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Survival analysis framework for sewer
failure time: evidence from Hong Kong
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Abdelazim Ibrahim1,4

Sewer systems play a crucial role in protecting public health and mitigating flood risk. This study
proposes a framework that integrates survival analysis and spatial datamanagement to predict sewer
failure time. TakingHongKong as an evidence study, comprehensive sewer data are incorporated into
the ArcGIS database. The methodology employs Kaplan–Meier analysis to determine a critical time
threshold (T0) at a 95% survival probability. Group differences are assessed using log-rank tests, and
cumulative hazard rates are estimated via Nelson–Aalen estimation. The study investigates post-T0
degradation patterns in physical, functional, and environmental factors. Based on cumulative hazard
rates after T0, a tertile-based classification system defines two boundaries (T1 and T2). This system
categorizes pipelines into four risk levels, enabling decision-makers to select an appropriate failure
time. The results are visualized throughGISmapping and supported by an iterative forecasting system
that optimizes maintenance strategies through operational feedback.

Sewage and stormwater drainage networks play a critical role in safe-
guarding public health, preserving environmental quality, and sustaining
the resilience of modern cities1–3. These vital systems demand substantial
public investments, with replacement costs often reaching billions of dollars
even in medium-sized cities4. As these networks aging, pipeline failures
occurmore frequently5–7, and can result in increasingly severe consequences
on surrounding infrastructure8–11.

Traditionally, utility companies primarily relied on closed-circuit tel-
evision (CCTV) inspections to passively identify visible defects, such as
cracks, corrosion, and deposits, in drainage pipelines9,11–13. Although valu-
able, CCTV-based assessments are often prohibitively expensive, limiting
inspection frequency and reducing overall coverage14. Consequently, many
pipelines classified as lower priority remain insufficiently examined,
allowing potential issues to develop unnoticed until severe deterioration or
outright failure occurs5,14,15.

To address these limitations, predictive maintenance approaches have
emerged as promising solutions for forecasting sewer failures before they
occur. In this field, researchers have developed three primary categories of
predictive models, namely physical models, statistical models, and artificial
intelligence (AI) models, each designed to anticipate potential failures.
Physical models rely on the principles of mechanics and corrosion to
simulate the degradation of components under both environmental and
operational stresses. For example, Teplỳ, Yoon16,17, and Shadabfar18

employed corrosion theory, whereas Davis and Frank19,20 utilized Linear
Elastic FractureMechanics, and Zamanian21 appliedNonlinear Continuum
Mechanics to predict failure. Statistical models leverage historical failure
data to estimate future failures using various methods. For example, Ebra-
himi and Teplỳ16,22 and Jiang and Li23,24 have used techniques such as
eXplainable Inference Models (XIM) and multiple linear regression, while
other studies, including those byAltarabsheh25 andGhavami26, have applied
methods like Markov chain models and Bayesian networks for failure
prediction. AI and machine learning techniques provide another data-
driven solution for sewer failure prediction. Artificial Neural Networks
(ANN) have demonstrated exceptional capability in handling multi-
dimensional input data, as shown in the works of Khan and Sousa11,27, while
Support Vector Machines (SVM) have proven effective in addressing
nonlinear prediction problems11,28. Advances in ensemble learningmethods
have yielded significant improvements in prediction accuracy, with studies
by Fontecha and Santos8,29 implementing Random Forest, XGBoost, and
CART algorithms. Additionally, rule-based systems, including fuzzy logic24,
expert systems30,31, and rule-based simulation32,33 have shown effectiveness
in incorporating expert knowledge andhandlinguncertainty analysis. These
physical, statistical, and AI models typically integrate various factors,
including pipe age, material properties, environmental conditions, and
operational stresses, to deliver comprehensive failure predictions11,12.
Despite recent advances in modeling techniques, multi-factor approaches
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often encounter significant challenges due to the extensive volume and
stringent quality requirements of data. By contrast, concentrating on a
single, high-impact factor offers several advantages. First, it streamlines
implementation in environments constrained by limited data type resour-
ces. Second, it isolates the independent influence of that factor on system
deterioration, thereby providing direct guidance for risk-based decision-
making. Consequently, this analytical perspective not only provides a
pragmatic tool for identifying critical thresholds but also lays a solid foun-
dation for implementing timely intervention strategies.

