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Cancer cell populations, such as chronic lymphocytic leukemia (CLL), are characterized by aberrant
proliferation and plasticity: cells may switch between states so increasing population heterogeneity.
Previous works have shown that gene expression noise can impact cell-state transition. To gain better
insights into transcriptome-wide expression dynamics and the effect of noise on state transition, here
we investigate RNA-Seq data of proliferative (PC) and non-proliferative (NPC) CLL cells. Various data
analytics were applied to the whole transcriptome, switch-like toggle (ON/OFF) genes, temporal
differentially expressed (DE) genes, and randomly selected genes. Collectively, we identified 2713
temporal DE genes (DESeq2 with 4-fold, p < 0.05) and 1704 toggle genes shaping the differentiation
process over a period of 96 h, with 604 overlapping genes between them. Despite their lower numbers
compared to DE, toggle genes contributed significantly to gene expression noise in both cell types.
Toggle gene analyses revealed the enrichment of genes involved in processes such as G-alpha
signaling and muscle contraction as proliferation related RHO-GTPase, interleukin and chemokine
signaling, and lymphoid cell communication. Thus, toggle genes, although being random ON/OFF
genes, show gene expression functional variability. These results suggest that toggle genes play an

important role in shaping cell population plasticity.

Chronic lymphocytic leukemia (CLL) is the most common type of leukemia
in adults, with a median age of diagnosis and onset of 70 years'. It is
characterized by the uncontrolled proliferation of monoclonal lymphoid
cells, specifically transformed mature CD5+ and CD23+ lymphocytes
which are impaired in their function™. Due to the heterogeneous nature of
CLL, current treatment approaches for the disease are complex and
suboptimal>*’. Previously, it has been observed that tumors can leverage
genetic, epigenetic, and stochastic variability to foster the necessary plasticity
that leads to resistance and treatment evasion’'>. While CLL is known to
exhibit significant clonal and metabolic plasticity, its transcriptomic plas-
ticity remains underexplored. Thus, transcriptome-wide analytics, that are
capable of tracking systemic responses in gene expression, is necessary and it
offers an important avenue for the study of CLL plasticity.

The construction of gene expression landscapes'*'* allows to under-
stand transcriptome-wide expression dynamics, especially in the context of

cancer. This approach implies the conceptualization of living cells as
dynamic systems that occupy specific states at any given moment. As cells
undergo dynamic processes they move through the landscape, eventually
tending towards conditions of stability or equilibrium, known as “attractors”
(Fig. 1A)*""'°. Thus, the gene expression trajectories that cells follow as they
move through the expression landscape are important for cell-fate decision
making.

For cancer, we can think of a simplified cell-fate landscape with only
two attractors: a normal state, and a cancer state. Under normal circum-
stances, cells are more likely to settle into the normal cell attractor, and very
large perturbations are necessary to cause a cell to move to the cancer
attractor (Fig. 1B, left). However, cancer cell transcriptomes exhibit a level of
plasticity that endows them with unpredictable behaviors and patterns,
rarely seen in normal healthy cells''"""’. In the case of an altered landscape
(being this alteration coming from diverse initial causes, such as genetic
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Fig. 1 | Attractor landscape and toggle genes. A
A Transcriptome expression landscape shows how

cells follow certain trajectories to settle into different
attractor states, figure adapted from ref. 14.

B Normal (left) and transformed (right) simplified
cell fate landscape which shows that cells require
larger perturbations (yellow arrows) to exit their
current normal state and have the potential to fall

Cellular

into the cancer attractor. In a transformed land- trajectory”

“Potential” gene expression state

scape, the energy barrier required changes due to
changes in attractor depth and thus state changes are
more likely to occur. C Breakdown of toggle genes
extracted from normal (orange) and tumor (green)
samples shows a higher incidence of toggle genes in C
tumor samples across 8 investigated cancer sets
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mutations, chromosomal aberrations, or microenvironmental stimuli), the
perturbation required to exit the normal attractor and settle into a
new cancer state is significantly smaller (Fig. 1B, right). Therefore, pertur-
bations such as gene expression noise, can play major roles in shaping cancer
states”?*, Often the highly variable genes, such as the differentially
expressed (DE) genes between the attractor states, can play crucial roles for
the state transition. Hence focusing on such genes’ expression over the state-
transition period is crucial.

