Table 3 Performance of different machine algorithms for COVID-19 mRNA vaccine responses in SOT recipients

From: Systems vaccinology identifies immunological correlates of SARS-CoV-2 vaccine response in solid organ transplant recipients

Model

Accuracy

Accuracy (SD)

Balanced Accuracy

Balanced Accuracy (SD)

AUC

AUC (SD)

Dose 2 (detectable vs undetectable)

    

LR

0.824

0.101

0.825

0.083

0.900

0.095

SVM

0.917

0.093

0.921

0.084

0.950

0.081

RF

0.606

0.203

0.583

0.200

0.694

0.219

GB

0.700

0.113

0.683

0.115

0.756

0.143

Dose 3 (positive vs detectable)

LR

0.775

0.207

0.775

0.207

0.825

0.251

SVM

1.000

0.000

1.000

0.000

1.000

0.000

RF

0.766

0.081

0.775

0.075

0.825

1.952

GB

0.733

0.161

0.750

0.158

0.925

0.160

Dose 3 (positive vs non-positive)

LR

0.714

0.162

0.730

0.173

0.845

0.129

SVM

0.795

0.133

0.802

0.161

0.933

0.118

RF

0.773

0.127

0.656

0.173

0.837

0.156

GB

0.771

0.058

0.647

0.129

0.842

0.208

  1. Multiple machine learning models were used and compared by recursive feature elimination, with 10-fold cross-validation to assess the explanatory power of the model, with the area under the ROC curve (AUC). For all classifications, the support vector machine approach gave the highest accuracy.
  2. LR logistic regression, SVM support vector machine, RF random forest, GB gradient boosting.