Buildingon this rationale, thepresent study introduces a factor-specific
survival analysis framework designed to systematically isolate and quantify
the time-dependent effect of a keydeterminant onpipelinedeterioration.To
achieve this, the framework utilizes the Kaplan–Meier estimator and the
Nelson–Aalen technique, methods originally developed for predicting
patient survival in medical research34–36. These nonparametric methods
offer distinct advantages over machine learning and hydraulic-based
approaches. Specifically, they require only survival age and categorical
attributes, making them suitable for data type resource-constrained utilities;
they rely on straightforward mathematical computations instead of com-
plex, iterative algorithms; and they yield clear visual outputs that facilitate
immediate insights and prompt, actionable maintenance decisions while
maintaining robust predictive capability. Having been proven effective
across various domains, including infrastructure reliability assessment37,38,
this framework equipsutilitieswith apractical tool toprioritizemaintenance
through focused analysis of critical indicators such as pipe material, dia-
meter, or age, ultimately supporting efficient system management despite
data type resource constraints.

To demonstrate its real-world applicability, this study usesHongKong
as a case example. Hong Kong’s densely built environment and extensive

sewer infrastructure underscore both the complexity of pipeline deteriora-
tion and the practical need for efficient maintenance planning39,40. By
integrating survival analysis with local pipeline data, this research illustrates
how a focus on a single key factor can support proactive and streamlined
management.

Results
The results of this study are presented in three main sections. The first
section provides comprehensive statistical indicators derived from survival
analysis, serving as quantitative references for industrypractitioners. Section
two discusses the process of determining the pipeline failure boundary time
by integrating key statistical indicators with specific operational contexts.
Section three summarizes the key indicators and maintenance strategies.

Physical factor-based analysis
Pipeline length classification utilizes a trisection method to divide
pipelines into long, medium, and short spans. The Log-Rank test
detected significant differences in survival patterns among these groups,
with a p-value smaller than 0.01. Specifically, long-span pipelines
reached a critical point at 42 years, medium-span at 47 years, and short-
span at 49 years, all with similar initial hazard rates of approximately
0.052 (Table 1). Beyond these critical points, risk progression patterns
diverged considerably. Long-span pipelines exhibited the most pro-
nounced risk escalation, with hazard rates increasing from 0.1578 to
0.3156 between 60 and 70 years, ultimately reaching 0.5401. This
accelerated deterioration likely results from factors such as greater
deflection, stress concentration, and multiple joint-related risks.
Medium-span pipelines showed moderate progression, with a final
hazard rate of 0.3640, whereas short-span pipelines demonstrated the

Table 1 | Survival probability and cumulative hazard rate of physical factors

Types Survival Probability Cumulative Hazard Rate

Length

Material

Diameter
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slowest risk accumulation (final hazard rate: 0.3226), which may be
attributed to their enhanced structural stability.

Material analysis comparing vitrified clay and concrete pipelines
revealed significant differences between them, as determined by the Log-
Rank test (p < 0.01). Concrete pipelines reached their critical point at 45
years (survival probability 0.9498, hazard rate 0.0515), while vitrified clay
pipelines lasted slightly longer to 47 years (0.9498, 0.0516) (Table 1). Both
materials showed similar final cumulative hazard rates (concrete: 0.3970,
clay: 0.4053). However, their risk patterns differed throughout service life.
Concrete pipelines showed consistently higher hazard rates, possibly due to
acid-base corrosion, cracking, and carbonation. Vitrified clay, despite better
initial durability from corrosion resistance, may have experienced faster
deterioration later, likely attributed to brittleness and joint seal failures.

The Log-Rank test (p < 0.01) performed in the diameter analysis
demonstrated significant differences among the three categories. Small-
diameter pipelines reached their critical point earliest at 46 years (survival
probability 0.9498, hazard rate 0.0515), followed bymedium-diameter at 46
years (0.9473, 0.0541) and large-diameter at 48 years (0.9474, 0.0540)
(Table 1). While initial hazard rates were comparable, long-term risk pat-
terns differed significantly. Small-diameter pipelines showed the steepest
risk increase, with hazard rates rising from 0.1475 to 0.3256 between years
60 and 70, ultimately reaching 0.4386. This accelerated deterioration reflects
their vulnerability to sediment blockages and structural deformation due to
smaller cross-sections and thinner walls. Medium-diameter pipelines dis-
played moderate risk progression (final hazard rate 0.3805), while large-
diameter pipelines showed the slowest deterioration (final hazard rate
0.3511) due to superior flow characteristics and structural stability.

