in PBMM:s from
individual measurements can yield an accurate and interpretable explana-
tion of the inter-individual biological variation'’. While PBMMs are bene-
ficial for studying biological systems, building and validating accurate
PBMMs requires a profound understanding of the underlying physiology
and can be time-consuming. Consequently, these models typically have a
limited scope'". Additionally, as PBMMs are constructed manually,
unwanted bias can be introduced, especially when complex nonlinear bio-
logical behaviours may be approximated with comparatively simple terms.

A promising emerging area of research focuses on the combination of
highly plastic machine learning approaches with physiological knowledge in
the form of mechanistic models to produce a hybrid model that can be
trained with fewer learning examples. In recent years, multiple hybrid fra-
meworks have been proposed. Physics-informed neural networks (PINNs)"®
are an example, where the loss function of a neural network is supplemented
with a set of equations to ensure that the neural network not only fits the data
well, but also adheres to known physical laws. In this work, we use the
Universal Differential Equations (UDE) framework'’, where the known
components of a biological system are described by parameterized differ-
ential equations and a neural network is incorporated into the equations to
account for the unknown components. These UDE models have been shown
to be applicable to various biological systems, including the deployment to
infer the glucose appearance of a meal™, as well as a STAT5 dimerization
model”'. Furthermore, the resulting trained neural networks can be reduced
to analytical expressions using a technique called symbolic regression".

The application of UDE models in biomedical contexts such as
learning the average rate of glucose appearance from a meal has been
explored. However, current conventional training of UDEs cannot directly
accommodate inter-individual variability, which is ubiquitous in biomedical
data. Although it is possible to train the model on the average data of a
population, as has been done in the past, such models are not expected to
generalize well to the individual data. Alternatively, it is possible to train a
model for each individual separately. However, this approach has some
drawbacks. First, often only limited measurements are available for each
individual, making estimation of neural network parameters on individuals
highly sensitive to measurement noise, increasing the risk of overfitting.
Furthermore, the black-box nature of neural networks complicates the
comparison of trained neural networks between individuals.

In this work, we propose an extension of the UDE framework, termed
conditional UDEs (cUDEs), where trainable person-specific parameters are
added as input to the neural network to account for between-subject
variability, and the weights of the neural network are assumed to be com-
mon across the entire population. In this way, variability between subjects is
forced into these conditional input parameters, while the neural network
parameters learn the global behaviour of the system.

Here, we applied a cUDE model to characterize the insulin production
capacity of pancreatic -cells in individuals with normal glucose tolerance,
impaired glucose tolerance and T2DM. Our results demonstrate that the
conditional universal differential framework derives an accurate repre-
sentation of the inter-individual variation in c-peptide production. Fur-
thermore, we show that this subject-specific conditioning parameter is
strongly correlated with the gold standard hyperglycemic clamp measure of
insulin production capacity. We then derived an analytical expression from

the conditionally trained network using symbolic regression and showed
that the learned function not only described c-peptide production for people
with normal glucose tolerance, impaired glucose tolerance, and T2DM, but
also generalized to describe individual c-peptide production in an inde-
pendent human trial.

Results
Conventionally trained UDE does not generalize across
population
To investigate the ability of a conventionally trained UDE to generalize to
meal responses in a population of individuals, a universal differential
equation of c-peptide production and kinetics was initially trained on the
average meal response. The UDE model is based on a two-compartment
ordinary differential equation model describing c-peptide kinetics in the
plasma and interstitial space by van Cauter et al.”>. Here, the van Cauter
model was extended by introducing a fully connected neural network to
represent c-peptide production in the pancreas (Fig. 1a).

The change in plasma glucose concentration relative to the fasting
value at time is provided as input to the neural network t, defined as

G(f) = GP\(t) — GP(0)

where GP(#) is the plasma glucose value at time t. The output of the neural
network is the rate of c-peptide production P(f).

To train the model, demographic data and plasma glucose and
c-peptide trajectories were used from 117 people from a study by Okuno
et al.”, labeled the Ohashi dataset, as the data was retrieved from a paper by
Ohashi et al.”". The data set encompassed three distinct subgroups: people
with normal glucose tolerance (NGT), impaired glucose tolerance (IGT),
and type 2 diabetes mellitus (T2DM) (Supplementary Fig. 1). For estimating
neural network weights and biases, average c-peptide measurements were
used from a training set containing 70% of the individuals. The weights and
biases from the neural network trained on the average response were then
used in combination with the glucose values and kinetic parameters to
predict postprandial c-peptide values. The simulation errors for the indi-
viduals in the train and test sets are shown in Fig. 1b, showing comparable
performance for the normal glucose tolerance and impaired glucose toler-
ance groups, but a strong reduction in performance in the T2DM group.

