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As the urban population increases, the consumption of water resources is also increasing. Safely and
effectively supplying water to cities has become an issue that urgently needs to be addressed. The
purpose of this research is to substantially reduce the number of contaminants in water distribution
networks (WDNs) by using valve control, ensuring that the water infrastructure is not impacted by the
adverse effects of wastewater. In addition, an improved parallel binary gannet algorithm (IPBGOA) is
proposed and combined with this approach to solve the optimization problem ofWDN contamination
efficiently. The proposed method is compared with the gannet optimization algorithm (GOA), particle
swarm optimization (PSO), differential evolution (DE), the grey wolf optimization (GWO), and the
genetic algorithm (GA) on synthetic benchmark networks in simulation experiments. The evidence
from the study indicates that the algorithm proposed in this paper is significantly more efficient and
reliable than the comparison methods.

Water distribution networks (WDNs), a critical type of infrastructure, are
responsible for conveying drinking water from purification sites to a wide
array of residential and commercial establishments. It plays an integral role
in the comprehensive urban water supply process1. In the context of the
Sustainable Development Goals (SDGs), this infrastructure is instrumental
in achieving “Clean Water & Sanitation” (i.e., SDG 6), which focuses on
ensuring the availability and sustainable management of water and sanita-
tion for all. WDNs are vulnerable to external influences, especially water
contamination, which is a pressing issue that not only affects public health
but also hinders progress towards SDG6.Water contamination has become
a serious global issue, especially in China, where the economy has been
growing rapidly. Water is a scarce resource; a mere 8% of the world’s
freshwater is available to satisfy the needs of more than one-fifth of the
Earth’s inhabitants. However, 80% of cities in China lack sewage treatment
facilities, and90%of the urbanwater supply is contaminated2. This situation
not only results in reduced gross domestic product (GDP) but also poses a
serious threat to human health3. Addressing this challenge is crucial for the
sustainable development of urban areas and aligns with “Sustainable cities
and communities” (i.e., SDG 11), which aims to make cities and human
settlements inclusive, safe, resilient, and sustainable. The efforts to reduce
the impact of contamination on urban WDNs while maintaining stable
water supply capabilities are therefore not only a technical endeavour but

also a step towards fulfilling the global commitment to sustainable
development.

For contamination detection in WDNs, targeted high-quality mon-
itoring information is necessary. A list provided in the SDGs outlines
substances that are frequently found in water and are harmful to human
health andproductivity2. Additionally, placing appropriate sensors within
WDNs to detect contaminants is essential4. The optimization problem for
WDNshas the objective ofminimizing the impact of contaminantswithin
restricted hydraulic and infrastructural limitations. Many researchers
have proposed various methods to address such issues. For example,
Braunstein et al. used integer linear programming (ILP) to solve the
problemof node contamination5. Benk et al. usednonlinear programming
(NLP) for optimal water allocation to addressmultiple pollutants in water
networks6. However, with the increasing complexity of optimization
problems, traditional optimization methods are gradually losing their
advantages. Metaheuristic optimization algorithms, inspired by natural
and biological laws, are designed to effectively address these complex
issues7. In engineering applications, the popularity of metaheuristic
optimization algorithms is increasing because of their simplicity, ease of
implementation, absence of the need for gradient information, and
capacity to avoid local optima8. During the past decade, the advancement
and implementation of metaheuristic optimization strategies have been
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extensively leveraged to solve a comprehensive range of complex pro-
blems across a spectrum of disciplines9–12.

In recent years, many researchers have used metaheuristic algorithms
such as ant colony optimization (ACO)13, the genetic algorithm (GA)14,
particle swarmoptimization (PSO)15, and thenondominated sorting genetic
algorithm II (NSGA-II)16 to solve water network contamination optimiza-
tion problems. For example, Rathi et al. employed a GA to refine the
positioning of water quality monitors, aiming to increase the probability of
identifying contamination incidents in susceptible zones within a reason-
able timeframe, thereby improving network security17. Hu et al. developed
cooperative particle swarm optimization (CPSO) to deploy a limited
number of sensors placed in a water network to minimize the average
detection time for all contamination events. They demonstrated that the
algorithm has ideal capabilities in solving practical problems18. Razavi et al.
employed theNSGA-II to optimize community resilience, aiming to reduce
the consumption of polluted water and operational measures, resulting in
satisfactory optimization outcomes in three different situations19. Najafi
et al. used ACO to select the optimal combination of hydrants and valves to
isolate contaminants, thus reducing the possible risk to public health in the
wake of a contamination incident20. Additionally, Afshar, Ehsani and
Masoumi et al. conducted multiple studies, employing metaheuristic algo-
rithms for multiobjective optimization to mitigate the impact of
contaminants21–23. In the practical domain of engineering, the application of
multiobjective optimization faces many complex problems, including
nonlinearity andmultidimensionality, whichmake it impractical to traverse
all possible situations to find an accurate optimal solution24. Therefore,
selecting the appropriate optimization algorithm for evaluation and appli-
cation to this problem is particularly important.

Since, in this study, valve switching is used to address the optimization
problem for contamination inWDNs, themethod involves binary issues. In
general, many water network optimization problems involve finding solu-
tions within a continuous search space25–27. However, some heuristic algo-
rithms lose their effectiveness in binary problems because they are suitable
only for continuous problems. Considering this situation, an optimization
algorithm for control valves is proposed in this paper to effectively solve
binary optimization problems in WDNs. This optimization algorithm is
based on the gannet optimization algorithm (GOA), as previous researchers
have demonstrated the effectiveness of the binary GOA (BGOA) in
searching for the optimal solution in a binary search space28,29. Specifically,
the key contributions presented in this study are outlined below:
(1) The optimization algorithm based on the GOA is applied for the first

time to engineering problems such as WDN contamination
optimization.

(2) An evaluation and comparison are conducted on the basis of specific
WDN application scenarios, and the most suitable transfer function is
selected to enable the BGOA, with the new transfer function, to be
efficiently used for the optimization of WDN contamination.

(3) An improved parallel BGOA, called the IPBGOA, is proposed as an
optimization algorithm for controlling valves. Considering the char-
acteristics of theWDNoptimization problem, themethodof obtaining
the initial solution in the BGOA is modified, and crossover and par-
allelism rules are added to the update process; this gives the IPBGOAa
better exploratory capability and prevents it from falling into local
optima.

(4) The IPBGOA with the new transfer function and updated rules is
compared with the GOA, GA, DE, GWO, and PSO, and the experi-
ments prove that the IPBGOA is more effective and stable in solving
such WDN optimization problems.

The remainder of this paper is arrangedas follows: Section “Results and
discussion” presents the experiments and a comparison and analysis of the
results. Section “Discussion”provides a summary and suggestions for future
work. Section “Methods” presents the optimization model for the con-
tamination issues discussed in this paper and introduces the improved
methods, summarizes the overall process, and gives the pseudocode.