A comprehensive maintenance strategy emerges from analyzing
physical pipeline factors. Long-span pipelines need intensive preventive
maintenancebetweenyears 60 and70with replacement considerations after
70 years, while medium spans require moderate maintenance focused on
high-stress areas, and short spans allow extended intervals. Concrete
pipelines demand intensive preventive care from their first alert year,
whereas vitrified clay types need regular early inspections with increased
later-stage frequency. Small-diameter pipelines require frequent main-
tenance, medium diameters need moderate intervals, and large diameters
can have longer inspection gaps with regular structural checks.

Function factor-based analysis
The Log-Rank test revealed significant differences between foul sewer and
stormwater systems (p < 0.01). Stormwater systems reached their critical
point at 45 years, while foul sewer systems reached theirs at 47 years, with
comparable initial survival probabilities (0.9494 for foul sewer, 0.9499 for
stormwater) and hazard rates (0.0520 and 0.0514, respectively) (Table 2).
The systems’ risk progression patterns differed markedly thereafter.
Stormwater pipelines showed accelerated deterioration, with hazard rates
rising sharply from 0.1525 to 0.4163 after year 60, due to variable loading
conditions, seasonal flow changes, and debris accumulation. In contrast,

foul sewer pipelines maintained more stable risk levels, benefiting from
regular daily flow patterns despite carrying complex wastewater.

Based on these risk progression patterns, a targeted maintenance
strategy is proposed. For stormwater pipes, it is recommended to increase
inspection frequency after the age of 60. For foul sewer pipes, while a
relatively stable maintenance cycle can be maintained, continuous mon-
itoring of wastewater composition and flow patterns remains necessary.

Environment factors-based analysis
Based on Table 3, each land use category exhibits distinct hazard patterns:
Greenopen space pipelines show three phases - slow growth fromages 46 to
61 (cumulative hazard 0.0531 to 0.1155), steady growth from 61 to 76
(reaching 0.2333), and rapid acceleration after age 76 (exceeding 0.4628).
Residential pipelines demonstrate a gradual risk increase from 0.0548 at age
47 to 0.3753 at age 80. Commercial pipelines display the most stable pro-
gression, uniformly increasing from 0.0539 at age 48 to 0.4164 by age 80.
Industrial pipelines show a unique pattern: increasing by 0.1142 over 20
years from age 41, accelerating sharply between ages 60 and 70 to 0.3612,
and reaching 0.5390 after age 75. This pattern correlates with harsh
industrial conditions, including corrosive wastewater and fluctuating
ground loads. To statistically verify the differences among land use cate-
gories, the Log-Rank test was conducted. The results (Table 4) confirmed
that industrial areas differed significantly from other land use categories
(p < 0.01), while no significant differences were found among commercial
areas, green open spaces, and residential areas (p > 0.01). These findings
suggest differentiated maintenance strategies: intensive monitoring of cor-
rosion and external loads in industrial areas from age 60 with replacement,
when necessary, regular periodic inspections in residential and commercial
areas, and increasedmonitoring frequency in greenopen spaces after age 76.

The study analyzed pipeline survival characteristics across low, med-
ium, and high humidity levels. Statistical analysis revealed significant dif-
ferences between medium humidity and other conditions (p < 0.01), while
low and high humidity environments showed no significant variations
(p = 0.26) (Table 5). Using 95% survival probability as a critical threshold,
high humidity environments reached this point first at age 43, followed by
low (age 45) and medium humidity (age 48). According to Table 3, risk
dynamics monitoring showed distinct patterns: high humidity environ-
ments exhibited accelerated risk between ages 60 and 70, while medium
humidity environments showed gradual growth from ages 48 to 60, fol-
lowed bymarked acceleration beyond age 60. Low-humidity environments
displayed rapid early-stage risk increases before stabilizing around age 63.
Medium-humidity environments demonstrated unique characteristics with
low-risk accumulation until age 60, followed by sharp increases. This pat-
tern likely results from combined moderate humidity erosion and wet-dry
cycling effects. Based on these findings, targeted maintenance strategies are
recommended: intensive monitoring around age 60 for medium humidity
environments, consistent maintenance for high humidity pipelines, and
regular standardized inspections for low-humidity systems.