In addition to DE genes, gene expression noise plays a significant role
in producing diversity and shaping complex biological processes™***.
During cell fate decision making, transcriptome-wide noise has been
associated with controlling lineage choices in mammalian progenitor cells,
allowing for the emergence of outlier cells contributing to population
proclivity™. On a smaller scale, noise in the expression of individual genes
has also been found to be equally important; in B. subtilis, controlling
transcriptional and translational noise of comK was associated with vege-
tative- and competent-state transitions®. Likewise, in cancer, noise can
play a significant role, as evidenced by the increasing expression
diversity observed in late-stage tumors and their association with cancer
outcomes'’***.

Gene expression noise level affect cell-state transition, in a way similar
to the effect of temperature in state transition in inorganic matter. In
addition to such ‘standard’ noise following continuous distribution, a ‘dis-
crete’ noise coming from toggle genes” is at play. These genes exhibit a
“switch-like” behavior, being “OFF” in one sample (or condition) and “ON”
in another, leading to significant weighted noise across samples. This phe-
nomenon has been observed across a wide range of organisms, from uni-
cellular to human mammalian cells, and appears to be consistent regardless
of the RNA extraction method employed (Tables S1, S2). Of particular
interest, toggle genes show a higher incidence in cancer and cell proliferation
data, where they contribute significantly to transcriptome-wide noise”.
Moreover, our observations indicate a greater prevalence of toggle genes in
tumor samples compared to their healthy counterparts (Fig. 1C). In various
cancers, including but not limited to prostate, lung, and breast cancer,

similar molecular switches have been observed that not only contribute to
drug resistance but also provide the molecular plasticity required for pro-
liferation, metastasis, and uncontrolled growth’". Toggle genes have also
been observed in other situation; the alternation between the lytic and
lysogenic phases of phage lambda’", many endogenous retrovirus (ERV)
sequences exhibit a bi-stable (yes/no) activation behavior, inherited from
their viral origins™. Furthermore, the frequency of ERVs positively corre-
lates with evolutionary complexity and varies significantly between cell
lines™.

Thus, the investigation of switch-like or toggle genes, on top of DE
genes, in especially cancer during periods of proliferation, is crucial for
understanding the role of gene expression variability in cellular plasticity. In
this study, we aim to expand the current understanding of CLL proliferation
in the context of transcriptomic plasticity by specifically investigating the
influence of toggle genes alongside temporal differential gene (DE)
expression analyses. We expand the definition of toggle genes to include
comparisons between samples of the same condition, capturing variability
in gene expression across distinct samples. To achieve this, we made use of
CLL transcriptomic data from several studies (Table S3), with an increased
focus on temporal transcriptomic data from a recent study conducted by
Schleiss et al.”” that investigated the proliferative signature of CLL patient
cells by segregating tumor cells into proliferative cells (PC), and non-
proliferative cells (NPC)*”*. By leveraging advanced data analytics techni-
ques—ranging from correlation, noise analysis, dimensionality reduction
and gene enrichment—our objective is to elucidate the complex interplay,
and the role played by toggle genes and differentially expressed genes in CLL
proliferation.