Results and discussion
Test scenarios
The test scenario selected for this work is the Hanoi network, which was
initially proposed by Fujiwara et al. in 1990. This network water supply
originates from a single reservoir at a height of 100m; all the node ground
elevations are set to 0. The overall length of the water network pipes is
39.4 km, and theHazen–Williams roughness coefficient of each pipe is 130.
The total nodal demand is 19,940m3/h. The network comprises 34 conduits
and 31 nodes of demand, with the entire configuration forming three closed
circuits30. Amap of the Hanoi network and initial data for individual nodes
and pipelines in the network are provided in the supplementary material,
labeled Supplementary Fig. 1.

Selection of the new transfer function
In this study, the transfer function from the original BGOA is not used;
instead, different transfer functions are selected on the basis of the designed
algorithm for evaluation in the simulated scenario for the Hanoi network.
According to the sensitivity analysis, the number of iterations is 20, and the
population size is 100. Then, from the various transfer functions given, the
one that best fits the optimization model of this paper is chosen. The
implementation results for models with different transfer functions are
shown in Table 1, and the convergence graphs of the 9 different transfer
functions selected for this study are shown in the supplementary material,
labeled Supplementary Fig. 2.

In SupplementaryFig. 2(a), f1 to f4 areS-shaped transfer functions, and
f5 to f8 are V-shaped transfer functions. Supplementary Fig. 2(b) shows the
linear transfer function. Function f1, in dark blue, converges in Supple-
mentary Fig. 2(a) more quickly than almost all the other functions do.
Additionally, in Table 1, the optimal value, mean, standard deviation, and
worst value obtained in the 20 evaluations of the 9 transfer functions are
displayed. By comparing these values, it can bemore accurately verified that
TF1 combined with the IPBGOA optimization model is more effective in
finding the optimal solution. After 20 iterations, the optimal value is 0.0128,
the mean is 5.9351, the standard deviation is 9.3501, and the worst value is
28.1621.

Experimental setup
Before conducting the environmental simulation, the following parameters
are set:
(1) Sensor layout positions and quantities: The S-Place toolkit is used to

optimize theplacementof the contaminant sensors.TheS-Place toolkit
places the sensors by minimizing the impacts of all possible

Table 1 | Statistics of the objective function values achieved by the IPBGOA with different transfer functions

TF1 TF2 TF3 TF4 TF5 TF6 TF7 TF8 TF9

Best 0.0128 0.1373 1.3303 0.1442 0.3559 0.0348 0.1374 0.1011 0.0219

Mean 5.9351 39.9646 20.6815 23.6000 59.9588 31.3552 11.1214 36.6928 6.6700

Std 9.3501 62.0489 57.2057 63.9664 119.6436 55.0594 15.5797 34.9903 12.3920

Worst 28.1621 272.9346 261.8868 284.5941 332.9178 158.2370 37.2762 82.0780 35.8807

Bold values indicate the four data that perform best when different transfer functions are compared against each other.

https://doi.org/10.1038/s41545-024-00407-5 Article

npj Clean Water |           (2024) 7:113 2

www.nature.com/npjcleanwater


contaminations31. In this study, three sensors are set up in the Hanoi
network, located at nodes 4, 27, and 30.

(2) Method of detecting contamination: In addition to the initial setting,
the IPBGOA, GOA, GA, DE,GWO, and PSO algorithms are also used
for contamination detection.

(3) Constraint definition: When employing control valves to direct the
contaminant flow towards the designated sensors, pressure constraints
must be met. The pressure limits are set to pmin = 20m and
pmax = 150m for all nodes.

(4) Contamination detection threshold: A sensor detection threshold for
the contamination concentration is set to enable effective detection of
contamination events. In this work, the concentration threshold is set
to Tthr ¼ 7%.

(5) Simulation duration: The simulation period for this study is set to
T ¼ 24h. The time step is set to half an hour, so the total number of
time steps is 48.

(6) Pump station count and head boundary conditions: The simulation
environment is the Hanoi network, so only one pump station (i.e.,
reservoir) is set up at node 1. Its head boundary conditions are set to an
upper limitHsub ¼ 20 and a lower limitHslb ¼ 6. In this scenario, the
pump station also serves as the only contamination source. With each
detectionmethod, the initial settings are used to calculate the impact of
contamination in each simulation to avoid unrealistic results.

The choice of pmin = 20m as the lower limit for pressure is justified by
its widespread adoption as a standard in firefighting water systems32. In
terms of the upper pressure limit, the Hanoi network is considered a water
supply system with large pipes that can withstand pressures up to 150m.

The parameter Tthr defines the lowest concentration level of con-
taminants that can be detected by the sensor, where the maximum upper
limit is 100%, representing the highest threshold of contaminant con-
centration that the sensor can perceive. Here, contaminants can be defined
aswater quality indicators that the users care about. Fourwater quality types
are defined in this study: “None”, “Chemical”, “Age” and “Trace”. The
“None” type representsnormalwater quality.The “Chemical” type indicates
the presence of chemical components in the water, which may include
minerals, organic substances or pollutants. The “Age” type is an indicator of
water quality, including the freshness of the water or the efficiency of the
water cycle, which may affect the water quality. The “Trace” type refers to
the presence of some trace or minimal substances in the water, which may
include metals or pesticide residues. Even at low concentrations in water,
these substances can affect human health or ecosystems. In this study,
“Trace” is chosen as the type of water quality in the water network, and the
water quality simulation with the network is performed in
EPANET2 software to detect the impacts of pollution. The defined
threshold typically has no impact on the functionality of the algorithm; it is
determined on the basis of the specific application scenario. When sensors
specifically designed to identify a particular type of contaminant are
deployed, the detection process does not require additional data to confirm
the presence of the contaminant; it only requires an accurate threshold to
detect whether the contaminant is present.

Comparisons and analysis
In this section, the benefits of detecting the contamination impact by con-
trolling the valvesunder the specific arrangementof sensors are investigated.
First, the node contamination impact and detection time under the initial
settings (i.e., with all valves open) are calculated, and then the results are
compared with those obtained via the IPBGOA optimization model pro-
posed in this paper, confirming the effectiveness of the proposed scheme. In
addition, the scheme is compared with the original GOA as well as several
classic evolutionary and swarm algorithms to demonstrate that the IPB-
GOA has certain advantages in addressing this type of problem.