Table 2 | Survival probability and cumulative hazard rate of the function factor

Types Survival Probability Cumulative Hazard Rate

Function
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The study analyzed pipeline survival characteristics across four dis-
tricts: New Territories, Kowloon, Hong Kong Island, and the Islands. Sta-
tistical analysis revealed significant differences between all district pairs
(p < 0.01) except between Hong Kong Island and Islands (p = 0.82)

(Table 6). The survival analysis showed distinct patterns among districts.
New Territories reached the warning level earliest at age 42, experiencing a
steady increase until age 63before stabilizing at 0.1777.Kowloonentered the
warning period at age 47, showing moderate growth until age 59, then

Table 3 | Survival probability and cumulative hazard rate of environmental factors

Types Survival Probability Cumulative Hazard Rate

Land Use

Humidity

District

Temperature

Traffic 

  

Rainfall 
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sharply rising to 0.4047. Islands reached the warning level at age 49,
maintaining slow growth until age 68, after which the risk stabilized at
0.2248. Hong Kong Island, despite entering the warning period at age 49,
displayed the most dramatic increase after age 76, reaching the highest risk
level of 0.4133 (Table 3). Basedon these patterns, the followingmaintenance
strategies are proposed: (1) New Territories: routine maintenance between
ages 42 and 63, followed by enhanced preventive measures; (2) Kowloon:
moderatemaintenance ages 47–59,with intensified interventions thereafter;
(3) Islands: standard maintenance before age 68, with continued regular
monitoring thereafter as risk stabilizes; (4) Hong Kong Island: moderate
interventions before age 76, followed by intensivemaintenance and renewal
plans after age 76.

The study analyzed pipeline survival characteristics across three tem-
perature categories: high, medium, and low. Statistical analysis revealed
significant differences between high-temperature environments and others
(p < 0.01), while low and medium-temperature environments showed no
significant differences (p = 0.79) (Table 7).Using 95%survival probability as
the warning threshold, low-temperature pipelines reached this level first (43
years), followed by medium-temperature (46 years) and high-temperature
pipelines (49 years). Risk progression analysis (Table 3) showed distinct
patterns: Low-temperature pipelines experienced gradual risk increase
(0.0514–0.1466) between 43 and 61 years, followed by accelerated dete-
rioration to 0.4177. Medium-temperature pipelines demonstrated the most
stable progression, reaching 0.3606.High-temperature pipelines, despite the
latest breach of 49 years, showed superior reliability to 75 years, likely due to
stricter design standards. However, after 75 years, their failure probability
exceeded others, suggesting accelerated aging from prolonged heat expo-
sure. Based on these patterns, the following maintenance strategy is pro-
posed: (1) High-temperature pipelines: Begin prevention at 49 years,
focusing on material degradation, with accelerated replacement after 75
years; (2) Medium-temperature pipelines: Implement regular maintenance
from 46 years; (3) Low-temperature pipelines: Institute intensive mon-
itoring from 61 years with consistent lifecycle maintenance.

The study analyzed pipeline survival across four traffic categories:
none, light, moderate, and heavy. Statistical analysis showed significant

differences between heavy traffic versus light/moderate conditions
(p < 0.01), and between no-traffic versus light/moderate conditions
(p = 0.01) (Table 8). Pipelines enter critical monitoring when the survival
probability drops below 95%. Tracking data revealed distinct warning
threshold patterns: heavy traffic pipelines reached warning levels first at age
44 (survival probability 0.9472), followed by no traffic (age 46, 0.9500), light
traffic (age 47, 0.9484), and medium traffic (age 48, 0.9475). Heavy traffic
pipelines showed the highest final cumulative risk (0.7812), while others
maintained moderate levels (0.3393–0.3975). Risk analysis revealed accel-
erated deterioration in heavy traffic pipelines, with risks increasing from
0.0542 to 0.1365 between ages 44 and 60, then rapidly doubling. This
acceleration stems from increased vertical pressure and fatigue effects,
leading to accelerated structural damage and crack propagation. No traffic
and moderate traffic pipelines showed similar risk patterns, with final risks
of 0.3975 and 0.3393, respectively - statistically different but practically
comparable (Table 3). Based on these findings, maintenance recommen-
dations are: (1)Heavy traffic pipelines: Begin preventivemaintenance at age
44,with intensivemonitoring through age 60.Consider replacing it after age
60. (2) Light/moderate traffic pipelines: Start inspections at ages 47–48,
focusing on stress points. Longermaintenance intervals are acceptable given
lower risks. (3) No-traffic pipelines: Implement regular maintenance from
year 46, despite higher cumulative risk (0.3975).