Results

CLL transcriptome data

For all considered CLL datasets (Table S3, refs. ****), we first performed gene
expression filtering using statistical distribution fitting and threshold-based
filtering (Fig. S1, Methods)"**". From the whole transcriptome, this process
removed very low and technically noisy genes, leaving only robust gene

npj Systems Biology and Applications| (2025)11:91


www.nature.com/npjsba

https://doi.org/10.1038/s41540-025-00575-1 Article
A Toggle Genes
5 .
< Static data Temporal data
4 . :
L3
.8 R R R R Rep1] Rep2| Rep3| ,, ., R R
2,
1 Normal Treated Time Zero Time X
0 Toggle genes are extracted between Toggle genes are extracted between
o 1 2 3 4 5 replicates for each condition replicates for each time point
Replicate1
GSE66117 GSE249956 GSE130385
s 15 ¢
o .
3 s e
()] >
p S0 2
2 a - 10
g ° o o
B £ <:
- © [ =
Gl g° g °
o o
o
0 0 0
0 1 2 3 0 5 10 0 5 10 15
CLL Sample 1 Proliferating CLL cell 1 Patient 1 at 1 hour
Other Genes « Toggle Genes
400 400
1000
- . 300 . 300
c c c
3 3 3
O 500 o 200 3 200
100 100
| —| || [B_
\y e & PO P & & O P F
8§ 06\0 ‘OQ;\)b OQNQ &\A 06\0 6606 OQ\Q (\Q\Q &é § 06\(\ Q%Ob OQNQ (\QS\‘
N _\(\.0 Q S N _\(\.0 QS 9 N \(\.0 NS
o\% O\Q: o\Qz
I ncRnA pseudo

Fig. 2 | Cancer toggle genes and their broad biotypes. A Illustrative schematic of
the extraction of toggle genes within the larger transcriptome. B Presence of toggle
genes (red) within the transcriptome-wide scatter in three investigated CLL datasets:

. protein-coding

B sorna

GSE66117, GSE249956, GSE130385 using TMM normalization method (C) Biotype
distribution of toggle genes in three CLL datasets (Table S3), with the prevalent
biotype being protein-coding genes.
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Table 1 | Number of extracted toggle genes and DE genes

Gene Set Number of Toggle Genes
Total: Oh 1h 1h30min 3h30min 6h30min 12h 24h 48h 96 h
Same- condition Toggle Genes 1704 621 610 554 578 545 301 383 285 309
Temporal DE Genes, FC > 2 9148 NA 689 2580 4547 3986 3656 3643 5007 4600
Temporal DE Genes, FC > 4 2713 NA 179 515 1171 1177 1077 1184 1422 1319
Whole (13673) Toggle Genes (1704) Temp. DE Genes (2713)
< 1.001 1.001 1.004
E 0.751 0771 0.754 0.751
: (o771) ‘
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Fig. 3 | Average autocorrelation of PC and NPC cells across time. A Pearson
autocorrelation for the whole transcriptome (~13 K genes). B Pearson auto-
correlation for extracted toggle genes (~1.7 K genes). C Pearson autocorrelation for
high fold-change (4FC) differentially expressed temporal genes (~3 K genes).

D Pearson autocorrelation for the overlapping genes between DEG and Toggle
genes. E Pearson autocorrelation for unique toggle genes. F Pearson autocorrelation
for Unique DEG.

expressions for further analyses (Table S3). The same was done for the CLL
proliferating cells (PC) and non-proliferating cells (NPC) at 9 time points
after B cell receptor (BCR) stimulation (n =0, 1, 1.5,3.5,6.5, 12, 24,48,96 h,
GSE130385).

The presence of toggle genes in CLL data

Toggle genes were identified in all three CLL datasets by comparing gene
expressions between distinct patient samples exposed to the same disease
state. These were termed as toggle genes from same-condition samples, that
is, genes with zero expression in one sample and positive expression above a
noise threshold in another (Fig. 2A). The noise threshold was derived using
statistical distribution fitting analysis (Methods), to ensure that the identi-
fied toggle genes reflect genuine biological variability rather than techni-
cal noise.

In the transcriptome-wide scatterplots (Fig. 2B), toggle genes (red) are
distributed along the x- and y-axes in all datasets. Biotype analysis revealed
that the majority of these genes are protein-coding, irrespective of the RNA
extraction method used (Table S3), while a smaller subset consists of non-
coding genes. The consistent identification of toggle genes in all datasets,
combined with their predominance as protein-coding genes, highlights the
inherent randomness and instability within CLL transcriptomes.

