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IoT integrated and deep learning assisted
electrochemical sensor for multiplexed
heavy metal sensing in water samples
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Heavy metal measurement is vital for ecological risk assessment and regulatory compliance. This
study reports a sensor using gold nanoparticle-modified carbon thread electrodes for the
simultaneous detection of Cd²⁺, Pb²⁺, Cu²⁺, and Hg²⁺ in water samples. Differential pulse voltammetry
(DPV) was employed, achieving detection limits of 0.99 μM, 0.62 μM, 1.38 μM, and 0.72 μM,
respectively, with a linear span of 1–100 μM. The sensor operated effectively in acidic conditions, with
excellent selectivity, repeatability, and reproducibility. Real water samples from various lakes in
Hyderabad, India, were analyzed to validate their practical application. To extract the sensing features
a convolutional neural network (CNN)model was used to processDPV signals, enhancing heavymetal
ion classificationwith high accuracy. Performancemetrics suchasprecision, recall, andF1 scorewere
evaluated. Integration with IoT technology has improved the user experience, advanced heavy metal
quantification capabilities, and further enabled remote monitoring.

Access to clean water, a fundamental necessity, is increasingly becoming
a challenge in our times and is projected to worsen in the future. Factors
such as mining, rapid industrialization, irresponsible resource utiliza-
tion, chemical spills, sewage sludges, urban runoff, and unregulated
small-scale industries significantly contribute to the contamination of
natural water sources1. Among the various water pollutants, heavy
metals are particularly concerning because of their profound and per-
sistent impacts on human health. These toxic elements can accumulate
in biological systems, leading to a myriad of detrimental health effects.
Heavy metal toxicity promotes the generation of free radicals, which
damage DNA and may cause cancer, renal damage, skin ailments, ner-
vous system abnormalities, kidney complications, and other problems2,3.
The associated adverse health effects highlight the need to take remedial
measures. While prevention and treatment are essential factors in
achieving portable water devoid of unacceptable levels of these con-
taminants, effectivemonitoring is the first step in taking remedial action.
There is significant interest in the global community in improving
accessibility to clean water, and the importance of addressing this
challenge is further emphasized even by the United Nations as a sus-
tainable development goal #6, which focuses on Clean Water & Sani-
tation. Thus, developing technologies for water monitoring and
solutions to safeguard our most vital resources is crucial.

Inductively coupled plasma-mass spectrometry (ICP-MS)4, High-
performance liquid chromatography (HPLC)5, Atomic absorption spec-
troscopy (AAS)6, Inductively coupledplasma optical emission spectrometry
(ICP-OES)7 and isotope dilutionmass spectrometry8 are commonly used by
regulatory bodies to ascertain the presence of heavymetals for the benefit of
public welfare9. However, these techniques are expensive as they rely on
laboratories with sophisticated instruments and require skilled operators.
These factors limit accessibility to resource-limited regions where their
assistance is most vital.

Electrochemical sensing is an approach that can significantly reduce
the associated costs and resource-intensive needs in water quality
assessment10–12. The ability tominiaturize an electrochemical sensing system
allows convenient point-of-source testing with simplified sample prepara-
tion and reduces costs. Althoughminiaturized electrochemical sensorsmay
exhibit reduced sensitivity, previous studies have demonstrated that their
detection range for heavymetals inwater remainswithinpractical limits13–15.

Fabricating custom-built electrochemical sensors offers notable
advantages; however, the intricate output signals frequently result in mis-
interpretation, posing a significant barrier to the accurate comprehension of
data by individuals lacking specialized technical expertise. In this context,
deep learning algorithmscanprocess and interpret complexelectrochemical
data patterns that traditional methods might overlook, enabling more
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accurate detection, classification, and quantification of analytes16–18. Fur-
thermore, incorporating the Internet of Things (IoT) elevates the user
experience by offering a more accessible and understandable data interface.
This synergy combines advanced sensor technology with real-time data
analysis and enhanced decision-making capabilities, offering a robust
approach to addressing environmental safety and implementing effective
water pollution management strategies19,20.