The study analyzed pipeline survival characteristics across three rain-
fall categories: high, medium, and low rainfall regions. Statistical analysis
revealed significant differences between all rainfall regions (p < 0.01).
Medium rainfall regions reached the critical point earliest (0.9476 at age 44),
followed by low rainfall regions (0.9485 at age 46), and high rainfall regions
(0.9488 at age 48). Initial cumulative risks at warning thresholds were
comparable across regions (Table 3): high rainfall at 0.0525 (age 48),
medium at 0.0538 (age 44), and low at 0.0529 (age 46). Risk patterns
remained similar until age 64, then diverged significantly. High rainfall
regions showed the most dramatic increase, from 0.1972 to 0.4186 between
ages 65 and 77, due to increased flow impacts and accelerated corrosion

Table 4 | Log-Rank test among commercial, green area, and open spaces, industrial, and residential

Log-Rank test Commercial Green area and open spaces Industrial Residential

Commercial – – – –

Green area and open spaces 0.53 – – –

Industrial <0.01 <0.01 – –

Residential 0.45 0.23 <0.01 –

Table 6 | Log-Rank test among Hong Kong Island, the Islands,
Kowloon, and New Territories

Log-Rank test Hong Kong
Island

Islands Kowloon New Territories

Hong Kong Island – – – –

Islands 0.82 – – –

Kowloon <0.01 0.01 – –

New Territories <0.01 <0.01 <0.01 –

Table 8 | Log-Rank test among no traffic, light traffic,
moderate traffic, and heavy traffic

Log-Rank test No traffic Light
traffic

Moderate
traffic

Heavy
traffic

No traffic – – – –

Light traffic 0.01 – – –

Moderate traffic 0.01 0.91 – –

Heavy traffic 0.20 <0.01 <0.01 –

Table 5 | Log-Rank test among low, mid, and high humidity

Log-Rank test Low humidity Mid humidity High humidity

Low humidity – – –

Mid humidity <0.01 – –

High humidity 0.26 <0.01 –

Table 7 | Log-Rank test among low temperature, mid
temperature, and high temperature

Log-Rank test Low
temperature

Mid
temperature

High
temperature

Low temperature – – –

Mid temperature 0.79 – –

High temperature <0.01 <0.01 –
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from constantmoisture exposure. Low rainfall regionsmaintained themost
stable progression (final risk 0.2225), while medium rainfall areas showed a
moderate increase (final risk 0.3735). Recommendations: Implement
intensive preventive maintenance after 65 years in high rainfall regions,
focusing on corrosion protection with replacement consideration when
necessary. Medium-rainfall regions require moderate maintenance with
regular inspections, while low-rainfall areas can extend maintenance cycles
with optimized inspection frequencies.

Pipeline performance was evaluated across six geological settings:
graphite-bearing strata, backfilled areas, tuff and lava zones, grano-
diorite zones, surface sediment zones, and granite zones. Statistical
analysis revealed significant differences between multiple geological
conditions (p < 0.01 to p = 0.03) (Table 9). Data analysis reveals distinct
patterns across geological settings, with critical points reached at dif-
ferent ages: graphite-containing formations (age 33, risk:
0.0517–0.0678), filled areas (age 42, risk: 0.0537–0.4005), tuff and lava
regions (age 44, risk: 0.0553–0.4010), granodiorite areas (age 45, risk:
0.0590–0.1643), superficial deposits (age 47, risk: 0.0517–0.4448), and
granitic rocks regions (age 49, risk: 0.0522–0.3922). Risk evolution
patterns vary significantly under different foundation conditions. Fil-
led areas consistently show higher risks than granite foundations due to
compaction and settlement issues. Granite and tuff/lava foundations
exhibit similar trends until age 65, after which granite shows higher
risks due to stress concentration. Granodiorite areas stabilize after age
65, while granite areas continue deteriorating due to brittleness and
stress sensitivity. Before the age of 70, filled areas maintain higher risks
than tuff and lava areas. Post-70, tuff and lava areas experience sudden
risk increases due to strength degradation and accelerated weathering.
Surface sediment areas show late-stage risk surges (ages 70–75), while
backfilled regions deteriorate earlier (Table 3). Based on these patterns,
the maintenance framework prioritizes (1) Superficial Deposits:
Monitor from age 47; implement stabilization before 72–75 years (2)
Filled areas: Preventivemaintenance from age 42; intensive care during
50–70 years (3) Tuff/lava regions: Monitor from age 44; focus on sta-
bilization during 55–70 years (4) Granitic regions: Start monitoring at
age 49; emphasize stress management post-65 years (5) Granodiorite
areas: Monitor from age 45; intensive inspection 45–58 years (6)
Graphite formations: Basic monitoring from age 33; minimal inter-
vention needed.