The concept of ‘randomness’ in toggle genes exhibits a unique char-
acteristic. Typically, randomness is associated with statistical distributions
such as uniform, normal, or, more commonly in biological systems, log-
normal continuous distributions. However, toggle genes introduce a dif-
ferent form of randomness: toggling is inherently a discrete binary process at
the single-cell level. When this behavior extends to the cell population level
in the form of unbalanced toggles, it leads to a pronounced symmetry
breaking within the population, ultimately driving the system in a specific
direction®. We will explore this concept further in the following discussion.

Tracking the temporal global, DE and toggle genes response

As cell proliferation is a dynamic process, we next investigated the behavior
of toggle genes in CLL proliferation using the PC and NPC dataset. DESeq2
analysis identified 9148 temporal DE genes between time points £, and t,,
applying a two-fold change and a p-value below 0.05 (Table 1). While not
unexpected, this substantial gene set, representing 71% of the filtered
transcriptome, suggested extensive involvement of DE genes in cell pro-
liferation. To facilitate comparison with the smaller toggle gene set (1704
genes), the threshold was increased to a four-fold change, reducing the DE
gene set to 2713 genes (Table 1). This stricter threshold helps exclude genetic
elements that merely follow the system’s general dynamics due to inter-gene
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Fig. 4 | Noise changes in time for PC (red) and NPC (blue) samples.

A Transcriptome-wide average noise changes in time between same-condition
samples. B Average noise changes relative to time zero for the whole transcriptome.
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for 4FC DE genes. G Average noise changes in time between samples for overlapping
DE and toggle genes. H Average noise changes relative to time zero for overlapping
DE and toggle genes. I Average noise changes in time between samples for random
subsets of 1704 genes. J Average noise changes relative to time zero for random
subsets of 1704 genes.

correlations®, without being directly involved in the phenomenon under
investigation.

Subsequent temporal Pearson and Spearman correlation analyses of
the transcriptome, toggle genes, and temporal DE genes revealed a rapid
decline in correlation between 3.5 and 6.5h, followed by stabilization
(Fig. 3A-C, Pearson, Fig. S2, Spearman). Both PC and NPC groups
exhibited similar effects, particularly during the critical first four time points.
Toggle genes, despite deriving through comparison between same time
point and same conditions showed dynamic responses similar to temporal
DE genes. Notably, 673 overlapping genes between toggle and temporal DE
genes displayed the most significant correlation drop between 12 and 24 h,
nearly reaching zero, before partial recovery (Fig. 3D). After removing these
overlapping genes, the unique temporal DE genes exhibited a more pro-
nounced response than the unique toggle genes (Fig. 3E-F), suggesting that
the strong temporal signal in toggle genes is largely driven by the over-
lapping subset.

Overall, these results suggest that the pronounced changes in corre-
lation observed for DE genes and especially their intersection with toggle
genes reflect the proliferative processes occurring within CLL cells. Both
gene sets exhibit significantly larger responses compared to the rest of the
transcriptome, with their intersection capturing some of the most dyna-
mically responsive genes in both PC and NPC groups.

Toggle genes possess the highest gene expression noise

Gene expression noise, measured as the squared coefficient of variation
(CV?), was evaluated for the whole transcriptome and for specific gene sets:
toggle genes, DE genes, overlapping genes, and random subsets (Methods).
Two types of noise were assessed: (1) between-sample noise, capturing
variability among samples at the same time point, and (2) temporal noise,
capturing changes in gene expression over time relative to the baseline (¢,)
(Fig. 4, Fig. $3).