Several researchers have made significant efforts to quantify multiple
heavymetals simultaneously21,22. Dinu et al.23 developed a sensor via screen-
printingwith carbon nanofibers (CNFs)modifiedwith Fe3O4 nanoparticles
and multilayer carbon nanotubes (MWCNTs) modified with Fe3O4

nanoparticles to simultaneously detect Cd²⁺, Pb²⁺, Cu²⁺, and Hg²⁺ions. Both
the SPE modifications were compared in terms of the limit of detection,
where the SPE/Fe3O4-CNF sensor showed better results. Wang et al.24 have
synthesized a composite material comprising a ferrocene carboxylic acid-
functionalized metal-organic framework (Fc-NH₂-UiO-66) and thermally
reduced graphene oxide (trGNO) for the simultaneous detection of Cd²⁺,
Pb²⁺, and Cu²⁺ ions. Zhang et al.25 used screen-printed electrodes for sensing
Cd2+, Zn2+, and Cu2+ and quantified them via square-wave voltammetry.
Additionally, a CNN-based systemwas developed to detect heavymetal ion
types and concentrations. Data from 1200 samples was collected, and
99.99% classification accuracy and 8.85%mean relative error were achieved
in concentration detection across 12 sets of solutions with varying ionic
species and concentrations. Liu et al.26 used square-wave anodic stripping
voltammetry (SWASV) todetectCd²⁺ andPb²⁺ ions. For enhanced accuracy,
the interactive interferences of Cu²⁺ and Zn²⁺ were analyzed via two-
dimensional correlation spectroscopy (2D-COS). The extracted features
were processed using differentmachine learningmodels, specifically feature
random forest (feature RF) and feature support vector regression (feature
SVR), which significantly improved the detection accuracy. A comparison
of several other studies is shown in Table 1. Despite significant efforts by
multiple research teams, there remains considerable potential for
improvement in simplifying and reducing the steps involved in material
synthesis, sensor fabrication, and developing deep learning algorithms for
interpreting complex mixed analyte signals while enhancing the user
experience and remote data monitoring capabilities. Improving these
aspects can significantly contribute to more efficient and reliable heavy
metal sensing.

This work demonstrates the fabrication of an electrochemical sensor
capable of simultaneously quantifying cadmium, lead, copper, andmercury.
The simultaneous sensing capabilities of the sensor for these heavy metal

ions were optimized for water quality assessment. The discarded plastic
waste bottles served as the base substrate for placing the 3-electrode system.
The reported method supports multiplexed heavy metal sensing, quick
fabrication, the use of carbon threads, and the reuse of discarded plastic. The
AuNPs were electrochemically deposited on the surface of the working
electrode thread surface, and the reference electrode wasmodified with Ag/
AgCl ink. The sensor was characterized via DPV for all four heavy metal
ions, offering an advance in the removal of the pre-concentration step. The
experiments were carried out with all possible single, double, three, and four
metal combinations to understand the sensor capabilities. The sensor
underwent extensive testing to assess its performance under various con-
ditions, including its response to different pHvalues, its ability to function in
the presence of other heavy metals, and its effectiveness in analyzing real
water samples from various lakes. The fabricated sensor was collated with
neural networks, enabling it to interpret complex electrochemical signals
accurately and provide qualitative heavy metal contamination in water
samples to users. Furthermore, the entire model was deployed on the cloud
to facilitate remote access to results and seamless user interpretation and
experience. To summarize, the presented device is designed to quantify the
concentrations of cadmium, lead, copper, and mercury in water samples.
The data obtained from the device are processed via a convolutional neural
network (CNN) for accurate quantification of these heavy metals. The
quantified results were then displayed on an IoT-enabled user interface.