The simulation results are given in Figs. 1 and 2, which compare the
following sevenmethods: (a) initial settings, (b) IPBGOA, (c) GOA, (d)GA,
(e) DE, (f) GWO, and (g) PSO. In Fig. 1, the yellow and bright purple dots

represent the detected contaminated nodes, the black triangle on a light
green background is the pump station, which is the only contamination
source, the reddots represent the locationswhere sensors are placed, and the
blue dots represent the nodes that have not been detected. Above each node
is the detection time, and below it is the detected contamination impact.
Figure 2 presents the contamination impact and detection time for each
node under each method in a dual-Y-axis line graph, with time on the left
Y-axis and contamination impact on the right Y-axis, allowing a more
intuitive view of the data changes under different methods.

Figure 1a shows the contamination of the water network in the initial
state. In the state without control valves, the impact of contamination at
undetected nodes is very high, and even if some of the detected nodes are
contaminated, the situation is very bad. Next, (b) shows the simulation
results using the IPBGOA method proposed in this study in terms of the
state of the control valve. The method proposed in this study significantly
improves the detection of the impact of pollution in comparison with the
initial state, except for certain individual nodes. In addition, several
classical heuristic algorithms were included in this study for comparison
in the simulations. Owing to the placement and number of sensor loca-
tions, some nodes in the WDN cannot be monitored. Additionally, there
are nodes with data that remain consistent across all methods, so nodes 1,
4, 5, 6, 7, 9, 11, 12, 13, 22, 27, and 30, a total of twelve nodes, are excluded,
and the remaining nodes are used for comparison. Supplementary Table 3
in the supplementarymaterial details the possible pollution impact values
of the nodes for each algorithm. The details of Fig. 1 are described as
follows:
(1) Figure 1c shows the simulation results under the original GOA.

Excluding the nodes with the same pollution impact, better results are
obtained for 16 nodes, includingnodes 8, 10, and 14, with the IPBGOA
than with the original GOA. Only nodes 15 and 18 have better results
with the original GOA than with the IPBGOA. Therefore, the opti-
mization rate of the IPBGOA is 88.89% greater than that of the ori-
ginal GOA.

(2) Figure 1d shows the simulation results under the GA. Excluding the
nodes with the same pollution impact, for the IPBGOA, a total of 11
nodes, 8, 10, 14, 15, 16, 19, 20, 21, 24, 25 and 31, have better outcomes
thanwith theGA.For theGA, there are 6nodes, 2, 17, 18, 21, 23 and29,
that have better outcomes than with the IPBGOA. Therefore, the
IPBGOA has 64.7% greater optimization than the GA.

(3) Figure 1e shows the simulation results under the DE. Only node 2 of
DE is better than IPBGOA.Then IPBGOAhas ahighoptimization rate
of 94.44% with respect to DE.

(4) Figure 1f shows the simulation results under GWO. For IPBGOA,
there are total 9 nodes of 2,8,10,14,19,20,24,25 and 28 which are better
than GWO. For GWO, there are 6 nodes of 15, 17, 18, 21, 23 and 29
which are better than IPBGOA. The optimization rate of IPBGOA
compared to GWO is only 60%.

(5) Figure 1e shows the simulation results under PSO. Only 4 nodes of 8,
20, 21 and 28 are better than PSO under IPBGOA. On the contrary, 6
nodes are better than IPBGOA under PSO algorithm. This shows that
compared to PSO, IPBGOA performs a little bit worse.

(6) After all the methods have been compared, the nodes that have an
advantage under each method (i.e., better than at least one of the
methods) are labeled in bright purple in Fig. 1 and are labeled in darker
font in Supplementary Table 3. In this study, the proposed IPBGOA
has advantages for a total of 11 nodes, specifically 3, 8, 10, 16, 19, 20, 25,
26, 28, 31, and 32. In contrast, the GOA and DE both have only two
nodes with advantages, and the GA has seven nodes with advantages.
This shows that the improved GOA has better performance than the
original GOA and the two classical evolutionary algorithms. Next, 10
nodes have an advantage under GWO, whereas 12 nodes have an
advantage under PSO. This suggests that the IPBGOA does not have a
large advantage over the classical swarm algorithms and may even be
inferior to them. This is also consistent with the results in (4) and (5)
above under a single comparison.
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In the studyof contamination events, the detection time is typically also
considered. This work calculates not only the impact of contamination at
each potential contamination source node but also the corresponding
detection time. Figure 2 shows the water network simulation data from
Fig. 1 as a line graph. Figure 2a shows the initial statewithout controlling the
valve, so the pollution data have large values, as seen on the right Y-axis. The
data of the first 14 nodes in Fig. 2c–e are almost the same, and the data of all
nodes in Fig. 2f, g are almost the same. However, the variation in the data in
c–e is different fromthat in f and g.Thisfinding indicates that different types
of algorithms yield different results when dealing with such optimization
problems, whereas algorithms within the same category tend to produce
similar outcomes. This could be due to the characteristics of the algorithms
and the specific application scenarios leading to these results. The main
purpose of Fig. 2 is to illustrate the relationship between contamination
impact and detection time. With the exception of the nodes for which no
contamination is detected (i.e., where the detection time step is 48), the
variation in contamination impact for the nodes is almost directly pro-
portional to the variation in detection time. This finding indicates that the
shorter the detection time is, the less contamination impact is detected,
confirming that controlling the valves to ensure that contaminants reach the
sensors more quickly can effectively reduce the impact of contaminants on
the network.

After each node in the WDN is analyzed, an overall analysis is con-
ducted. Table 2 defines and provides the values of specific indicators:
(1) Cov:Monitoring coverage, i.e., the percentage of total nodes that can be

detected as potential contamination sources under the simulation
scenario with set the sensor locations and quantities. (i.e., the pro-
portion of yellow bright purple dots in Fig. 1).

(2) �t: The mean value of the detection times for all nodes in each
simulation.

(3) �I: The mean value of the impact of contamination across the entire
scenario in each simulation.

(4) Hs: The calculation of the pump head based on the situation at each
point for eachmethod.Thepumpheadvalue at onepoint shouldbe the
most suitable for that point, that is, the lowest value. After the whole
simulation, each point has the most suitable pump head value. Hs
represents the average of themost appropriate pump head values at all
points under each method, which is an approximate range of settings
used to ensure the proper operation of the water network simulation
under each method.
According to the table, when the IPBGOA is used, the coverage rate of

potential contamination source nodes that the sensors can detect is higher
than thoseof othermethods.Thedetection time is significantly reduced, and
the impact of contamination on the WDN is also decreased; the IPBGOA
thereby demonstrates better performance than the other methods. These
benefits are achieved by controlling the valves, which leads to an increase in
WDN pressure. Therefore, pressure constraints cannot only be set for each
node; they also need to reduce the pump head as much as possible to
alleviate the water pressure throughout the network and reduce energy
consumption. Table 2 shows the pump head that is suitable for each
detection method.