For between-sample noise, toggle genes exhibited the highest varia-
bility levels, followed by DE and overlapping genes, in both PC and NPC
groups. Noise levels peaked at 6.5h post-stimulation across all gene sets,
suggesting increased variability among same-condition samples at this time
point. This heightened variability reflects greater heterogeneity within the
population, which stabilized at later time points (Fig. 4a, , e, g, 1, S3).

Temporal noise analysis showed that DE genes exhibited slightly
higher levels than toggle genes, with both sets displaying significantly greater

noise compared to the whole transcriptome or random subsets (Fig. 4b, d, f,
h, j, S3). Notably, overlapping genes, despite representing only a small
fraction of the other gene sets, exhibited the greatest temporal changes,
highlighting their substantial contribution to transcriptome-wide noise and
their distinct dynamic behavior over time. Although toggle genes were
selected based on sample-to-sample variability at a single time point, their
temporal noise levels were also elevated, indicating that some of these genes
may display dynamic behavior across time as well. Notably, the increased
temporal variability of toggle genes is intrinsically linked to their toggling
nature, causing them to oscillate between two extremes. This characteristic
makes them natural ‘noise amplifiers, particularly when an imbalance
occurs in their oscillation between ON and OFF states™.

To further examine gene expression variability over time, we analysed
Shannon entropy across gene sets (Methods). Notably, the whole tran-
scriptome and random subsets exhibited stable or relatively constant
entropy (Fig. S4A, G, H), while toggle and DE genes displayed more
dynamic behaviors (Fig. S4B-D). Toggle genes showed a steady decline in
entropy, reaching a minimum at 24 h, followed by a pronounced increase at
48 and 96 h. DE genes, on the other hand, showed a gradual increase in
entropy across all time. This biphasic trend for toggle genes suggests an
initial period of transcriptional convergence followed by renewed variability
or divergence in expression. The late stage increase in entropy may reflect
the stable reactivation of toggle gene expressions or the emergence of dis-
tinct subpopulations, during differentiation or proliferation, responding ina
coordinated but heterogeneous manner, although further experimental
work is required to confirm this.

Lastly, we analyzed temporal toggle genes, defined as genes toggling in
expression between time points (; and t,,)). A total of 2,561 temporal toggle
genes were identified. However, noise and autocorrelation analyses revealed
weaker responses for temporal toggle genes compared to same-condition
toggle genes, likely due to differences in the size and composition of the gene
sets (Fig. 4 and Fig. S3). Despite this, the analysis of temporal toggle genes
provides additional insights into transcriptomic variability over time and
empbhasizes the complexity of gene expression dynamics in CLL.

Gene Enrichment analyses of toggle and DE genes for PC

and NPC

Now that we have shown both toggle and DE genes are important for
shaping temporal dynamics and variability in CLL, to understand their
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biological functions, the Reactome pathway enrichment analysis was con-
ducted. Toggle genes were enriched in key processes such as lymphoid cell
communication and RHO GTPases, while DE genes were associated with
immune-related pathways, including interleukin signaling and TNF-related
processes (Fig. 5A - toggle genes, 5B - DEGs, 6 C - overlapping genes).
Notably, overlapping genes, which shared characteristics of both toggle and
DE genes, were particularly enriched in chemokine receptor processes,
interleukin signaling, and lymphoid immunoregulatory interactions.

Given that the experimental setup involved cell treatment with che-
mokines and interleukins to stimulate survival and proliferation, the
enrichment of these processes among toggle and overlapping genes serves as
a proof of principle, underscoring their biological significance. This align-
ment between the observed enrichment and the experimental conditions
also reinforces the importance of toggle genes in the cellular responses
studied.

Further analysis of overlapping genes identified six clusters ranging
from 70 to over 100 genes, each with distinct temporal expression profiles
(Fig. 5D). Sharp early responses were observed in interleukin signaling and
chemokine-related processes, particularly in clusters 1 and 2 (Fig. S5A, B).

Additionally, cell cycle checkpoint processes exhibited a delayed response,
peaking at 24 h before declining, consistent with the major transcriptomic
changes noted in earlier analyses (S5).