Results
SEM analysis
SEMwas employed to analyze the morphology of the surface of the working
electrode to examine the changes before and after gold nanoparticles were
electrochemically deposited. Figure 1(a) and (c) show scanning electron
microscopy images of the carbon thread at scales of 10 μm and 1 μm, which
depict smooth andwell-aligned fibers. Figure 1(b) and (d) show SEM images
of the AuNP-deposited carbon thread at scales of 10 μm and 1 μm, respec-
tively. Energy-dispersiveX-ray spectroscopy (EDX) analysis further validated
the compositional changes resulting from gold modification. The plain car-
bon thread consisted of 92.27 wt% carbon and 7.73 wt% oxygen, and the
gold-modified thread demonstrated a composition of 90.77 wt% carbon,
3.64 wt%oxygen, and5.56 wt%gold. This notable increase in theAu content,
coupled with the observation of nearly spherical nanoparticle-like structures,
confirms the successful functionalization and surface modification with gold
nanoparticles (AuNPs). Figure 1(e) and (f) illustrated the elementalmapping
of unmodified and modified carbon threads where the unmodified threads

Table 1 | Summary of existing methods for heavy metal detection

Material used Metals
detected

Supporting
Electrolyte

Technique LoD Machine learning Model
accuracy

IoT Ref

Hydroxyapatite-Nafion
on GCE

Hg2+,
Cu2+,
Pb2+,
Cd2+

0.1 M
NaAc-HAc

Differential pulse
anodic stripping
voltammetry

0.030 μM
0.021 μM
0.049 μM
0.035 μM

No - No 34

Sulfur-containing nano-
capsule-based
electrochemical metal-
organic framework (MOF)
sensor

Cu2+

Pb2+

Cd2+

Hg2+

ABS buffer
solution

square wave anodic
stripping
voltammetry
(SWASV)

0.013 μM
0.011 μM
0.026 μM
0.018 μM

No - No 35

Commercial graphite sensor
modifiedwith 2Dmolybdenite

As3+, Pb2+

Cd2+
1M NaCl
solution

Square-wave
voltammetry

- Yes, support vector
machines

98.31% No 16

Screen printed electrode Cd2+,
Cu2+, Zn2+

- Square-wave
voltammetry

- Yes, Convolution
neural networks

99.99% No 25

Silver oxide-bismuth
oxybromide coated
with nafion

Ni2+

Cu2+
KCl electrolytic
solution

Differential Pulse
Voltammetry

- Yes, Naïve Bayes
algorithm

93.2% No 36

Gold nanoparticles deposited
carbon threads

Cd2+

Pb2+

Cu2+

Hg2+

HCl-KCl Buffer Differential Pulse
voltammetry

0.99 μM
0.62 μM
1.38 μM
0.72 μM

Yes, Convolution
neural networks and
Artificial neural
networks

99% Yes, with
the user
interface

This
Work
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containedonly carbon andoxygen, and themodified threads contained clear,
concentrated spots of AuNPs across the fiber surfaces along with carbon and
oxygen. Further information on the EDX spectrum and individual element
mapping for the plain carbon thread and AuNP-modified carbon thread is
included in supplementary figs. 2 and 3. This indicates a distribution of gold
nanoparticles across the fiber surfaces, indicating successful deposition.

Electrochemical Sensing of Cadmium, Lead, Copper, Mercury
Solutions containing the heavy metal ions Cd2+, Pb2+, Cu2+, and Hg2+ at
various concentrations ranging from 1 μM to 100 μM were prepared using