Figure 1 c—e shows the resulting UDE fits, using the average data from
each glucose tolerance condition as input. From this figure, we can observe
that the UDE model generally fits the mean data within one standard
deviation, with the exception of the final two time points in the IGT group.
However, the model underestimates c-peptide production in the NGT and
IGT groups, while overestimating c-peptide production in the T2DM group.
This indicates the inability of the single universal differential equation
trained on the average response data to account for the progressive decline
in f3-cell function observed in the progression from NGT towards T2DM.

Conditional universal differential equation model of c-peptide
kinetics

To capture the inter-individual variability, an additional input parameter
was added to the neural network, resulting in a conditional UDE model
(cUDE). Consequently, the neural network in this cUDE model has two
inputs. The first input of the cUDE network is the relative plasma glucose
concentration at time t, as in the conventional UDE. The second input is a
trainable parameter f3; that accounts for the variability between individuals
in the production of c-peptide. The output of the neural network (P(#)) is the
c-peptide production at time # (Fig. 2a).

Figure 2b depicts the process of training the conditional UDE. Model
selection and training are performed on a subset of 70% the dataset, labeled
the ‘train set’. The weights and biases of the neural network for the whole
population are trained together with the individual parameters of the train
set, obtaining 25 candidate models from 25 initializations of the optimiza-
tion. A validation set is used, where only the individual parameters are
estimated, to select the best-performing model from these 25 candidate
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Fig. 1 | Modelling c-peptide production with a
conventionally trained universal differential
equation. a Schematic overview of the van Cauter”
model of c-peptide kinetics, depicting the location of
the neural network that describes the production of
c-peptide (P(t)) depending on plasma glucose (Gp).
The blue circles indicate the c-peptide state variables
(Cprand Gy, for the plasma and interstitial fluid
compartments respectively). The green circle
depicts the plasma glucose level. Solid arrows
represent fluxes, and dashed arrows indicate sti-
mulation. Each flux arrow is labeled with their

respective kinetic parameter. b Mean squared error
(MSE) distributions of the UDE model, trained on
average response data, on each individual in the used
dataset, split by train and test set, and grouped by
glucose tolerance status. c—e Mean (circles) and
standard deviations (error bars) of the data, and
UDE model predictions (solid lines) given the mean
data per glucose tolerance condition.
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Fig. 2 | Structure and training procedure of the
conditional universal differential equation model
used to infer postprandial c-peptide. a Schematic
of the conditional UDE model, and the neural net-
work used to estimate personalized c-peptide pro-
duction. The time-dependent plasma glucose value
and a person-specific parameter controlling for
inter-individual variability in dose response are
inputs to the neural network. The weights and biases
of the neural network are estimated population-
wide. b Illustration of the training procedure. The i
dataset is split into a train (49%), validation (21%),
and test set (30%). In the train set, both population :
and individual parameters are estimated. In the
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models. The model is then evaluated on a separate test set, where, in the
same way as in the validation set, the individual parameters are estimated,
while the neural network parameters are kept constant.

cUDE derives generalizable c-peptide production across
population

Figure 3a—c visualizes the cUDE simulation of plasma c-peptide for the
individuals in the test set with the median error value for each glucose tol-
erance condition, showing a good concordance with the measured c-peptide
data. This figure demonstrates that the same neural network weights and
biases, in combination with a subject-specific conditional parameter, can
simulate glucose-driven c-peptide production while accounting for a large
part of the inter-individual variability of the c-peptide production. The
confidence regions for the model simulations are computed from the like-
lihood profiles, shown in Supplementary Fig. 6. All data points for the indi-
viduals are contained within these confidence regions, with the exception of
the final time point in the NGT case. Furthermore, the confidence regions for
the NGT and IGT individuals are both larger than the confidence region in

the T2DM individual. All test fits are shown in Supplementary Fig. 4. The
empirical distributions of the conditional parameters were computed for each
glucose tolerance condition, and included in Supplementary Fig. 5a, where
Supplementary Fig. 5b-d contain simulated c-peptide curves for each glucose
tolerance condition, showing that these curves closely match with the
c-peptide data of each glucose tolerance condition.

Furthermore, the distribution of model error values across the three
glucose tolerance groups is shown in 3 d. Compared to the conventional
UDE (Fig. 1b), the distributions are narrower, especially for the T2DM
group. The resulting model fits and error distributions are comparable to the
model fits and errors in the train set, which can be found in Supplementary
Fig. 3. In addition, training the cUDE model on various fractions of the train
set showed that a train set size of around 29 individuals is already sufficient
for training a model, with a comparable mean test error to the current cUDE
model (Supplementary Fig. 7).