The following are top 10 toggle genes based on their squared of var-
iation (CV): SOX2, NCS1, ALPP, GPR34, EEPD1, SPNS2, CYP2C18, SIX3,
F2RL2, RPRML. Notably, SOX2, NCS1 and SPNS2 stand out for their
potential involvement in the proliferation of CLL cells. SOX2, a transcrip-
tion factor that is necessary for maintaining stem cell properties, has been
shown to contribute to the self-renewal and tumorigenic potential of leu-
kemia stem cells*. NCS1 (neuronal calcium sensor 1) encodes a protein that
regulates calcium signaling, which has been found to be essential for
immune cell function and activation, with its dysregulation potentially
driving leukemogenesis”. Lastly, SPNS2, involved in transporting
sphingosine-1-phosphate (S1P), affects leukemic cell migration and survi-
val, which are both essential for CLL cells in the lymph node
microenvironment™. The genes identified, such as SOX2, NCSI, and
SPNS2, influence critical processes like cell signaling, migration, and self-
renewal in CLL cells, all of which contribute to CLL progression and provide
potential targets for future therapeutic strategies.
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In summary, the enrichment analysis demonstrates that toggle genes,
especially those overlapping with DE genes, are involved in critical biological
processes related to immune function, cell cycle regulation, and differ-
entiation, aligning closely with the experimental conditions designed to
activate these pathways.

Discussion

The study of cancer presents significant challenges not only because of the
disease’s inherent complexity and aggressiveness but also due to its het-
erogeneous nature, including cellular plasticity, compounded by a limited
understanding of transitions between cancer states™'’. Cellular plasticity and
state transitions are thought to be influenced by transcriptomic instability,
which has been previously linked to tumor progression and treatment
resistance™'’. As observed in previous studies, the transcriptomes of cancer
cells are often unstable and display unique expression deviations*™**. This
underscores the need for approaches that capture transcriptomic variability,
including noise, which has been shown to play a role in shaping cell states
and tipping cellular trajectories™'”*****,

Molecular “switch-like” behaviors, characterized by flexibility and
plasticity, have been shown to contribute to adaptive and evasive behaviors
in cancer cells””"”. Toggle genes, which exhibit binary “ON/OFF”
expression patterns, represent a specific instance of this phenomenon.
Especially since noise, or gene expression variability, is critical for cell- or
attractor-state transition'’, studying genes that contributes most to noise
may provide clues to controlling unwanted state-transition such as normal
cells becoming cancerous cells.

Our findings showed an increased incidence of toggle genes in cancer
samples compared to healthy or adjacent tissues from the same individuals.
This observation highlights the variability within cancer transcriptomes,
which may reflect broader processes like proliferation or immune mod-
ulation. On a more general perspective, the higher proportion of toggle
genes in cancer is consistent with the ‘noise amplifier’ role allowing cancer
cells to explore a wider phase space exploration than healthy cells. This noise
amplification has very important consequences in terms of therapy resis-
tance and recurrence of cancer”.

By focusing on the temporal transcriptomic dynamics of CLL cells
following BCR stimulation—a key driver of proliferation in this disease—we
sought to investigate how toggle genes and transcriptomic noise contribute
to variability during the proliferative response. Rather than implying
causality, we aimed to show that these transcriptomic features align and
correlate with the instabilities observed during CLL proliferations.

We identified 1704 toggle genes and 2713 DE genes with a significant
temporal response (above 4-fold change). Auto-correlation analysis
revealed a sharp decline in transcriptome correlation between 3.5 and 6.5 h
post-stimulation, coinciding with early proliferation events. This pattern of
variability, particularly in PCs, suggests that transcriptomic instability
accompanies the proliferative process. A subset of 673 toggle genes over-
lapped with DE genes, showing the largest temporal shifts, while unique
toggle genes displayed variability across same-condition samples. This
distinction was further supported by dimensionality reduction, noise, and
entropy analyses, which revealed that overlapping genes exhibit character-
istics of both toggle and DE genes. These findings reinforce the idea that
transcriptomic instability underlies the dynamic responses observed during
CLL proliferation.