As shown in Fig. 1, other than in the initial setup, some nodes that are
not detected produce contamination impacts several times greater than
those of the nodes that are detected. Although these nodes were removed in
the previous single-node comparative analysis, there may be instability
when performing the overall analysis, which can have an impact on the

Fig. 1 | Simulation results for theHanoi network using the initial settings and various algorithms.Calculating the contamination impact and detection time for all nodes
that may be contaminated under (a) the initial setup; (b) IPBGOA; (c) GOA; (d) GA; (e) DE; (f) GWO; and (g) PSO.
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overall metrics of the simulated scenarios. Therefore, six additional simu-
lation experiments are conducted to analyze the stability of the overall
metrics under each method. The results of these six experiments are shown
in the box plot in Fig. 3. In the figure, the light blue portion is the IPBGOA,
the dark blue portion is the original GOA, the light green portion is the GA,
the dark green portion is the DE, the pink portion is GWO, and the red
portion is PSO. The black horizontal line is the median line of con-
tamination impact under each method, and the diamonds are outliers. An
outlier is defined as a value that exceeds the interquartile spacing by a factor
of 1.5, so the locations of the diamonds in each method in the figure gen-
erally represent the impacts of contamination at nodes that are not detected.
The main purpose of constructing a box plot is to clearly observe the parts
that affect the stability of the method, and its greatest advantage is that it is
unaffected by outliers and accurately depicts the discrete distribution of the

data. The outliers of the six simulation experiments under the IPBGOA
method are clearly labeled, and the data of the other nodes are almost all
within a certain range, which indicates that the IPBGOA method has
obvious stability and better experimental results. The data for the GA and
DE methods are nearly identical under the six simulations, which suggests
that bothmethods are more stable. In addition, although there are only one
or two outliers, the range of data above the median line is wider, and many
undetected nodes are included in the box plot, resulting in a greater overall
contamination impact. This suggests that both the GA andDE have poorer
results than the IPBGOAdoes inmultiple experiments.Theboxplots for the
GOA and GWO methods show large variations between the six experi-
ments, indicating that these methods are less stable. In addition, they have
almost the same data distribution as the GA andDEdo, indicating that they
produce inferior results to those of the IPBGOA. Finally, the PSO has

Fig. 2 | Line plots of the contamination impact and detection time of each node under different simulationmethods. a The initial setup; (b) IPBGOA; (c) GOA; (d) GA;
(e) DE; (f) GWO; and (g) PSO.

Table 2 | Metric values resulting from the simulation scenarios

Initial IPBGOA GOA GA DE GWO PSO

Cov (%) 59.37 78.12 68.75 56.25 59.37 71.87 75

�t (h) 12.3 6.3 8.6 10.5 10.8 7.75 7

�I (m3) 14,816.73 2345.657 3062.364 3273.245 3571.942 2731.242 2507.868

Hs (m) 98 109 93 73 79 85

Bold values indicate the values with the highest coverage, the shortest detection time and the least contamination impact for the different simulation methods.

https://doi.org/10.1038/s41545-024-00407-5 Article

npj Clean Water |           (2024) 7:113 5

www.nature.com/npjcleanwater


considerable datafluctuations in the six experiments, and its stability is poor.
The data distribution of the PSO is also not as good as that of the IPBGOA,
which suggests that it is inferior to the IPBGOA in terms of overall metrics.

Comparison with other studies
Leakage in water networks was addressed by Jowitt et al.33 by controlling
valves. Vrachimis et al.34 demonstrated that control valves can effectively
reduce the impact of pollution by comparing passive and active con-
tamination detection, and Yan et al.35 reduced the pollution impact in a
water network by controlling valves and hydrants. The method of con-
trolling the valves used in this study is consistent with the methods used by
these previous researchers, and eachnode in thewater network ismonitored
by the sensors as well as possible via this method. In addition, the appro-
priate pump head is calculated for each node to prevent pressure loading in
the water network, which is different from previous studies.

There are also other ways of detecting the effects of pollution that may
be present in awater network.Themainwayof detectingwater quality, used
by M. Aral et al.4, HU et al.18 and Ahmadabadi et al.26, is to find the best
sensor location so that the node status of the water network are detected as
well as possible. A shortcoming of this approach is that several randomized
experiments may be needed to determine the optimal locations of the
sensors in a water network, which can lead to long detection times and
continued expansion of contamination. In addition, the effectiveness of this
approach depends on the number of sensors, and too many or too few
sensors can affect detection. If there are too few sensors, theymay be unable
to be fully utilized, whereas having too many sensors may increase instal-
lation and maintenance costs, thus exceeding the budget. However, in this
study, the number of sensors can be determined on the basis of the actual
cost, and then the sensors can be placed at the correct locations in the water
network via the S-Place toolkit, which addresses the problem of increasing
cost owing to the uncertainty in the number of sensors. Since the locations
and number of sensors are set directly, the node water quality is detected by
controlling the valves. This allows detection to be carried out directly
without the need to spend time determining the sensor positions prior to
inspection, as was previously the case. In addition, M. Aral et al. proposed
that the number of sensors determines the reliability of the system and that

reliability is determinedby the sensor’s usefulness in thewater network,with
more coverage indicating greater reliability. Reliability is dependent on the
number of sensors, and sensors will inevitably fail; reliability will be dras-
tically reduced if a failure occurs. The method used in this paper, on the
other hand, has the relative advantage that even if the sensors fail, more
coverage can be ensured with the control valves, as was verified in the
experiments of Vrachimis et al.34.

Products are becoming ever more intelligent, with many industries no
longer relying on staff to manually operate their systems. Contemporary
urbanwater systems no longer require staff tomake adjustments and rather
tend towards intelligent control and automatic supply. The research of this
paper aligns well with contemporary science and technology; if a water
supply company can use an intelligent control valve system that is appro-
priate for the detection method in this paper, it may be able to reduce the
number of valves to significantly improve the coverage, increase the
detection efficiency and reduce the cost of detection.