HCl-KClbuffer solution (pH-2),which is clearly explained in section2.3.All
the experiments and solution preparationwere performed at 1 atmpressure
and a temperature of 25 °C. Furthermore, DPV was conducted using the
fabricated sensorwith a voltage range of -1V to 1 V, a scan rate of 15mV/s, a
pulse amplitude of 90mV, and a pulse time of 25ms to enhance redox
reactions and minimize capacitive currents. Initially, the sensor was sub-
jected to each metal ion individually at the prepared concentrations, as
shown in Fig. 2(a) cadmium ions, (b) lead ions, (c) copper ions, and (d)
mercury ions. The peak potentials of the heavymetals, Cd2+, Pb2+, Cu2+, and
Hg2+, were observed at approximately -0.85 V, -0.60 V, -0.20 V, and 0.20 V,

Fig. 1 | Electronmicroscopy images ofAumodified carbon thread for simultaneous heavymetal detection. aPlain thread at a scale of 10 μm, bAuNPs deposited thread at
a scale of 10 μm, c plain thread at a scale of 1 μm,dAuNPs deposited thread at a scale of 1 μm, e elemental mapping and composition of plain thread, f elemental mapping and
composition of AuNPs deposited thread.
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respectively, with sharp oxidation peaks for each metal ion. Then, electro-
chemical detection was carried out with all four metals detected simulta-
neously from a concentration range of 1 μM to 100 μM. Figure 2(e) shows
the concentration effects of Cd2+, Pb2+, Cu2+, and Hg2+ when tested
simultaneously. As the concentration of the heavy metals increased, the

peak current of each individual metal increased, indicating a linear rela-
tionship between the metal concentration and peak current. Regression
parameters were evaluated to obtain insights into linearity. The coefficients
of determination (R²) for the metal ion sensing plots were 0.9773, 0.9908,
0.9572, and 0.9877, respectively, demonstrating a nearly perfect linear fit.

Fig. 2 | Concentration effect of detected heavymetals. aCadmium ions, b lead ions, c copper ions, dmercury ions, and e all fourmetal ions ranging from 1 μM to 100 μM in
HCl-KCl buffer f linear relationship graph of simultaneously tested metal ions.
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The calibration curves are shown in Fig. 2(f), and the limits of detection
(LoDs)27 were calculated for Cd2+, Pb2+, Cu2+, and Hg2+ as 0.99 μM,
0.62 μM, 1.38 μM and 0.72 μM respectively. Furthermore, the limit of
quantification (LoQ) was calculated to be 3 μM for Cd2+, 1.88 μM for Pb2+,
4.18 μM for Cu2+, and 2.18 μM for Hg2+ ions.

pH effect
To study the influence of varying pH levels on the proposed heavy
metal sensor, experiments were conducted across different pH envir-
onments—acidic, neutral, and basic. TheHCl-KCl buffer used in all the
experiments was acidic and had a pH of 2. NaOH was added to this
buffer to achieve pH 7 and pH 10. Heavy metal solutions of each
100 μM concentration were prepared with pH 2, pH 7, and pH 10
solutions andwere tested with the proposed sensor, as illustrated in Fig.
3. The results indicated no electrochemical activity of the heavy metals
at neutral and basic pH values, providing strong evidence that the
proposed reaction in this work was effective only under acidic condi-
tions. Heavy metal ion sensing can also occur at various acidic pH
values, as the acidic environment in buffers keeps metal ions soluble
and reactive28,29.

Interference effect
The interference test evaluated the ability of the proposed sensor to
distinguish the target metal ions accurately from other pollutants or
contaminants present in the water sample. To analyze the selectivity of
the fabricated sensor, 0.1 μM solutions of common interfering agents
such as chromium, zinc, molybdenum, nickel, nitrate, nitrite, and
hydrazine were prepared using HCl-KCl buffer. These agents were
added sequentially to a 1 μM heavy metal solution containing cadmium,
lead, copper, and mercury. The DPV tests were conducted after adding
each interfering agent to the 1 μM all-metal ion solution, and the peak
currents were recorded. The readings are presented as a bar graph in Fig.
4, which shows peak current values for each interfering agent at the
oxidation potential of the respectivemetal ions. Themaximumdeviation
of the peak currents was observed to be 6.3% for Cd2+, 3.01% for Pb2+,
4.2% for Cu2+, and 15.3% for Hg2+ ions. Although the deviation for
mercury ions was relatively high when detected simultaneously with
other metal ions, this could be improved in future work by enhancing
surface modification and incorporating selective membranes. Overall,

the results indicated that the proposed sensor maintained acceptable
selectivity in detecting these metal ions.