The enrichment analysis provided additional insight into the biological
relevance of toggle and overlapping genes. The enrichment of toggle-genes
involved in G-alpha signaling, muscle contraction, and cardiac conduction
could be considered as largely unexpected, while the enrichment of che-
mokine and interleukin signaling, aligns with the experimental conditions
designed to promote survival and proliferation. In this respect, it is worth
noting that cytoskeleton remodeling (driven by the same genes linked to
muscle contraction) is since long time recognized as a crucial player in
cancer” while being at the same time an obliged step in cell division. Similar
considerations hold for cardiac conduction genes* and G-alpha signaling”’.
The presence of differentially enriched pathways validates the notion that

toggle-genes observed variability reflects biologically meaningful responses
rather than pure random noise. Furthermore, the enrichment of RHO-
GTPase signaling suggests potential novel mechanisms underlying cancer
proliferation, offering new directions for investigation.

Interestingly, the overlapping genes represent a subset of the tran-
scriptome that bridges temporal responsiveness and variability across
samples. This dual role highlights their importance in both proliferation and
plasticity. For instance, processes like chemokine signaling, which are well-
established in CLL, were also enriched in toggle genes, indicating their
potential contribution to both immune modulation and cellular hetero-
geneity. This supports the hypothesis that toggle genes reflect disturbances
within important processes as evidenced by their transcriptomic expression,
that can contribute to variations in disease progression.

Finally, our findings on RHO-GTPases underscore their significance in
cancer dynamics***. Their consistent temporal expression patterns, coupled
with differences between PC and NPC groups, suggest they play a regulatory
role in tumor initiation and progression. These genes, identified as toggle
genes in this study, may serve as key regulators of cellular behaviors essential
for cancer development, making them potential therapeutic targets in CLL.

Overall, our study highlights the role of transcriptomic instability as a
feature of cancer proliferation. Toggle genes, particularly those overlapping
with DE genes, provide evidence of this instability, reflecting both temporal
changes and population-level variability. By identifying the dynamic
interplay between noise, gene expression dynamics, and cellular behavior,
this study deepens our understanding of CLL’s proliferative signature and its
complex molecular underpinnings from a system dynamics viewpoint.
Future work should further explore these transcriptomic features to uncover
their impact on disease progression and actual treatment outcomes, with the
aim of developing more targeted novel therapeutics.

Methods

Pre-processing

For the time series data (GSE130385”"), we first removed genes with constant
zero expression in all samples (24,477) and performed trimmed mean of M
values (TMM) normalization® on the remaining gene counts. Gene
expression distribution fitting was then performed using fitdistrplus’', and
mass>’, for several distribution types: log-normal, log-logistic, Pareto, Burr,
and Weibull. Lastly, an expression cut-oft was identified (TMM = 5) and
used to filter for genes with expression above the cut-off in at least one
sample, with the final number of genes being 13,673.

TMM normalization

To correct for library size and composition biases between samples,
Trimmed Mean of M-values (TMM) normalization was applied using the
calcNormFactors() function from the edgeR package™. This method cal-
culates scaling factors for each sample by comparing log-fold changes (M-
values) of gene expression relative to a reference sample, typically the one
with median library size. Extreme M-values and lowly expressed genes are
trimmed to avoid distortion from outliers, and the resulting factors are used
to compute normalized counts per million (CPM). These normalized
expression values were then used for all downstream analyses.