Failure boundary time definition and risk-based spatiotemporal
analysis
The failure boundary time determination approach uses a tertile-based
classification systemdeveloped specifically for pipelines that have surpassed
their critical thresholds. In this framework, T0 is defined as the time point at
which pipelines exhibit a 95% survival probability. Beyond T0, the cumu-
lative risk level is divided into three segments using tertile boundaries. T1

marks the first tertile boundary, and T2 marks the second. Based on these
thresholds, pipelines are categorized into four distinct risk levels. The Safe
Level (Green) group includes pipelines operating before T0 with a high
survival probability. The Low Risk group (Yellow) comprises pipelines

falling between T0 and T1. The Medium Risk group (Orange) consists of
pipelines between T1 and T2. The High Risk group (Red) encompasses
pipelines beyond T2.

In practice, the selection of failure boundary time should align with
risk acceptance levels and be supported by statistical indicators that
serve as quantitative benchmarks. Different strategies can be adopted
based on organizational needs and risk tolerance: A conservative
approach may adopt T0 as the failure boundary time, restricting
operations to pipelines within the Safe Level zone; a balanced strategy
might select T1, allowing operations within the low-risk zone; while an
aggressive strategy could opt for T2, permitting continued operation
into theMedium Risk zone. Pipelines falling into the high-risk category
warrant immediate monitoring, further assessment, and potential
replacement. This flexible framework, combining statistical evidence
with specific operational contexts and expert knowledge, enables
practitioners to define appropriate failure criteria and modify risk
classifications as specific requirements demand.

A GIS map (Fig. 1) visually illustrates the spatial distribution of these
risk categories for the long-span pipeline factor across Hong Kong. The
green-bordered panel in the upper right displays the overall distribution of
pipelines with enlarged sections indicated by colored boxes. The red-
borderedpanel provides a detailed view ofHongKong Island andKowloon,
where Medium Risk and High Risk pipelines can be seen congregating in
central Kowloon and the urban areas of northern Hong Kong Island. The
black-bordered panel in the upper left focuses on the Tai Po district, pre-
dominantly showing pipelines in the Safe Level category. The blue-bordered
panel in the lower left highlights the northwestern New Territories, where
Safe Level pipelines prevail with occasional Low Risk segments. A purple-
bordered detail of central Hong Kong clearly shows all four risk levels
represented by red, orange, yellow, and green. This visualization enables
management personnel to identify clusters of varying risk levels and tomake
informed decisions regarding resource allocation.

Integrating statistical analysis with spatial visualization yields a robust
decision support framework for infrastructure management. By identifying
geographic clusters of high-risk pipelines with GIS mapping, resources can
be directedmore efficiently toward areas needing urgent intervention while
standard maintenance protocols apply to lower-risk areas. This combined
approach promotes a proactive and strategic pipeline management system
that optimizes resource allocation and enhances public safety.

Summary of key indicators and maintenance strategies
Based on the single-factor survival analyses of physical, functional, and
environmental factors, critical thresholds, cumulative hazard rate evolution
patterns, and corresponding maintenance priorities and recommendations
have been identified for each subfactor. These core findings have been
condensed into Tables 10–12 to facilitate quick reference and comparison
by industry practitioners.

Table 10: Summarizes key risk indicators and maintenance strategies
for physical characteristics (length, material, diameter), facilitating quick
identification of pipelines requiring priority attention during routine
inspections and major maintenance planning.

Table 9 | Log-Rank test among granitic rocks, fill, granodiorite, tuff and lava, superficial deposits, and graphitic siltstone,
sandstone, and marble

Log-Rank test Granitic rocks Fill Granodiorite Tuff
and lava

Superficial deposits Graphitic siltstone, sandstone and
marble

Granitic rocks – – – – – –

Fill <0.01 – – – – –

Granodiorite 0.02 0.27 – – – –

Tuff and lava 0.03 <0.01 0.94 – – –

Superficial deposits 0.44 <0.01 0.13 0.11 – –

Graphitic siltstone, sandstone, and
marble

0.27 0.90 0.22 0.37 0.25 –
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Table 11: Focuses on functional group performance differences
(stormwater vs. foul sewer), listing warning thresholds, acceleration phases,
and targeted inspection frequency recommendations for each pipeline type.