Repeatability and Reproducibility Study
The repeatability of the fabricated sensorwas calculated byperformingDPV
experiments using the same sensor on a 1 μM solution of Cd²⁺, Pb²⁺, Cu²⁺,
and Hg²⁺ ion solutions. The experiments were conducted three times, and
the outcomes were presented in Fig. 5(a). The relative standard deviations
(RSDs) recorded were 4.03% for Cd²⁺, 3.59% for Pb²⁺, 8.52% for Cu²⁺, and
3.02% for Hg²⁺, respectively, signaling excellent repeatability. Multiple
sensors were fabricated following the same procedure and tested on the
same heavy metal ion solutions to assess reproducibility. Figure 5(b) pre-
sents the peak current values from three different sensors. The RSD values
for the reproducibility tests were 7.75%, 9.94%, 8.44%, and 8.27% for Cd²⁺,
Pb²⁺, Cu²⁺, andHg²⁺, respectively. These results demonstrated that the sensor
was highly repeatable and reproducible.

Real Sample Testing
The established sensor was tested on real water samples collected from
Hussain Sagar, Kapra, and Shamirpet Lakes in the vicinity of Hyderabad
City (Telangana, India) to evaluate its ability to quantify heavy metals in
natural water bodies. The collected water samples were first diluted by
mixing equal amounts of lake water with HCl-KCl buffer, resulting in a 1:1
dilution ratio. Then, to the prepared samples, 1 μMand10 μMof eachmetal
ion solution were added and tested using DPV. Table 2 shows the con-
centration values inferred from the recovery percentages.

Metal ion Classification using a CNN for Qualitative Analysis
In thiswork, the qualitative prediction of Cd²⁺, Pb²⁺, Cu²⁺, andHg²⁺ ionswere
achieved by training four individual models with identical input data but
different outputs. Each model identifies the metal ion for which it was
trained. Finally, the binary results from each model were combined to
produce a 1 × 4 vector, which was then ensembled. The validation split was
set to 20% to prevent overfitting. Figure 6 displays the confusion matrices
illustrating the classification efficacy for the four heavy metal ions by the
proposed model. The matrices indicated minimal false positives and false
negatives, reflecting a low incidence of Type I and Type II errors. Further-
more, the accuracy, precision, recall, and F1 scores were calculated and
tabulated in Table 3 using Eqs. 1–4, where TP is a true positive, TN is a true

Fig. 3 | Influence of solution pH (acidic, neutral, and basic conditions) on the sensing
performance of the heavy metal sensor, evaluated with 100 μM concentrations of
each heavy metal ion.

Fig. 4 | Bar plot showing the peak current values of interfering metal ions (0.1 μM
each) when sequentially added to 1 μM solutions of Cd²⁺, Pb²⁺, Cu²⁺, and Hg²⁺, as
detected by the developed heavy metal sensor.
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negative, FP is a false positive, and FN is a false negative.

Accuracy ¼ TN þ TP
TN þ FP þ TP þ FN

ð1Þ

Precision ¼ TP
TP þ FP

ð2Þ

Recall ¼ TP
TP þ FN

ð3Þ

F1 Score ¼ 2×
Precision×Recall
Precisionþ Recall

ð4Þ

The model achieved near-perfect accuracy scores in both the training
and validation sets, with precision and recall values that were consistently
close to 1.0. This suggests that themodel is highly accurate in detecting these
metals, with minimal false positives and false negatives. Therefore, the
modelmakesminimal inaccurate positive predictions and rarelymisses true
positive occurrences. This suggested that themodel efficiently handled both
Type I and Type II errors, which is crucial in scenarios requiring accurate
and reliable estimation of metal ions, and was suitable for deployment.
Furthermore, this model can be extended for qualitative analysis.