In supplementary section Supplementary Note 2, we demonstrate that
the ability of the cUDE architecture to learn a generalizable model from data
with large systematic heterogeneity by applying the approach to a second
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Fig. 3 | Model fits of the conditional UDE (cUDE) a b c d
model on the test data. a-c Model fit of the indi- NGT IGT T2DM
. . . - —_5 5 5 4 4
viduals with median error value within each glucose d
tolerance group. Visualization of all model fits for all 2 4 4 N 4 3.
individuals in the test set can be found in Supple- -E- 3 s 3 3 u,
mentary Fig. 4. Circles indicate the measured % 2 ? 2 2 = : )
c-peptide levels from each individual and solid lines g, | ; / b : ’ L
represent the model fits. Dotted lines represent the o ! I ! | I | | | | 04 ‘I = il
95% confidence intervals on the model fits based on 0 50 100 0 50 100 0 50 100 NGT IGT T2DM
the likelihood profiles, defined according to*. Time [min] Time [min] Time [min] Type
d Distribution of mean squared error values for
model fits for all subjects in the test subset, separated 95% Cl —— Model fit e Data
by glucose tolerance status group.
Fig. 4 | Spearman correlation of conditional a b c
parameter §3; with independent phenotypic mea- p =-0.805 p = 0.6557 p =-0.4719
surements for the individuals. a Spearman corre- 800 80 1 °
lation of the conditional parameter with the first- & 600 - 70 1 A.. - % 0.0020 :
phase insulin production during a hyperglycemic g 4 . - 60 S " 2 0.0015 "
clamp (Supplementary Fig. 2). b Correlation of the g 400 1 ‘~o g 50 'Y 3 g * o '. d
conditional parameter with age in years. 3 200 ",. < 404{® Hjm = @ 0.0010 1 ® R
¢ Correlation of the conditional parameter with the - ce T 30Je. " ®  — = 0.0005 . ga T
insulin sensitivity index measured from a 04 R . 20 4 S ’ P |
hyperinsulinemic-euglycemic clamp test. 0o 05 10 0o 05 10 00 05 I
B, By B
Train Data ® TestNGT A TestIGT = Test T2DM

example system simulated using a different mathematical model. As with
the c-peptide model, the conditional parameter showed strong correlation
with the prescribed parameter values used to simulate the data. (Supple-
mentary Note 2).

Conditional training parameter captures inter-individual variation
To investigate the interpretability of the conditional parameter, personalized
conditional parameters were compared with subject characteristics,
including BMI, age, body weight, and clamp-based measurements of insulin
sensitivity and insulin production capacity.

In Fig. 4, the strongest Spearman correlation of —0.805 is observed with
the first phase of insulin production measured using the hyperglycemic
clamp, the gold standard measure of insulin production (Fig. 4a). A mod-
erate correlation is seen with age (b), while the insulin sensitivity index,
measured using a hyperinsulinemic-euglycemic clamp (c), has the lowest
correlation of the three.

The correlations with body weight and body mass index are low, while
the correlations with other measures of insulin production are high, which is
shown in the supplementary figure Supplementary Fig. 10.

Symbolic regression derives a generalizable analytical expres-
sion of c-peptide production

As the neural network model remains a black box model, we also sought to
replace the neural network with a more interpretable analytical expression.
The symbolic regression approach proposed by Cranmer et al.”” was applied
to data sampled from the trained neural network. Subsequently, the derived
analytical expression was simplified manually, reducing several fixed con-
stants to a single term (see Supplementary Note 1 for a detailed derivation).
The resulting expression resembles Michaelis-Menten kinetics and is
given as

GP'(1)—GP(0)

L _GTH=GT0) if GP! pl
GG 0) if GP'(t) 2 GP'(0)

PGP (D)lky) = { ;'78 (1)

otherwise

Here, k), is a trainable parameter, qualitatively equivalent to the f;
parameter learned by the cUDE. (see Supplementary Note 1 for more details
on the numerical relation between f3; and k). The dose-response curves for
the neural network and the learned expression are depicted in supple-
mentary figure Supplementary Fig. 12.

To evaluate the performance of this learned analytical expression for
c-peptide production the neural network of the cUDE was replaced with
equation (1). The fully analytical model was then fit to the measured
c-peptide data for all individuals by estimating a value for k.

Figure 5 a—c visualizes the model fits of the analytical model model
for the individuals corresponding to the median error values per glucose
tolerance group. As seen with the cUDE model, the model derived via
symbolic regression agrees well with the data across all three groups. The
distribution of model fit errors per group (Fig. 5d) also shows comparable
distributions to the model fit errors obtained for the cUDE model. Fur-
thermore, the correlations of the estimated kj; value with insulin pro-
duction, age, and insulin sensitivity, as shown in Fig. 5e-g, are similar to
the previous results obtained with the cUDE model and again display a
high correlation with insulin production as measured with the hyper-
glycaemic clamp. Profile likelihood analysis was performed on the para-
meter k), for each individual to test whether it was identifiable from the
data. (Supplementary Fig. 6)

Finally, to demonstrate generalizability of the model derived from
symbolic regression, the analytical model was fitted to glucose and
c-peptide measurements collected during an OGTT from a previously
unseen dataset.