Toggle gene extraction
Same-condition sample toggle genes were identified and extracted as
defined by Giuliani, et al.”:

X iogge = {xij (0 <x; <eandx;, >£)or(xi1 >eand 0<x;, <£)} (1)

where, x;; represents the expression vector of the i-th gene for two samples
j=12 of the same condition. The parameter ¢ denotes the minimum
expression threshold determined from statistical distribution fitting step
above (Table S3). Similarly, temporal toggle genes were extracted using the
same criteria across different time (1) points of the same condition: j= 0, n™
time point.
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For each condition with three biological samples, toggle genes are
identified pairwise, meaning that a gene may toggle between any two
samples within the condition without requiring toggling across all sample
pairs. Similarly, temporal toggle genes were extracted using the same criteria
but applied across different time points of the same condition: j = tyt; tyt,

.tot,, Where tot, represents comparison between f, and t, time points,
comparing all time points with initial time #,. This approach ensures that
toggling behavior is evaluated consistently across both same-condition and
temporal contexts.

DE gene extraction

Temporal DE genes were extracted using DESeq2™, using a fold-change of 2
and 4 as indicated in maintext. DE analysis was performed between the
initial time points (fy) and the #-th time points (t,,), where n > 0, for both PC
and NPC conditions. Only genes that passed a threshold of p-value < 0.05
were retained.

Correlation

Autocorrelation refers to correlation changes with respect to #, and is
computed by calculating the correlation between #, and t,, respectively. Two
auto-correlation metrics were deployed in this analysis: Pearson correlation
and Spearman correlation.

Pearson. Pearson correlation between two vectors can be calculated as:

nX,Y) =

12?:1(961' — )G — By) )
n

Ox0y

where piy and y, are the mean values for vectors X and Y, and similarly oy
and oy represent the standard deviations. In the case of autocorrelation, X
always refers to the initial time point, and Y to each subsequent time point.

Spearman. Like Pearson correlation, Spearman rank correlation
between X and Y is defined as:

62(1—1(7} i— T ‘)2
X Y — 1 _ 1= 51 Vit 3
p(X,Y) o =) (€)
where r ; and r, ; represent the ranks of the i-th observation (gene) in the

initial tlme point and the considered time point.

Noise
Noise between any two samples was computed using:

(o — xik)2
(x5 + i)’

s ’(Jk)

where x; and x;, are the values of a gene (i) in jth and kth samples. Average
noise is calculated by averaging the summed noise values of all genes
between all pairs considered giving a final noise formula for m considered
genes:

1 2
n —mzm‘ (5)

For temporal noise, the calculation was performed for each time point
with respect to #y, and for sample noise, the calculation was performed
between all samples of any given sample condition.

Entropy
Shannon entropy was computed for each bulk RNA-seq sample based on
the empirical distribution of binned expression values. The number of bins

was determined using Doane’s rule,

b= 1+log2(1+|g|) (6)

where n is the number of expressed genes, g is the skewness, and ¢ is the
standard error of skewness. Entropy was calculated as:

Zp

where p(x;) is the proportion of values in bin i. All computations were
performed in R using a custom implementation.

H(X) = )log,p(x; @)

Hierarchical clustering

Hierarchical clustering for toggle genes and DEG was performed
using the stats package in R, where first a distance matrix between the
samples was computed for each corresponding gene set. Next, Ward
clustering™ method was applied to group genes with similar temporal
expression patterns. For each identified cluster, the mean TMM
expression across all timepoints was plotted to visualize temporal
expression patterns for both PC and NPC.

GO and network analysis

For GO analysis, several analytic tools were performed. Gene enrichment
analysis for Biological Processes was performed using clusterProfiler”® in R,
using a threshold of p-value < 0.05. Next, GO networks were generated in
Cytoscape using ClueGO”, with specificity chosen as global, and a sig-
nificance threshold below 0.05. Lastly, Reactome™ pathway analysis was
performed to gain further understanding of the enriched pathways within

the temporal proliferative signature with a similar threshold of p < 0.05.

Data availability

The codes for the analysis used in this manuscript are available from the
corresponding authors upon request. The CLL transcriptomic data used in
this manuscript can be found in the GEO database using the accession
numbers: GSE66117, GSE249956, and GSE130385.
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