Discussion
This work aims to solve the contamination optimization issue for modern
WDNs. To achieve this, sensors and valves are set up in the network to
monitor unknown contamination source nodes, preventing the occurrence
of serious events in which undetected contamination spreads. An improved
parallel binary gannet optimization algorithm is proposed and tested in
specific application scenarios, and the objectives are achieved. Additionally,
compared with the original gannet optimization algorithm, the genetic
algorithm, differential evolution, and grey wolf optimization, the proposed
algorithm demonstrates superior performance in minimizing the objective
function. However, compared with particle swarm optimization, there is no
advantage in terms of the comparison of individual nodes. Furthermore, the
line charts of contamination impact and detection time also confirm that
controlling the valves so that contaminantscanbedetectedby sensors earlier
can effectively reduce the impact of contamination. The IPBGOA shows a
clear advantage over all other algorithms in terms of monitoring coverage,
overall metrics, and data stability. Despite the advantages of the IPBGOA as
demonstrated in this study, several additional areas could be studied in
depth. First, from the perspective of optimization algorithms, this algorithm

Fig. 3 | Box plots of contamination impact values. Comparison of overall con-
tamination indicators between IPBGOA and GOA, GA, DE, GWO, and PSO
methods under (a) the first simulation experiment; (b) the second simulation

experiment; (c) the third simulation experiment; (e) the fourth simulation experi-
ment; (f) the fifth simulation experiment and (g) the sixth simulation experiment.
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demonstrates better performance than theGA,DE, and theGOA.However,
in terms of the comparison of individual nodes, it does not have a large
advantage over swarm intelligence algorithms. Further improvements to the
algorithm could be made, and it could be compared with multiple swarm
intelligence algorithms with the goal of outperforming them36. Second,
regarding application scenarios, the simulation scenario in this paper is the
Hanoi network, which is a small network. Themethod could also be applied
to large networks with multiple pump stations37,38, and new optimization
strategies could be designed according to the size of the network.

Methods
Problem formulation
The water distribution network includes multiple components, such as
pipes, pumps, and other hydraulic equipment, as well as reservoirs. From
the fundamental examination of daily water consumption to the final phase
of construction, each stage requires a deep level of professional
knowledge39,40. In this study, the focus is solely on network optimization.
The aim is tominimize the risk of pollution and the energy consumption of
reservoirs. Assuming that the layout and connectivity of the pipes, the node
demands, and the minimum head requirements are known, the network
needs to be optimized under the following conditions41:
(1) Conservation of mass: The inflow and outflow at each node in the

WDNmust be balanced.
(2) Conservation of energy: The cumulative head loss along a path must

equal the difference between the head at the starting node and the head
at the ending node.

(3) Pressure constraints: For a given set of demands, the pressure at each
node must be maintained within the specified pressure range.

(4) The head loss of each pipe should follow the basic principles of fluid
mechanics.

These conditions can be mathematically expressed with the following
formulas41,42:

Qext
i þ

XNn
j¼1

Qin
j;i ¼ Qn

i þ
XNn
k¼1

Qout
i;k ; i ¼ 1; . . . ;Nn ð1Þ

P
i2P ΔHi ¼ Hs � He; P 2 SP

ΔHi ¼ Hs
i � He

i ; i ¼ 1; . . . ;Np

�
ð2Þ

Hi;min ≤Hi ≤Hi;max; i ¼ 1; . . . ;Nn ð3Þ

Equation (1) represents the principle of mass conservation, where Nn
indicates the number of nodes in the network.Qext

i is the velocity of external
inflow into the i th node,Qin

j;i is the velocity of inflow from node j to i,Qn
i is

the velocity of water consumption at the i th node, andQout
i;k is the velocity of

outflow from node i to k. Equation (2) represents the principle of con-
servation of energy, whereΔHi is the head loss of the i th pipe. The head loss
in individual pipes can be estimated with the aid of the Hazen‒Williams
equation.Np represents the total number of pipes,P is a path consisting of a

series of consecutive pipes in the network, and SP is the completion set ofP.
Hs and He are the head pressures at the starting and ending nodes of P,
respectively. Hs

i and He
i are the head pressures at the starting and ending

nodes of the i th pipe, respectively.Hi is the actual water pressure at the i th
node, and Hi;min and Hi;max are the minimum and maximum pressures at
the i th node, respectively.

Among these three conditions, the simulation software EPANET243

can address the constraints of mass and energy. The pressure constraint is
processed through the optimization algorithm and encoding scheme pre-
sented in this paper. This is not a mathematical programming model;
instead, it represents constraints as seen through the lens of the simulation
software EPANET2.

Active contamination detection scheme
The contamination detection method used in this study is the active con-
tamination detection (ACD) scheme proposed by Vrachimis et al.34, which
involves closing and opening valves to drive the flow in specific parts of the
network. With a certain number of sensors in place, it becomes possible to
monitor water quality at locations that were previously unobservable. The
concept of this detection method is simply illustrated through the six-node
network in Fig. 4. The red node at position 6 represents the sensor. The
yellow nodes denote areas under sensor surveillance, whereas the dark blue
nodes signify regions outside the sensor’s coverage; the arrows depict the
flow direction. Figure 4a shows the case of monitoring a contaminated
network with the sensor located at node 6. According to the direction of
flow, nodes 1, 2, and 5 can be monitored, but nodes 3 and 4 cannot be
monitored.This indicates that the sensor’s locationdoesnot allow it to cover
the entirenetwork.Ontheotherhand, as shown inFig. 4b, by controlling the
pipeline valves to close the connection between nodes 2 and 5, the flow is
directed along a continuous path that includes all system nodes. This
ensures that the contamination of any nodewill be detected by the sensor. If
one of the nodes is contaminated, the contaminant will definitely reach the
sensor at some time. Because this method may increase the range of con-
tamination, a better indicator for measuring the impact of contamination is
the amount of contaminated water consumed (where the consumption of
contaminated water is equivalent to the extent of contamination). If the
alternativemethod for confirming the presence of contaminants in Fig. 4a is
manual sampling at nodes 3 and 4, which could be very time-consuming,
then the impact of contamination at nodes 3 and 4 will become very large.
However, if control valves are used, it will be possible for thewater quality at
all nodes to be detected within just a few hours, significantly reducing the
impact of contamination on the entire network. The simulation data for this
six-node network are given in the supplementary material, labeled Sup-
plementary Fig. 4 and Supplementary Table 4, where Supplementary Fig. 4a
corresponds to Fig. 4a and Supplementary Fig. 4b corresponds to Fig. 4b.

Gannet optimization algorithm
The foundational idea behind the GOAwas introduced by Pan et al.44. This
algorithmwas inspired by the foragingmovements of gannets. In the GOA,
there are two stages that simulate the predatory behavior of gannets:
exploration and exploitation. These stages incorporate a repertoire of

Fig. 4 | Six-node network. a Sensor detection range
when all valves are open; and (b) sensor detection
range when one of the valves is closed.
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foraging tactics, including theU-shapeddivingpattern, theV-shapeddiving
pattern, sudden rotation, and random wandering.

The exploration stage is the hunting stage. When the gannets hunt,
they observe the distance from their prey from the surface to determine the
divingpattern (i.e., foragingmovement) touse.There are two types of diving
patterns: the first is a U-shaped pattern for diving into deeper water to hunt,
whereas the second is a V-shaped pattern used to hunt for prey in shallow
waters. Equation (4) is the U-shaped coefficient equation, and Eq. (5) is the
V-shaped coefficient equation.

a ¼ 2 � cos 2 � π � r1
� � � t ð4Þ

b ¼ 2 � V 2 � π � r2
� � � t ð5Þ

t ¼ 1� ðTcur iter=Tmax iterÞ ð6Þ

V xð Þ ¼ �ð1=πÞ � x þ 1; x 2 0; πð Þ
� ð1=πÞ � x � 1; x 2 ðπ; 2πÞ

�
ð7Þ

where r1 and r2 are random values uniformly distributed from 0 to 1,
Tcur iter represents the current iteration count, and Tmax iter represents the
number of iterations.