The model fits for the individuals at the 25th, 50th and 75th percentiles
of the mean squared error are shown in Fig. 6a—c respectively. In all three
models, the curve shows high concordance with the data. Moreover, despite
the original cUDE model being trained for data up to 120 min, the learned
analytical term can also reliably simulate plasma concentrations of c-peptide
up to 240 min postprandially. The distribution of model errors is shown in
Fig. 6d, indicating that high-quality model fits could be obtained for a large
part of the twenty individuals.
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Fig. 5 | Fit of the analytical model derived using a NGT b IGT c T2DM
symbolic regression to measured data. a—c Model — — — g
fit for individuals with the median error value for E 3 E 3 4 E 3
each gluclose tolerénc.e condition. Model ﬁts are § 5 § 5 § 5
shown with the solid line, measured c-peptide values o o3 o
are indicated with the circles. The model simulations 093_ 1 09). 1 $. 14 gL J
for the 95% confidence intervals on the parameters © | © T r r © r r r ib ¢
are shown in dashed lines. d Model error value 0 50 100 0 50 100 0 50 100 C:} 0@
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Discussion

In this work, we introduced conditional universal differential equations
(cUDESs) as an extension of the universal differential equation framework
that facilitates simultaneous data-driven model discovery and model per-
sonalization. We then applied this technique to uncover a novel index of
inter-inidividual varition in c-peptide, and by extension, insulin production
in a human population with diverse glucose tolerance status.

Our results show that cUDE models can accurately estimate a missing
c-peptide production term from the data. More importantly, by accom-
modating the large inter-individual variation in plasma glucose and
c-peptide level, the cUDE learns a model that can be generalized across
individuals with different glucose tolerance status. In contrast, the classical
UDE was unable to capture difference in beta-cell capacity that are indi-
cative of glucose tolerance status. Investigating individual model fits, the
trained cUDE was unable to describe the c-peptide measurements of a single
individual (Supplementary Fig. 4 individual 10) from the test set. However,
this individual showed a strong discordance between the measured glucose
and c-peptide data with measured plasma glucose only increasing 60 min-
utes after ingestion of the glucose solution. This unexpected plasma glucose
response may potentially be explained by the effect of incretin hormones
such as GLP-1 or GIP. These incretin hormones are produced in response to
an increase in glucose level in the intestine and activate insulin and c-peptide
production””. In this study, these hormones are not measured and are a

potential additional source of inter-individual variability in c-peptide pro-
duction. Should time series of incretin hormones become available in the
future, the cUDE framework could be reapplied without strong modifica-
tions to further learn the role of these incretin hormones in c-peptide
production. However, in the current model, where only glucose is provided
as the stimulus for c-peptide release, the majority of model fits showed a
strong agreement with plasma measurements, suggesting that glucose is the
primary driver of c-peptide production®.

Furthermore, by constraining the weights and biases of the neural
network to be the same for the entire population, the free conditional
parameters capture the inter-individual variation which enables the direct
comparison between individuals. By comparing the conditional parameters
resulting from the c-peptide model with a range of independent measures of
metabolic health, we have shown that the conditional parameter strongly
correlates with metrics of insulin secretion measured using the hypergly-
cemic clamp method, the current gold standard measure of insulin pro-
duction capacity. Furthermore, the lack of a strong correlation with the
insulin sensitivity index indicates that the conditional parameter specifically
targets the c-peptide and insulin production capacity, and not just a general
deterioration in metabolic resilience. The moderate correlation observed
with age may have two causes. Firstly, the conditional parameter has been
shown to describe the progressive decline in f3-cell function, with higher
values in people with T2DM. The age distribution was different between
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each glucose tolerance condition, with the ages of the T2DM group being
significantly different than the NGT individuals (Mann-Whitney U test,
p < 107'°). Secondly, part of this correlation may also originate from the
known natural decline of -cell function with aging™. We have also trained a
cUDE model including age as an additional input to the model to investigate
the effect of correcting for age on the correlation with the first-phase clamp
indices and the curve-fitting performance. However, the correlation of the
conditional parameter with the clamp index reduced slightly, and no notable
improvement was observed regarding curve fitting performance. (Supple-
mentary Fig. 11) We suspect that the bias of the dataset concerning the age of
individuals in each subgroup may influence the ability of the neural network
to correctly estimate the true age effect on insulin production capacity, and
we would require a larger dataset with a better representation of this natural
age effect for an improved separation of the age effect and the diabetes
progression effect. While the inclusion of age as an additional covariate did
not improve the results in the model used in this work, this feature of cUDEs
could also be used in different applications, for example to introduce rele-
vant phenotypic characteristics, such as sex, smoking status, or family his-
tory of disease into the UDE models. This approach would produce a hybrid
model that can integrate these features into a mechanistic model to improve
the prediction of disease risk or treatment response, as proposed in the case
of ventricular tachycardia in ref. 30.