IoT implementation
The IoT framework was designed to ensure seamless data acquisition,
processing, and reporting through an interactive web interface. The
trained model for the qualitative detection of four heavy metals was
deployed on a Streamlit Cloud, which allowed for continuous inte-
gration and deployment through GitHub. A user-friendly web
interface was designed, enabling users to submit their data files for
analysis in .xlsx format, as illustrated in Fig. 7a. The interface also
displays a graphical representation of the DPV data and the quali-
tative results of heavy metal detection, as shown in Fig. 7b. This
system allows users to log in with a username and password, then
effortlessly upload or drag-and-drop an Excel sheet containing
sample data, and obtain results with a single click, all without needing
technical expertise, while also handling multiple user requests
simultaneously.

Discussion
This study highlights the fabrication and characterization of an elec-
trochemical sensor emphasizing on rapid fabrication with AuNPs
deposited carbon thread as a working electrode for the simultaneous
measurement of cadmium, lead, copper, and mercury ions in water
samples. The electrochemical characterization was carried out by DPV,
and the peak potentials were observed at approximately -0.85, -0.60,
-0.20, and 0.20 V for Cd2+, Pb2+, Cu2+, and Hg2+, respectively. The
developed sensor demonstrated high sensitivity and selectivity while

Fig. 5 | The validation studies of the developed heavy metal sensor. a Repeatability and b reproducibility.

Table 2 | Real Sample Analysis

Heavy
metals

Shamirpet lake Kapra Lake Hussain Sagar lake

HM ion
added (µM)

HM ion
found (µM)

Recovery (%) HM ion
added (µM)

HM ion
found (µM)

Recovery (%) HM ion
added (µM)

HM ion
found (µM)

Recovery (%)

Cd2+ 1 0.938 93.80 1 0.961 96.10 1 0.993 99.30

10 9.513 95.13 10 9.829 98.29 10 10.21 102.1

Pb2+ 1 0.984 98.40 1 1.021 102.1 1 0.949 94.9

10 9.942 99.42 10 10.45 104.5 10 9.379 93.79

Cu2+ 1 0.936 93.60 1 0.989 98.90 1 0.941 94.10

10 9.481 94.81 10 9.847 98.47 10 9.651 96.51

Hg2+ 1 0.977 97.70 1 0.998 99.80 1 0.972 97.20

10 9.794 97.94 10 10.04 100.4 10 9.576 95.76
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achieving detection limits of 0.99 μM for Cd²⁺, 0.62 μM for Pb²⁺, 1.38 μM
for Cu²⁺, and 0.72 μM for Hg²⁺, with a linear range of 1 μM to 100 μM for
each ion. The potential for practical use was demonstrated using water
samples from three different lakes, which indicated satisfactory levels of
recovery percentages. The inherent complexity of electrochemical data
was effectively addressed by integrating deep learning through CNNs,
which significantly improved the interpretability of the DPV test,
yielding high accuracy in metal ion classification. The models achieved
near-perfect accuracy, precision, recall, and F1 scores, representing
robust performance with minimal false positives and negatives. The IoT
framework made the system user-friendly and accessible from any
location with internet connectivity. This whole system can eventually be
combined with a portable electrochemical measurement system to
provide on-site analysis and real-time data monitoring for users.