After the U-shaped and V-shaped coefficients are calculated, the next
step uses these two diving patterns to update the position. Gannets have an
equal likelihood of choosing between the two feeding strategies, so a random
value uniformly distributed from 0 to 1 is used to randomly decide between
the two diving patterns. Equation (8) is the formula used to update the
positions of the gannets.

MXi t þ 1ð Þ ¼ XiðtÞ þ u1þ u2 ; q ≥ 0:5 ðaÞ
XiðtÞ þ v1þ v2 ; q < 0:5 ðbÞ

�
ð8Þ

u1 2 �a; að Þ; v1 2 �b; bð Þ ð9Þ

u2 ¼ A � Xi tð Þ � Xr tð Þ
� � ð10Þ

v2 ¼ B � Xi tð Þ � Xavg tð Þ
� �

ð11Þ

A ¼ 2 � r3 � 1
� � � a ð12Þ

B ¼ 2 � r4 � 1
� � � b ð13Þ

Xavg tð Þ ¼ ð1=NÞ �
XN
i¼1

Xi tð Þ ð14Þ

where u1 is a random value uniformly distributed from �a to a, v1 is a
randomvalue uniformlydistributed from�b to b, and r3 and r4 are random
values uniformly distributed from 0 to 1. In the context of the current
iterative population, Xi tð Þ denotes the ith individual, Xr tð Þ denotes a ran-
domly selected individual from the population, and Xavg tð Þ denotes the
average position. Xavg tð Þ can be calculated via Eq. (14), where N is the
population size.

Next is the Exploitation stage. After the gannets enter the water
according to the aforementioned methods, the fish often perform sudden
turns in the water to evade the pursuit of the gannets, so the gannets also
expend a great deal of energy to catch the fleeing fish. Here, the capture
capability is defined by Eq. (15).

Capturability ¼ 1=ðR � t2Þ ð15Þ

t2 ¼ 1þ ðTcur iter=Tmax iterÞ; R ¼ ðM � vel2Þ=L; L ¼ 0:2þ 2� 0:2ð Þ � r5
ð16Þ

where r5 is a random value uniformly distributed from 0 to 1.M ¼ 2:5Kg
represents the weight of the gannet, and vel ¼ 1:5m=s represents the pre-
dation speed when water resistance is ignored.

When the gannet has sufficient energy, that is, when the capture
capability is high, the gannet will catch the fish. As time progresses, the
energy level of the gannet decreases, leading to an eventual inability to
execute the capture manoeuvre. The capture equation is shown in Eq. (17).

MXi t þ 1ð Þ ¼ t � delta � ðXiðtÞ � XBestðtÞÞ þ XiðtÞ ;Capturability ≥ c ðaÞ
XBestðtÞ � ðXiðtÞ � XBestðtÞÞ � P � t ;Capturability < c ðbÞ

�

ð17Þ

delta ¼ Capturability � Xi tð Þ � XBest tð Þ
�� �� ð18Þ

P ¼ Levy Dimð Þ ð19Þ
where the constant c has been established to be 0.2 through extensive
experimental validation. The individual exhibiting the highest performance
within the current population iteration is denoted by XBestðtÞ. The Levy
flight, which is a stochastic process characterized by long-range jumps, is
derived from Eq. (20).

Levy ¼ ð1=100Þ � ððσ � εÞ=jvjð1=ψÞÞ ð20Þ

σ ¼ Γ 1þ ψ
� � � sin πψ=2

� �
Γðð1þ ψÞ=2Þ � α � 2 ðψ�1Þ=2ð Þ

 !ð1=ψÞ
ð21Þ

where ε and σ are random values uniformly distributed from 0 to 1 and
where ψ ¼ 1:5 is a constant determined by the researchers in previous
studies.

Binary Gannet Optimization Algorithm
The GOA was originally designed to address complex engineering opti-
mization problems. However, the GOA cannot effectively solve binary
optimizationproblems, so abinaryversionof theGOAneeds tobedesigned.
Given the inherent differences between optimization in binary and con-
tinuous search spaces, a straightforward approach to adapting a continuous
optimization algorithm for binary use without changing its fundamental
structure is to use a transfer function7,45,46. There are various types of transfer
functions, and this paper presents several S-shaped, V-shaped and linear
transfer functions, as shown in Table 3.

The transfer function is used to insert a solution from a general con-
tinuous search space into the function and return anumberwithin the range

Table 3 | S-shaped, V-shaped and linear transfer functions

Name Equation Type

TF1 TF1 Xð Þ ¼ 1=ð1þ exp �2Xð ÞÞ S-shaped

TF2 TF2ðXÞ ¼ 1=ð1þ exp �Xð ÞÞ S-shaped

TF3 TF3ðXÞ ¼ 1=ð1þ exp �X=2
� �Þ S-shaped

TF4 TF4ðXÞ ¼ 1=ð1þ exp �X=3
� �Þ S-shaped

TF5 TF5ðXÞ ¼ tanhðX=2Þ
�� �� V-shaped

TF6 TF6ðXÞ ¼ tanhðXÞ
�� �� V-shaped

TF7 TF7ðXÞ ¼ X=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ 1

p��� ��� V-shaped

TF8 TF8ðXÞ¼ ð2=πÞ arctanððπ=2ÞXÞ
�� �� V-shaped

TF9 TF9 Xð Þ ¼ ðX� RminÞ=ðRmax � RminÞ Linear
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of [0 or 1], as typically represented by Eq. (22).

PðtÞ ¼ 1 if TFðxÞ > rand
0 else

�
ð22Þ

Themain process of the BGOA involves substitutingMX, the position
ofwhichhas beenupdated through two stages, intoTF to obtainTFðxÞ. This
value is then compared with a random value rand, which is uniformly
distributed from 0 to 1. PðtÞ refers to the updated binary value.

Decision variables
Since the aim of this study is to optimize the control of valve opening and
closing, which is essentially a binary problem represented by values of 0 and
1 (where an open valve is denoted as 1 and a closed valve as 0), the decision
variables are binary integer sequences. Additionally, the variation of the
pumphead in theWDN is of interest under these circumstances. The aim is
to minimize the impact of contaminants while also reducing the energy
consumption of the pump stations. Therefore, the decision variables are not
only binary integers; they also need to include variables representing the
heads of the pump stations. The decision variables are described below:

X ¼

x11; x
2
1; � � � ; xNp1 ; xHsh

x12; x
2
2; � � � ; xNp2 ; xHsh

..