In order to learn a generalizable model of c-peptide production, a
sufficiently heterogeneous dataset is required. Here, we used data from the
Ohashi data set consisting of individuals with normal glucose tolerance,
imparied gluocse tolerance and T2DM. However, it is not essential to have
very large data sets. In Supplementary Fig. 7 we show that using data from 29
individuals did not strongly increase the test error of the cUDE model,
provided that the proportion of NGT, IGT and T2DM was maintained.
Although the amount of data required also depends on the complexity of the
model to be learned, and thereby the neural network size and the amount of
inputs and outputs, the cUDE is relatively data-efficient, compared to fully
data-driven methods, which typically require thousands of samples™".
Additionally, we have shown the applicability of the cUDE model in a
simulated example with just 37 individuals, showing that the conditional
parameter strongly associates with the variability introduced in the simu-
lated data. (Supplementary Note 2).

Furthermore, we show that the interpretability of the cUDE model
can also be further increased through the use of symbolic regression. For
symbolic regression, we have used a genetic algorithm, which is non-
deterministic and may produce variable results upon repeated runs. This
can be mitigated by letting the algorithm run through sufficient iterations,
which will eventually lead to model convergence. However, this required
number of iterations (25,000 in this work) is problem dependent, and for
larger problems, more iterations are required, which should be taken into
account when applying symbolic regression based on genetic algorithms.
In this work, the use of a limited number of allowed operators based on
knowledge of previously built ODE models in systems biology greatly
reduced the search space, allowing for the discovery of an interpretable
model. However, some detail in the dose-response relationship is lost
when comparing the analytic expression to the neural network (Supple-
mentary Fig. 12). Despite the loss of some of the details in the dose
response, the derived analytical equation demonstrates generalizability
beyond the original dataset, as shown by fitting the derived analytical
model to normoglycemic individuals from a previously unseen dataset.
Furthermore, we demonstrate that the derived model originally trained on
120 minutes of data can successfully simulate model behaviour over
240 minutes.

Several models of insulin and c-peptide production in response to
glucose have been proposed in the literature. From models such as Maas
et al.” that use a complex PID controller or the detailed model of exocytosis
used by Ha et al.’™ to simple linear mass-action kinetics presented in
Hovorka et al.”’. The Michaelis-Menten term for c-peptide production
derived from data in this study is similar to the insulin production term used
in the model by Topp et al.*’, which uses a Hill function with a Hill

coefficient of 2. This acts as a form of validation that the model we derived
from symbolic regression is a physiologically plausible model of c-peptide
production.

A limitation of this study is that both the Ohashi and Fujita datasets
contain only people of Japanese descent. Although previous work has
provided evidence for similar 3-cell responsiveness across all glucose tol-
erance states”, it is necessary to further validate the trained model on more
diverse populations. In addition, the derived model has only been tested on
OGTT responses. Especially considering the effect of amino acids on insulin
and c-peptide production®, the model may not be able to accurately describe
responses to more complex meals. However, despite these limitations in the
learned c-peptide model, we demonstrate that the cUDE approach out-
performs current UDE approaches in learning a generalizable model that
incorporates biologically relevant inter-individual variation.

While we demonstrated that the conditional parameters were identi-
fiable in almost all individuals (109 of 117 individuals, Supplementary Fig.
6), we also demonstrated that the conditional parameters are only identi-
fiable when the neural network parameters are fixed, as can be seen from
Supplementary Fig. 8. In this figure, we visualized f3 against the first phase of
the hyperglycemic clamp for all models resulting from the various initi-
alizations of the neural network parameters during training. When com-
paring the conditional parameters trained in multiple initializations of the
cUDE training we see that the neural network learns either a positive or
negative association with the first-phase clamp index. However, a con-
sistently strong association is derived across models. Furthermore, while a
linear relationship between the conditional parameters of two models is not
guaranteed, due to the nonlinearity of the neural network, comparing the
parameters of two models does results in a high correlation. This high
correlation, in combination with narrow spread of points suggests an
algebraic relationship (Supplementary Fig. 9). This effect, however, does
pose a challenge concerning the use of ensemble UDE models for increased
robustness”. This challenge can potentially be remedied using dimension-
ality reduction techniques, such as principal component analysis, to align
common patterns within conditional parameters, but this requires further
investigation.