Methods
Materials, Chemicals, Equipment and Resources
Plastic water bottles were collected from trash bins at the BITS Pilani
Hyderabad campus (India). These collected bottles were flattened using a
sheet laminating machine (Model 304) from Lincoln, United Kingdom.
Herein, carbon threads (ELATLT2400W from a Fuel Cell Store in Texas,
USA) were used as electrodes. The construction of the 3-electrode system
was facilitated by a laser cutting and engraving machine (VLS 3.60 from
Universal Laser Systems, based in Scottsdale, AZ, USA). Ag/AgCl ink was
used to modify the reference electrode with a surface resistance of 0.2Ω/
sq/25.4 μm (supplied by ALS, Japan). The cyclic voltammetry (CV) and
DPVmeasurements for calibrating the sensor were performed utilizing a
potentiostat (OGF500 from OrigaFlex, Lyon, France). The morphology
studies were performed using a scanning electron microscope (SEM)
Microscope (Apreo, Thermo Fisher Scientific, USA), and the pH studies
were conducted using a portable pH meter (HI98129) from Hanna
Instruments, USA. The gold AAS standard solution in 0.5 N HCl was
acquired from SR Life Sciences, whereas hydrochloric acid (32%) and
potassium chloride (KCl) were procured from AVRA Synthesis Pvt. Ltd.
andHimedia, respectively. Deionized (DI) water, purified to 18.2 MΩ.cm
by Milli-Q, was used in all the experiments. All the other reagents and
chemicals were of analytical grade unless otherwise stated. Samples of
water for analysis were obtained from Kapra Lake, Shamirpet Lake, and
Hussain Sagar Lake, all of which are located nearHyderabad city, India. In
this study, Google Colab, a cloud-based platform, was used to run the

Fig. 6 | Confusion matrices indicating the performance of the model in the identification of heavy metal ions.

Table 3 | Performance metrics of the proposed model

Metal ion Accuracy score Recall Precision F-1 score

Training set Validation set

Cadmium 99% 99% 0.99 0.99 0.99

Mercury 99% 97.5% 0.99 1.00 0.99

Copper 99% 100% 1.00 1.00 1.00

Lead 99.57% 99% 0.99 1.00 0.99
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deployedmodel. IoT integrationwas achieved via Streamlit for interactive
user interfaces.

Sensor Fabrication
Thediscarded plastic bottleswere collected,meticulously cleansedwith 70%
isopropanol solution to sterilize them, eliminate any remaining substances,
and subsequently dried. The plastic bottles were then sliced and flattened
using a hot roll laminator at a temperature of 100 °C. The substrate design of
the heavy metal device was developed in Autodesk Fusion 360 software,
then translated into a .dxf file format and uploaded to the laser apparatus.
The flattened plastic sheet underwent precision cutting and laser ablation in
accordance with the details of the design. The configuration on the plastic
sheet consists of two distinct layers: an upper layer and a lower layer. The
carbon threads were initially subjected to plasma treatment for one minute
for enhanced surface reactivity30. Three carbon thread electrodes of 30mm
were strategically positioned on the lower layer, whereas the upper layer

served the purpose of secure encapsulation. Following this arrangement, the
upper and lower layers were sealed via a laminator, creating a compact well
capable of holding approximately 50 μL of sample. One plain carbon thread
was considered as a counter electrode (CE), and the second carbon thread
was modified with Ag/AgCl ink and considered as a reference electrode
(RE), followed by drying at 60°C for an hour. The well was subsequently
filled with standard gold solution to facilitate the deposition of Au nano-
particles onto the third carbon thread, namely the working electrode (WE).
The electrochemical deposition was performed using cyclic voltammetry
(CV),where the potentialwas varied from -1 to 1 Vat a scan rate of 50mV/s
for 20 cycles, and the CV graph is shown in Supplementary Fig. 1. After the
gold nanoparticles were deposited onto the carbon thread, the device was
rinsedwith deionized (DI) water to eliminate any remaining excess product
and then dried in an oven at temperatures between 40 and 50 °C for a period
of 10minutes. The entire fabrication process of the heavy metal sensor is
depicted pictorially in Fig. 8.