Table 12: Covers multiple environmental factors, including land use,
climate, traffic load, and soil conditions, concisely presenting “recom-
mended monitoring initiation ages,” “critical protection periods,” and key
concerns.

These tables effectively translate the extensive survival analysis statis-
tical results (e.g., Kaplan–Meier survival curves, Nelson–Aalen cumulative
hazard rates, Log-rank tests) into practical maintenance decision-making
guidelines. Based on these guidelines, when critical thresholds are reached,
in addition to intensifying themonitoring phase, the replacement of part or
all of the infrastructure in the ‘district’ under consideration can be carried
out. This replacement must be planned in appropriate maintenance tools,
supported by appropriate economic and financial considerations.

Important considerations for table interpretation include referencing
detailed results from the corresponding analysis for comprehensive curve
interpretations and group differences, as well as adapting the

recommendations to local conditions since they are based primarily on the
Hong Kong case study. The “warning thresholds” and “risk characteristics”
should be adjusted according to specific pipeline characteristics, climate
conditions, and available resources in different regions.

Discussion
The present study examines the impact of individual factors on failure
patterns by employing a framework that integrates group comparison tests
with uncertainty quantification. Log-rank tests serve as the cornerstone of
this framework, rigorously assessing differences between groups and
revealing highly significant variations (p < 0.05) across factor categories.
These differences confirm that the grouping criteria successfully capture
meaningful distinctions in failure behavior, as demonstrated by the unique
survival patterns observed in various traffic loading categories and pipe
materials. Confidence intervals derived fromKaplan–Meier survival curves
andNelson–Aalen cumulativehazard functions further validate thefindings
by quantifying the uncertainty in the estimates. These intervals not only
demonstrate the stability of the estimates under sample variation but also

Fig. 1 | Spatial distribution of long-span pipeline risk assessment in Hong Kong.
The figure presents a multi-panel map showing the risk assessment of long-span
pipeline networks in Hong Kong. The central panel (red border) displays the main
overview of Hong Kong Island, Kowloon, and surrounding areas, with pipeline
segments color-coded according to risk levels: high-risk (red), medium-risk
(orange), low-risk (yellow), and safe-level (green). Two detailed inset maps are

shown in black and blue borders, focusing on specific districts with dense pipeline
networks. The top-right corner includes a smaller overview map (green border)
showing the geographical context of the study area, and a legend indicating the risk
level classification. Anorth arrow is provided for orientation. The purple boxes in the
main map highlight urban areas with detailed views.
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underscore the reliability of the predictions, offering practitioners clear
insights into the precision of failure forecasts. Although the single-factor
framework does not permit direct comparisons of relative importance
among different factors, the observed variations offer valuable guidance for
maintenance planning.

Building upon these statistical validations, the study conducted com-
prehensive analyses across all groups, with primary focus placed on those
showing significant differences (log-rank < 0.05) for detailed maintenance
strategy development. For groups exhibiting non-significant differences
(log-rank > 0.05), although basic analyses were performed, opportunities
exist for enhancing their management strategies. First, the current classifi-
cation system could be refined bymerging categories with similar statistical
characteristics, potentially leading to a more efficient management struc-
ture. Second, the resource allocation could be optimized based on this
refinedclassification, allowing formore focuseddistributionofmaintenance
resources to high-risk areas while maintaining appropriate monitoring
levels for merged categories. Third, the monitoring strategies could be
streamlined while ensuring system safety through simplified yet effective
inspection procedures. This approach provides a scientific foundation for
future management refinements while maintaining practical feasibility.

The framework’s effectiveness was validated using Hong Kong’s
extensive sewer pipe data. The framework is also suitable for cities with
limited data type availability. Its core statisticalmethods (the nonparametric
Kaplan–Meier method and Nelson–Aalen estimator) exhibit an inherent
advantage when working with limited types of data. By focusing on single-
factor effects instead of complex multi-factor interactions, the framework
only requires keydata types for decision-making rather than comprehensive
data categories. This characteristicmakes it valuable for drainage authorities
in rural districts or areas far from densely populated centers, where data
collection capabilitiesmay be limited. In these regions, authorities only need

to collect single-factor data types essential for decision-making, significantly
reducing the data collection burden.

