Table 1 Performance comparison of different lifelong local predictors for predicting total virus and specific viral genera across the aerobic treatment process

From: Viral particle prediction in wastewater treatment plants using nonlinear lifelong learning models

Model

Set

Total Virus

AdV

PMMoV

RMSE

MAE

SMAPE

RMSE

MAE

SMAPE

RMSE

MAE

SMAPE

PLS

Train

0.514

0.263

0.198

2.139

0.814

0.304

0.226

2.092

0.754

0.426

0.322

2.282

Test

0.602

0.231

0.171

1.854

0.841

0.276

0.202

1.876

0.770

0.436

0.336

1.790

Adaptation (aerobic)

0.970

0.017

0.012

0.203

0.910

0.235

0.181

0.259

0.938

0.201

0.149

0.255

XGB

Train

0.971

0.064

0.044

0.479

0.989

0.073

0.052

0.805

0.988

0.093

0.066

0.509

Test

0.726

0.191

0.132

1.422

0.864

0.255

0.187

1.765

0.851

0.351

0.252

1.123

Adaptation (aerobic)

0.629

0.065

0.050

0.613

0.659

0.470

0.358

0.624

0.673

0.551

0.408

0.613

CatBoost

Train

0.820

0.160

0.115

1.237

0.920

0.199

0.147

1.140

0.918

0.246

0.186

1.265

Test

0.723

0.192

0.136

1.464

0.855

0.347

0.261

1.368

0.853

0.347

0.261

1.125

Adaptation (aerobic)

0.719

0.057

0.042

0.523

0.741

0.412

0.313

0.572

0.732

0.505

0.362

0.563

GRU

Train

0.863

0.140

0.093

0.973

0.925

0.193

0.129

0.938

0.944

0.203

0.138

0.941

Test

0.832

0.150

0.096

1.002

0.929

0.185

0.127

0.934

0.943

0.217

0.151

1.047

Adaptation (Aerobic)

0.974

0.016

0.012

0.214

0.960

0.148

0.108

0.207

0.948

0.184

0.132

0.307

LSTM

Train

0.850

0.146

0.094

0.991

0.925

0.193

0.129

0.958

0.944

0.203

0.138

1.001

Test

0.831

0.150

0.095

1.028

0.929

0.185

0.127

0.896

0.943

0.217

0.151

0.947

Adaptation (aerobic)

0.973

0.015

0.011

0.208

0.960

0.148

0.108

0.207

0.947

0.184

0.131

0.285

  1. The best model adaptation performance results for predicting total virus and specific viral genera (i.e., AdV and PMMoV) across the aerobic treatment process, with a higher coefficient of determination R² value and a lower (RMSE, MAE, and SMAPE) value between the local predictors (PLS, XGB, CatBoost, GRU, and LSTM), are highlighted in bold.