Furthermore, if multiple conditional parameters were to be used, the
nonlinearity of the neural network can cause these to become correlated,
and mutually unidentifiable. Possibly, in case of multiple conditional
parameters, regularization could be applied to penalize correlations between
the conditional parameters to ensure orthogonality. However, assessment of
identifiability is still only possible after fixing the neural network weights and
biases.

In our current training regimen, we train the biases and weights of the
neural network using the whole training data set, while the conditional
parameters are trained independently for each individual using a maximum
likelihood approach. Nonlinear mixed effects (NLME) modelling is an
alternative approach to model parameterization that simultaneously
accounts for both inter- and intra-individual variability*. By representing
inter-individual variability through random effects, NLME models enable
scalable estimation via the population likelihood, integrating out individual-
level parameters. Recent advances, such as neural network-based NLME
extensions, incorporate random effects as neural inputs to capture popu-
lation heterogeneity, typically under the assumption of normally distributed
effects”’. We show that NLME based training of the cUDE model is equally
possible and yields similar results to the original approach taken in this
work. While the correlation with hyperglycemic clamp remains strong
when estimating the parameters using a NLME structure, the accuracy of
the model fit is reduced in some individuals of the T2DM group, as their
parameters regress towards the population mean. (Supplementary Note 3)
Due to this reduced accuracy, we used a traditional frequentist approach for
estimating parameters, but in some cases, depending on the research
question being addressed, NLME estimation combined with the cUDE
model structure may provide more useful results.

In conclusion, we present CUDEs as an effective extension to the UDE
framework that can be used to learn a generalizable representation of

npj Systems Biology and Applications| (2025)11:84


www.nature.com/npjsba

https://doi.org/10.1038/s41540-025-00570-6

Article

missing dynamics from a heterogeneous dataset. The cUDE works under
the main assumption that the dynamic system underlying the data is
common to all samples, while only a limited set of parameters is necessary to
capture the differences between samples. This setup makes the cUDE
especially suited to biological challenges, where inter-individual variability is
both ubiquitous and often physiologically relevant. Here, we show that the
conditional parameter in the cUDE model for c-peptide is interpretable as a
physiologically relevant index, capturing the inter-individual variability in
c-peptide production as validated by comparison with the hyperglycemic
clamp. Although this study demonstrates the application of the cUDE
model in a specific application, the cCUDE framework is also usable in several
other medical disciplines where mathematical models are abundant, such as
cardiovascular medicine, neurology, and infectious diseases. The ability of
the cUDE model to learn a model that can generalize, capture relevant and
interpretable inter-individual variation, and to be trained with limited
number of learning examples are key features that demonstrate its potential
to support model- and data-driven precision healthcare.

Methods

Ohashi dataset

The Ohashi dataset was obtained from Ohashi et al.***’, and originally
collected by Okuno et al.”’. The original study was approved by the ethics
committee of the Kobe University Graduate School of Medicine and was
registered with the University Hospital Medical Information Network
(UMIN000002359). Written informed consent was obtained for all subjects.

As described in*, 50 subjects with normal glucose tolerance (NGT),
18 subjects with impaired glucose tolerance (IGT), and 53 subjects with type
2 diabetes (T2DM) participated in the study. The characteristics of the
subjects for each group are shown in Table 1.

All subjects underwent a 75-gram oral glucose tolerance test, as well as
a consecutive hyperglycemic and hyperinsulinemic-euglycemic clamp test.
Both tests were performed on separate mornings after an overnight fast.

In the 75g-OGTT, follwing an overnight fast, blood samples were
collected before and 30, 60, 90 and 120 minutes after ingestion of the glucose
solution. Plasma glucose and serum insulin and c-peptide concentrations
were measured in each sample.

Hyperglycemic clamp and hyperinsulinemic-euglycemic clamp tests
were performed consecutively. The hyperglycemic clamp began with an
intravenous infusion of a glucose bolus of 9622 mgm > within 15 minutes,
followed by a variable dose of glucose to keep plasma glucose levels at
200 mg dL™" for 90 minutes. Blood samples were collected before and at 5,
10, 15, 60, 75, and 90 minutes after glucose infusion. In each blood sample,
plasma glucose and serum insulin and c-peptide were measured. The
hyperinsulinemic-euglycemic clamp test was then performed by intrave-
nous infusion of regular human insulin at 1.46 mUkg ™' min~" to obtain a
serum insulin concentration of 600 pmolL~". Plasma glucose concentration
was kept at 90 mg dL™' by variable glucose infusion for 120 minutes™.

