Table 1 Applications of nanofibers membrane bioreactor (NFs-MBR) system.

From: A critical review on nanomaterials membrane bioreactor (NMs-MBR) for wastewater treatment

Membrane materials

Membrane characteristics

Wastewater type/characteristics

Configuration

Operational conditions

Performance

Ref.

Polyamide (PA) 6, Polyamide 66, Polyamide 69

Mean pore size = 0.21 µm, Fiber diameter = 250 nm, Area-weight = 20 g m-2

Synthetic wastewater

COD = 433 mg L−1, TN = 11.3 mg L−1, TP = 1.8 mg L−1, NH4+-N = 1.8 mg L−1, NO3-N = 1.5 mg L−1, PO4-P = 0.7 mg L−1

HT-MBR

V = 50 L, HRT = 0.5 d, R = 3/1, A = 0.0073

Flux decreased

55

Polyacrylonitrile (PAN)/fumarate-alumoxane (Fum-A) nanoparticles

Fiber diameter = 223.16 nm, Porosity = 74.55%, Membrane area = 12.56 cm2

Industrial wastewater

Filtration + MBR

400 rpm for 20 min, operating pressure of 1 atm and 25 °C

Flux recovery ratio, FRR (96%); lowest irreversible fouling (4%) for 2 wt% Fum-A addition

56

Polyacrylic acid (PAA), polysulfone (PSf) and polyethylenimine (PEI), polyamide (PA)

Mean pore size = 0.4 µm, Fiber diameter = 50–100 nm, Thickness = 120 µm

Municipal wastewater

DO = 3.9 and 4.1 mg O2 L−1

Submerged MBR

V = 50 L, HRT = 0.5 d, R = 3/1, V/V = 2/1, A = 0.0073 m2, T = 20 °C

Flux decreased

Turbidity (99%), TSS (99%), COD (94%), NH4+ (93%)

89

Nylon 6

Mean pore size = 0.4 µm, Fiber diameter = 100 nm, Thickness = 120 µm.

Municipal wastewater

TF-MBR

V = 50 L, HRT = 0.5 d, R = 3/1, A = 0.0073

Higher flux

turbidity (99%), TSS (99%), COD (94%) and NH4+ (93%)

90

Polyvinylidene difluoride (PVDF), polymethyl methacrylate (PMMA)

Mean pore size = 0.45 μm, Porosity = 82.8 %

Synthetic wastewater

MBR

V = 12 L, Flux = 10 L m−2 h−1, HRT = 6 h, SRT = 10d, MLSS = 11,017 ± 980 mg L−1, MLVSS = 10,858 ± 970 mg L−1, DO = 7.6 ± 0.1 mg O2 L−1

Short-term fouling

COD (98 ± 0.1%), TN (6 ± 0.6%), TP (16 ± 0.9%), SS ( > 99%)

91

PAN/silver nanoparticles

Membrane area = 19.6 cm2

Municipal wastewater

DO = 1–2 mg O2 L−1, COD = 433 mg L−1

Submerged MBR

V = 5 L, HRT = 20 h, MLSS = 4500–5200 mg L−1, turbidity = 17.6 NTU, pH = 7.0–7.5, T = 12–20 °C

Flux recovery ratio (85%–93%)

92

PVDF

Nanofiber diameter = 129 ± 13 nm, Thickness =56 ± 1 μm

Phenol solution

Extractive membrane bioreactor (EMBR)

V = 1 L, pH = 6.9 ± 0.4, flow rate = 15 mL min−1, T = 20 °C

4 times higher phenol extraction efficiency than that of the commercial silicone rubber

93

PVDF

Membrane area = 238 cm2

Industrial wastewater

pH = 7.5 ± 0.4, conductivity = 5.1 ± 0.4 mS cm−1. TOC = 571 ± 50 ppm

Submerged EMBR

V = 1 L, pH = 6.9 ± 0.4, conductivity = 4.7 ± 0.4 mS cm−1

10 times higher phenol extraction efficiency compared to the commercial membrane

94

PDMS/PMMA

Porosity = 64.9 ± 8.2%, Thickness = ~56.5 μm

Synthetic phenol saline wastewater

EMBR

V = 2 L, HRT = 24 h, flow rate =0.083 L h−1

Phenol removal rate 508.9 mg L−1 d−1, mass transfer coefficient 8.8 × 10−7 m s−1

95

PDMS/PMMA

Effective area = 0.0048 m2

Phenol-laden saline wastewater

External EMBR

V = 4.5 L, HRT = 20 h, DO = 0.5–1.5 mg L−1, pH = 7.1–7.5, T = 24–26 °C

Phenol removal efficiency (99.2–100.0%)

96

PVDF

Effective area = 0.042 m2

Synthetic wastewater

Anaerobic membrane

bioreactor

V = 5 L, HRT = 8 h, MLVSS = 3000 mg L−1, COD = 450 mg L−1, T = 25 °C

Suspended solids removal >99%

97

  1. V working volume, HRT hydraulic retention time, SRT sludge retention time, T temperature, COD chemical oxygen demand, TN total nitrogen, TP total phosphorous, N (NH4-N) ammonium, DO dissolved oxygen, TSS total suspended solids, TOC total organic carbon, MLVSS mixed liquor volatile suspended solids, HT-MBR high-throughput membrane bioreactor, TF-MBR trickling filter membrane bioreactor.