Fig. 7 | Integration of IoT with the developed
heavy metal sensor. aWeb interface (user login
page), b graphical representation of quantitative
results for metal ion sensing.
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Data Acquisition and Preprocessing
The data obtained from DPV analysis were used to create a dataset,
which consisted of two parameters at each data point - voltage and
current. The experiments were performed with various heavy metal
concentrations of 0 μM (HCl -KCl buffer solution), 1, 10, 20, 30, 40, 50,
60, 70, 80, 90, and 100 μM each for cadmium, lead, copper, and
mercury, respectively. The same approach was employed for two,
three, and four metal combinations, leading to an experimental set of
(12 × 15), which produced 180 DPV curve data points, with each DPV
file containing approximately 4445 data points of voltages and cur-
rents. The total dataset size reached 800100 data points. After the data
were acquired, principal component analysis (PCA) was employed for
dimensionality reduction, transforming the dataset from a two-
dimensional (2D) space to a one-dimensional (1D) space31. This
transformation preserved critical patterns that indicated the presence
of various heavy metals. Each principal component represents a linear
combination of the original variables and is ranked according to the
amount of variance it is explained within the dataset. To address the
common issue of overfitting and data imbalance in classification
models, the synthetic minority oversampling technique (SMOTE)32

was applied to each metal ion dataset before feeding it to each model.
SMOTE increases the number of input vectors for the minority class
by generating new vectors. These vectors were synthesized by con-
sidering a fixed number of nearest neighbors within theminority class.
This approach mitigated class imbalance and reduced overfitting
during the model training phase. Furthermore, the dataset was split,
with 80% allocated for training purposes and the remaining 20%
allocated for testing.

Data Modeling
The dataset was modeled using four interconnected one-dimensional
convolutional neural network (1D-CNN)models to detect and classify each
heavy metal ion. Each model shares a standard input layer, and all the
models process the same input data. The CNN employs layers of kernel
convolution, where the kernel moves across the array and modifies it

according to its values, as represented in Eq. (5)33.

G m; n½ � ¼ f � h� �
m; n½ � ¼

X

j

X

k

h½j; k�f ½m� j; n� k� ð5Þ

where G [m, n] is the output feature map, f represents the input data, and h
represents the convolution kernel. Eachmetal ionmodel consisted of two 1D
CNN layers, followed by a single artificial neural network (ANN) layer. The
overall structure of the model is clearly illustrated in Fig. 9. The output layer
features a singlenodewith a sigmoidactivation function, asdefinedbyEq. (6).

S xð Þ ¼ 1
1þ e�x

¼ ex

ex þ 1
¼ 1� S �xð Þ ð6Þ

The sigmoid function S(x) outputs probabilities between 0 and 1, with
values ≥ 0.5 indicating the presence of metal ions. This threshold was
established by analyzing the area under the curve (AUC) from the receiver
operating characteristic (ROC) curve, which helps to optimize decision-
making and minimize overconfidence during model training.

IoT integration
The trained models were serialized by pickling, preserving their state and
parameters for deployment. These serializedmodels, alongwith an intuitive
Streamlit interface, were deployed on a cloud server. The Streamlit interface
allows users to upload CSV files containing DPV data of heavy metal ions.
Once the file was uploaded, the system processed the data via cloud-hosted
deep learning models. These models analyse the uploaded DPV curve data,
perform qualitative analysis, and generate results for the quantitative
assessment of four heavy metals in a given water sample. The reports pro-
vided informationon specificheavymetals and includedvisual plots for data
interpretation. This system also features secured user authentication,
ensuring that only authorized users can access the analysis tools and results,
thereby protecting sensitive data and maintaining system integrity. This

Fig. 8 | The pictorial representation of the entire fabrication process for the heavy metal sensing device.
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cloud deployment ensures scalability and accessibility from any internet-
enabled location.

Data availability
The data supporting the findings of this study can be obtained upon request
from the corresponding author.

Code availability
The data supporting the findings of this study can be obtained upon request
from the corresponding author.
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