Insulin secretion indices were defined as the incremental area under
the insulin concentration curve during the hyperglycemic clamp:

T,
S(T,, T,) = / . (I(t) — 1(0))dt 2

Where the insulin secretion during the first-phase is defined as S(0, 10),
during the second phase as (10, 90) and the total insulin secretion as S(0,
90). The insulin sensitivity index (ISI) is calculated from the
hyperinsulinemic-euglycemic clamp by dividing the mean measured
glucose infusion rate during the last 30 minutes of the test by the product
of plasma glucose and serum insulin levels at the end of the clamp (¢ = 120).

Fujita dataset
The Fujita dataset was obtained from Fujita et al.”’. Written informed
consent was obtained for all subjects.

As described in*, 20 subjects with normal glucose tolerance (NGT)
participated in the study. Subject characteristics for each group are shown in

Table 1| Subject characteristics from the Ohashi dataset®****
after exclusion of subjects with missing data, and the Fujita
dataset®

Ohashi Fujita

NGT IGT T2DM -
number of individuals 49 17 51 20
male/female 22/27 10/7 31/20 14/6
age (y)* 30+8.5 41+£12 55+14 29+9
BMI (kg/m?)?* 21+3.4 27 £6.7 26+5.0 20.8+2.2
fasting glucose (mM)*  4.75+0.43 4.90+0.55 5.77+0.99 5.32+0.44
2-h glucose (mM)* 6.14+093 9.17+0.89 14.8+4.24 7.27+;1.94

For the Ohashi dataset, data is given per glucose tolerance condition.
“Data presented as mean + standard deviation.

Table 1. All subjects underwent a 75g-oral glucose tolerance test (OGTT) in
the morning after an overnight fast. Fasting blood samples were drawn twice
before oral ingestion of glucose. Blood samples were obtained at 10, 20, 30,
45,60, 75, 90, 120, 150, 180, 210, 240 min after ingestion. Subjects remained
at rest throughout the test. Blood samples were rapidly centrifuged”.

Data preprocessing

Measurements of four subjects with missing values in the OGTT experiment
were excluded from further analysis. The values reported in Table 1 are
calculated on the data after exclusion. Unit conversions were performed to
convert glucose from mgdL ™" to mM and c-peptide from ngmL " to nM. For
the data from Fujita et al.”, no measurements were dropped and the same
unit conversions were applied, as with the data from Ohashi et al.

Differential equation model of c-peptide
The van Cauter model was used to describe the concentrations of c-peptide
in the plasma and interstitial compartment,” (Fig. 2a). The original model,
used to describe intravenously administered c-peptide, was extended to
include endogenous production of c-peptide by the pancreas. The model
equations for both compartments are given by:

pl )
% = —(ky + k,)CP' + k,C™ + P(t) (3)
int
ddct — kO — kO @

Where C' represents the concentration of c-peptide in the plasma
compartment and C™ is the concentration of C-peptide in the interstitial
compartment. Kinetic parameters kq-k, were calculated for each individual
based on age, using equations provided by van Cauter et al. %, which are
given as:

log(2) log(2)
ky = fEE+0-HZ
k., = log(2)  log(2)
(U g 1k

log(2) | log(2)
A s

For which the parameter values (f, 75, and 77) are given in Table 2 for
the NGT, IGT, and T2DM groups.

Neural network component

The production of c-peptide P(f) was modelled using a densely connected
neural network with two inputs; the first was given by the difference in
plasma glucose at time ¢ compared to fasting values (G{(t) = G*(£) — G*(0))
and the second was a learnable parameter f; representing the inter-
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Table 2 | Parameter values for computing the kinetic
parameters for the van Cauter c-peptide model for the NGT,
IGT and T2DM groups

Parameter (unit) Value (NGT, IGT) Value (T2DM)
f(-) 0.76 0.78

s (Min) 4.95 4.52

7, (min) 29.2+0.14 - Age

individual variability (fig. 2b). Plasma glucose values are obtained directly
from the measured data using a forcing function. For timepoints in between
measurements, glucose values are linearly interpolated.

The neural network contained two hidden layers each consisting of 4
nodes making use of tanh-activation functions, and an output layer of size 1,
with a softplus activation function, resulting in 37 trainable weights.

The neural network architecture was selected through a grid search.
Different architectures were obtained by varying the depth of the model
between 1 and 2 layers, with layer sizes of 3-6 nodes, and 3 layers with layer
sizes of 3 and 4 nodes. All models were trained on 70% of the train set and
evaluated in the remaining 30%. The model that gave the lowest error for
most individuals was selected. In case of a tie, the model with the lowest
median error on all individuals was selected.