.

x1Nt ; x
2
Nt ; � � � ; xNpNt ; xHsh

2
666664

3
777775
Nt × Npþhð Þ

s:t: Hslb < x
Hs
h <Hsub

where X represents the matrix of decision variables, Nt represents the
simulated time, Np represents the total number of pipes, and h represents
the number of pump stations. xHsh represents the head of the h th pump
station. The maximum and minimum limits for the pump head are desig-
natedHsub and Hslb, respectively.

Constraints
The contamination detection scheme in this study requires the closure of a
certain number of valves, and the closure of valves has a certain relationship
with the pressure in the pipes. If too many valves are closed, the water
flowing through the other pipes with open valves will be excessive, which
will lead to excessive water pressure in some of these pipes. In this case, it is
necessary to impose constraints on the pressure of the pipes. If the pressure
exceeds the constraint range, there will be a penalty for this pressure
deviation. The penalty function P is shown in Eq. (23):

P ¼ max
i2NP

pmin � pi tð Þ; 0
� �þmax

i2NP
pi tð Þ � pmax; 0
� �

ð23Þ

where pi tð Þ is the pressure in pipe i at time t and the pressure limits within
the water distribution network are defined by pmin and pmax. If the nodal
pressuresmeet the pressure limits, then the penalty function P takes a value
of 0; otherwise, a deviation penalty is calculated.

Fitness function
In this work, node water quality is determined by controlling the valves in
the WDN under a fixed sensor setup. The fitness function is designed to
minimize the amount of contamination in theWDN.Minimizing the heads
of the pumps in the pumping stations is also considered in reducing the
water pressure and energy consumption.

A contamination impact function f con imp is then designed to optimize
the primary objective. Additionally, the impact of contamination is repre-
sented as the amount of pollutedwater that has been consumed,which is the
actual water demand. The amount of impact at node i at time step t is

represented by Eq. (24):

Impi tð Þ ¼ f con imp kdi ;wj tð Þ;Tr ið Þ;Tthr

� �

¼
Pkdi
t¼1

wj tð Þ; kdi <T

PT
t¼1

wj tð Þ; kdi ≥T

8>>><
>>>:

ð24Þ

kdi ¼ min Tr ið Þ >Tthr

� �
where kdi is the contamination detection time at node i, Tr ið Þ is the water
quality condition at node i, Tthr is the contamination threshold,wj tð Þ is the
water demand of pipe j at time step t, andT is themaximumdetection time.

Minimizing the pump heads of the pumping stations is taken as a
secondary objective. The pump head is already defined in the decision
variables as xHsh , where Hslb < x

Hs
h <Hsub.

Since this work involves multiobjective optimization, the fitness
function to be designed is generally a nonlinear function, which complicates
computation. The multiobjective optimization process can be simplified
into a single-objective linear function by linearly combining Impi tð Þ with
xHsh . To simplify, these two quantities need to be normalized and assigned
weights. Imptot tð Þ is set to represent the total contamination impact at time
step t, which is the totalwater demand, and this is used to normalize Impi tð Þ.
Hsub is used to normalize xHsh tð Þ. Then, α is used as theweight coefficient for
the two. The resulting linear combination is shown in Eq. (25):

Obj tð Þ ¼ α Impi tð Þ=Imptot tð Þ
� �þ 1� αð Þ xHsh tð Þ=Hsub

� � ð25Þ

Although transforming multiobjective optimization problems into
single-objective optimization problems through standardization and
weighting reduces the computational burden, it may inadvertently result in
the exclusion of certain solutions. Such solutions, which could be optimal or
nearly so, typically appear on the Pareto front. The set of these solutions
largely depends on the construction scale of theWDNs and the feasibility of
the optimization problem. In the future, an effective Pareto front can be
created specifically on the basis of the particular circumstances of the
network.

In addition to the necessary optimization objectives, there are also
constraints to consider. Here, the pressure constraint penalty function P
from Section “Constraints” needs to be utilized, and the expression for the
fitness function F is presented in Eq. (26):

F Xð Þ ¼ P þ α Impi tð Þ=Imptot tð Þ
� �þ 1� αð Þ xHsh tð Þ=Hsub

� � ð26Þ

s:t:

P ¼PT
t¼1

PNP
j¼1

ξðt; jÞ þ ξðt; jÞ � pmin � pj tð Þ
� �

þ pj tð Þ � pmax

� �� �

ξðt; jÞ ¼ 1; ifpmin > pj tð Þjjpmax < pj tð Þ
0; otherwise:

�
8>>><
>>>:
The final fitness function has two components: the objective function

part Obj and the constraint penalty part P. Both optimization objectives in
the objective function have been standardized, so their values are within the
range of 0 to 1. Additionally, aweightα 2 ½0; 1� is added to linearly combine
the two, so the objective function part is always less than or equal to 1. The
pressure constraint penalty part is used to determine the feasibility of the
solution. If the solution is feasible, then the penalty part will be equal to 0,
andwhen these two parts are added together, the fitness value will always be
less than or equal to 1. If the solution is not feasible, it indicates that at least
one pipeline’s pressure doesnotmeet the pressure limit, and the penalty part
will be greater than1,whichwill alwaysmake thefitness value greater than1.
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Random flipping strategy
It is widely acknowledged that before an algorithm is implemented, it
requires initialization. Typically, initialization is performed randomly, but
this could lead to some initial solutions being infeasible in practical appli-
cation scenarios. Consequently, the algorithm might have to search for a
feasible solution within a larger search space, which will increase resource
consumption. Moreover, it could be difficult for the algorithm to converge
to an optimal or effective solution. To address this issue, an improvement is
proposed to preprocess the random initialization. The decision variable X
defined in Section “Decision variables” is randomly initialized before the
algorithm is implemented. After initialization, X is input into the fitness
function for a feasibility check. If F Xð Þ is greater than 1, the binary integer
sequencewithinX is randomlyflipped, turning it into a new set of solutions,
and then it is re-entered into the fitness function for judgement. If it is less
than or equal to 1, this indicates that the initial solution is feasible; otherwise,
flipping continues until a feasible solution is obtained. A schematic of the
proposed random flip strategy can be found in the supplementary material,
labeled Supplementary Fig. 5.

Parallel strategy
In this study, a parallel strategy is employed in the algorithm. Parallel
strategies are commonly used for optimizing algorithms. By employing
parallel processing techniques, better solutions can be found, and the con-
vergence process can be expedited. The parallel strategy is executed speci-
fically by partitioning the search space into distinct groups, each of which
functions autonomously to identify the optimal solution. When specific
criteria are met, intergroup communication is initiated to facilitate the
sharing of information among the groups47.