Initial conditions

For simulation, the whole system was assumed to be in steady state at ¢ =0,
as subjects were fasting prior to the oral glucose tolerance test. The initial
condition for plasma c-peptide (C*') was set to the measured fasting value at
t= 0. For interstitial c-peptide, the initial condition was calculated using the
steady-state assumption to be

Cint(t =0)= %Cpl(t =0) (5)
1

Furthermore, to ensure the plasma c-peptide compartment was in
steady-state at ¢ = 0, the production term P(t) including the neural network
N(G, j3;), describing c-peptide production was formulated as

P(t) = Py + N(G(t) — G(t = 0); B;) — N(0; ;) (6)

Resulting in a production value at ¢ =0 of P(t = 0) = Py, where P, was
set as

ko CP(t = 0) )

Parameter estimation

The neural network parameters were estimated on a randomly selected
training subset containing 70% of the total samples, stratified according to the
glucose tolerance condition. This training set was further divided into a true
train set of 70% and a validation set of 30% of samples. This resulted in a true
training set containing 49% of the entire dataset (n = 57), and a validation set
containing 21% of the entire dataset (n = 25). Parameters were estimated on
the true train set using the following loss function:

Ny T

=>> <Cplodel(t|pNN7[3) Chaa, l(f))z ®)

i=1 t=0

Litain (P B)

Where pny are the parameters of the neural network, f3 represents the
vector of all conditional parameters for each individual i out of the total of
Nirain individuals. Furthermore, 7 = {0, 30, 60, 90, 120} represents the set
of timepoints contained in the data. To prevent sign changes of 3 between
individuals, log(f8) was estimated, constraining 3 to the positive domain.

The parameter estimation for the universal differential equation
models was then performed by sampling 25,000 initial candidate parameter
sets and optimising the 25 candidate parameter sets that yielded the smallest
initial objective function values. Subsequent optimization was performed
using a two-stage optimizer, starting with Adam™* for 1000 iterations with a
learning rate of 107> Starting from the endpoint of Adam, the LBFGS
optimizer was used for a maximum of 1000 iterations or until convergence.
Subsequently, for all trained 25 models, the neural network parameters were
fixed and the conditional parameters were estimated on the validation set
using the LBFGS optimizer, with the following loss function:

| 1 &

T
Ltest(ﬁi) = IT _2 Z < model(t|pNN7 ﬁ ) Cglata,i(t))z (9)

t=0

The model that resulted in the lowest average loss function value in the
individuals in the validation set was then selected as the best perform-
ing model.

After selection of the best performing model, the conditional para-
meters were reestimated on the full dataset, including the remaining 30%
of the data that was not used until now (n = 35). Furthermore, for each
individual, the variance in the residuals (0?) was estimated to
enable the computation of confidence intervals on the conditional para-
meter (see “Identifiability analysis”). Estimation was performed using
maximum likelihood estimation assuming zero-mean residuals, depicted in
equation (10).

T T
NLL(ﬁﬁ Ji) = % i L Z < model(t‘PNN7 ﬁ ) Cgilta t(t)) Z

2
20, ‘=
(10)

Identifiability analysis

To determine whether f3; was identifiable for each individual, we inspected
the maximum likelihood function values (equation (10)) with the estimated
o? fixed, when varying f; around its optimum. The 95% confidence interval
of B; was determined by the boundary values for the change in likelihood,
defined in* to be ANLL = 7.16. For an individual, 3; was defined as iden-
tifiable if these bounds were reached. If only one bound was reached, 3; was
defined as practically unidentifiable. If neither bounds were reached, 3; was
defined as unidentifiable®.

Symbolic regression

For symbolic regression, initially 900 unique samples of the neural network
output were created through combinations of 30 values for the conditional
parameter f3 and incremental glucose values. Incremental glucose values
were capped at zero, to reduce the complexity of the problem. Symbolic
regression was then performed using the Py SR package” using the settings
listed in Table 3.

From the resulting equations, the top equation was selected using the
‘best’ option from the Py SR package. This first selects all expressions with a
loss smaller than at least 1.5 times the loss of the most accurate model. From
these expressions, the model equation with the highest score is selected,
defined as the negated derivative of the loss with respect to complexity”.

The resulting equation was then simplified by amalgamating constants
into a single learnable parameter. As the incremental glucose values used to
train the symbolic equation were capped at zero, production was set at a
value of zero when GP\(¢) < G*(0).

Programming

Both the ordinary differential equation models, as well as the universal
differential equation models used in this research were implemented in the
Julia programming language, using the ‘OrdinaryDiffEq.jl’ package”.

npj Systems Biology and Applications| (2025)11:84


www.nature.com/npjsba

https://doi.org/10.1038/s41540-025-00570-6

Article

Table 3 | Settings for the symbolic regression algorithm
from PySR

Parameter Value
Iterations 25,000
Binary operators [+, *]

Unary operators inv(x) =1/x
Processes 6

Maximum size 18
Populations 24

Data availability

All code and data used to produce the results and analyses can be found in
the GitHub repository linked to this publication: https://github.com/

Computational-Biology-TUe/conditional-ude.
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