The parallel strategy used in the algorithm of this study is shown in
Fig. 5.As shown in theupper part of thefigure, in the initializationphase, the
main population in the algorithm is divided into two subpopulations, which
indicates that there are two strategies for population grouping. The first
grouping strategy is sort grouping. In this strategy, the fitness value of each
individual in the main population is calculated; then, the fitness values are
compared and ranked to determine the global optimal individual. The first
subpopulation (i.e., Group 1) retains the global optimal individual and also
retains the better individuals in the higher ranks of the main population
since new superior individuals are more likely to be found in the higher-
ranked population. The second grouping strategy is random grouping. The
second subpopulation (i.e., Group 2) directly selects individuals at random
from the main population to avoid falling into local optima.

The next step is to perform intergroup communication. Adding
communication strategies to the algorithm has a great impact on it, and a
good strategy can lead to faster convergence of the algorithm. Two com-
munication strategies are proposed, as shown in the lower part of Fig. 5.
Strategy I is the primary communication strategy. In each iteration,
according to the given algorithm, individuals in the main population are
compared and sorted to update the population. In addition, the individuals
in the two subpopulations are updated during the iterations. An individual
in the population is randomly selected for updating, and if the updated
fitness value is better, it replaces the poorer individual. In Strategy I, at a
certain interval in terms of the number of iterations, the optimal individuals
in the two subpopulations are compared to identify the better individuals
(i.e., the yellow circle in the lower left part of Fig. 5, which is obtained by
comparing the orange circle with the green circle). This individual is then
comparedwith the optimal individual in themain population. If the former

Fig. 5 | Parallel communication strategy. The main population in the algorithm is divided into two subpopulations with two methods, then Strategy I or Strategy II is used
for parallel communication between groups.
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is superior, it replaces the worst individual in the main population (the
optimal individual in themain population, the red circle, is compared to the
yellow circle; if yellow is better, it replaces the last blue circle in the main
population). This strategy of optimizing and updating from theweakest end

allows the algorithm to converge faster.When the optimal individuals in the
main population are not updated for a long period, the algorithm is con-
sidered to be stuck in a local optimum; Strategy II is used to prevent this. The
two previous best individuals are selected randomly, and their different

Fig. 6 | The feeding scenarios when the gannets choose theU-shaped andV-shapedmethods of entering and exiting the water. a, cThey return to the original route after
completing fishing when they have the ability to hunt. b, d They do not take any action when they cannot hunt.

Fig. 7 | Flowchart of the IPBGOA. First optimize the initial value and set the population state, then determine the update method, and finally optimize by crossover and
parallelism.
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dimensions are combined to form a new individual (in the lower right part
of Fig. 5, the different dimensions of Individual 1 with an orange back-
ground and Individual 2 with a green background are randomly combined
to formanew individual). This new individual is used to replace someof the
best individuals in themainpopulation toprevent the algorithm fromfalling
into local optima.

Stage crossover strategy
As described in the introduction to the GOA in Section “Gannet Optimi-
zation Algorithm”, the GOA uses two stages to update positions. In the
exploration stage, the gannet dives to catch its prey in a V-shaped or
U-shaped motion and then resurfaces. In the exploitation stage, the gannet
determines whether to hunt on the basis of its catching ability. If it has the
ability to catch, it can rotate quickly to capture fish that are trying to escape.
If it cannot catch, it will allow the fish to escape and roam randomly. The
algorithm randomly determines which stage’s method to use for updating
positions. However, these two stages do not fully reflect the way gannets
hunt. For example, during the exploration stage, the U-shaped diving
approach is employed, but the actual fishing actions in the water are not
considered. Similarly, during the exploitation stage, the sudden rotation to
catch fish is considered, but the diving and resurfacing approaches are not
considered. Therefore, this paper presents a dual-stage crossover strategy
that can address the shortcomings of the representation of actual fishing
while diversifying the individuals considered by the algorithm to prevent
convergence to local optima. Figure 6 shows the feedingdiagramsof gannets
according to the stage crossover strategy.

Overall optimization procedure
The IPBGOA is described by the pseudocode in Algorithm 1. Unlike in the
GOA, optimization adjustments are made during the initial random solu-
tion initialization. The random flipping strategy used in Section “Random
flipping strategy” enables the IPBGOA to generate feasible solutions that
conform to practical applications as well as possible (lines 3–9). At the start
of each iteration, the individuals are arranged according to their fitness
scores and then categorized. Subsequently, each individual randomly selects
a stage and then updates their final position according to their predatory
behavior (lines 11–32). Since this paper discusses 0-1 problems, a transfer
function is used to translate the continuous search space into a binary space
(lines 33–35). After binarization, the groups are updated, and intergroup
communication is performed (lines 36–41). When the stopping criteria are
met, the IPBGOA returns the best solution, namely, Xbest . The flowchart is
shown in Fig. 7.

Algorithm 1. IPBGOA
Input: population size N , problem dimension Dim, number of iterations
T , fitness function F Xð Þ, transfer function TF Xð Þ, crossover function
Crossover Xð Þ;
Output: Best solution Xbest;
1: Initialize the population withN individuals {X1,…, XN } and the best

solutionXbest , where r and q are randomvalues between0 and 1 and c
is a designed predation factor;

2: Create storage matrices SX, SX1, SX2, and B SX.
3: Perform feasibility judgement on the initialized individuals and

randomly flip them.
4: while F Xi

� �
> 1 do

5: Update xDimi
6: if r < 0.5 then
7: {x1i ,…, xDim�1

i } = 1 - {x1i ,…, xDim�1
i };

8: end if
9: end while
10: Sort the individuals based on their fitness values to obtain Xbest and

group them.
11: while the condition for stopping is not met do
12: if r ≥ 0.5 then
13: for { SX1, SX2} do

14: Update SX1i using Eq.(8a);
15: if c ≥ 0.2 then
16: Update SX2i using Eq.(17a);
17: else
18: Update SX2i using Eq.(17b);
19: end if
20: SXi =Crossover SX1; SX2ð Þ;
21: end for
22: else
23: for { SX1, SX2} do
24: Update SX1i using Eq.(8b);
25: if c ≥ 0.2 then
26: Update SX2i using Eq.(17a)
27: else
28: Update SX2i using Eq.(17b);
29: end if
30: SXi =Crossover SX1; SX2ð Þ;
31: end for
32: end if
33: for i = 1 → N do
34: B SX = TF SXi

� �
;

35: end for
36: Sort theupdated individuals basedon theirfitness values to obtainXbest

and update the groups;
37: Intergroup communication.
38: if the set number of iterations is reached then
39: Compare the optimal individuals of group1 and group2 with Xbest

and perform a swap;
40: If there has been no update for a long time, perform random

dimension combination;
41: end if
42: end while
43: return Xbest ;
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