The framework also demonstrates strong transferability, as its meth-
odological structure can be readily adapted by simply substituting local data
into the established analytical framework. This transferability stems from its
fundamental statistical design and adaptive mechanisms. The framework
employs widely established statistical methods that do not depend on
region-specific assumptions. Risk boundary calculations employ relative
metrics insteadof absolute values, allowing for automatic calibration to local
conditions without extensive modifications. Moreover, the integration of
GIS capabilities guarantees spatial analysis functionality independent of
geographic context, and the risk classification system’s relative thresholds
automatically adapt to local conditions.

While demonstrating these advantages, the framework exhibits certain
limitations in infrastructure risk assessment. Its factor-specific analytical
approach enables systematic evaluation of individual variables. However,
this method fails to capture crucial interactions among multiple factors,
such as material properties, environmental conditions, and usage patterns
that collectively influence failure mechanisms. While the simplified meth-
odology reduces data requirements and computational complexity, it
sacrifices accuracy in capturing real-world interaction effects. Additionally,
because the framework primarily relies on time-dependent deterioration
patterns and historical data, it struggles to predict sudden infrastructure
failures triggered by exceptional events such as natural disasters or severe
weather conditions. These limitations become particularly pronounced in
dynamic operating environments. In dynamic environments where infra-
structure usage patterns evolve rapidly or where new technologies and
materials alter traditional deterioration trends, predictive outcomes fre-
quently lag behind actual risk conditions. Although the framework incor-
porates a self-updating mechanism, updates inevitably lag behind real-time

Table 11 | Functional characteristics and risk assessment indicators: a statistical reference for industrial maintenance

Categories Subcategories Types Risk characteristics Maintenance strategies

Functional factors Stormwater Earlier warning threshold at 45 years
Significant increase after 60 years

Conduct basic monitoring until age 60
Increased inspection frequency after age 60

Foul sewer Warning threshold reached at 47 years
More moderate risk progression

Maintain stable maintenance cycles

Table 10 | Physical characteristics and risk assessment indicators: a statistical reference for industrial maintenance

Categories Subcategories Types Risk characteristics Maintenance strategies

Physical factors Length Long-span Earliest warning threshold at 42 years
Sharp increase in risk between 60 and 70 years
Most pronounced risk escalation

Intensive preventive maintenance 60–70 years
Regular structural assessments
Replacement considerations after 70 years

Medium-span Warning threshold reached at 47 years
Moderate risk progression

Schedule preventive maintenance at moderate
frequency
Perform regular monitoring

Short-span Latest warning threshold at 49 years
Slowest risk accumulation

Extended maintenance intervals
Carry out basic structural monitoring
Conduct regular inspections of joints

Material Concrete Warning threshold at 45 years
Consistently high cumulative hazard rate
throughout service life

Carry out intensive preventive maintenance throughout
the entire lifecycle

Vitrified clay Warning threshold at 46 years
Initial stability, accelerated risk accumulation in
later stages

Schedule regular early-stage inspections
Increase inspection frequency in later stages
Focus on joint seal integrity

Diameter Small-diameter Earliest warning threshold at 45 years
Sharp increase in risk between 60 and 70 years
Most pronounced risk escalation

Require more frequent maintenance
Emphasize cleaning and ensuring structural integrity

Medium-
diameter

Warning threshold at 47 years
Moderate risk progression

Maintain moderate maintenance intervals
Perform regular monitoring

Large-diameter Latest warning threshold at 49 years
Slowest risk accumulation

Extended inspection intervals
Conduct regular structural assessments
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Table 12 | Environmental characteristics and risk assessment indicators: a statistical reference for industrial maintenance

Categories Subcategories Types Risk characteristics Maintenance strategies

Environmental factors Land use Industrial areas Earliest warning threshold at 41 years
Rapid risk increase over the next 20 years
Accelerated risk for 60–70 years

Prioritize monitoring from age 41
Enhance inspections during the acceleration phase
Age 60 with replacement, when necessary

Commercial areas Warning threshold at age 46
Slow growth 46–61 years
Steady growth 61–76 years

Conduct regular monitoring until age 76
Significantly increase inspection frequency after age 76

Residential areas Warning threshold at age 47
Steady growth by age 65
Slightly accelerated growth after 65

Schedule regular periodic inspections after the warning level
Moderately increase monitoring after age 65

Green open spaces Warning threshold at age 48
Most stable risk pattern
Uniform growth rate between ages 48
and 70

Regular periodic inspection after the warning level
Consistent maintenance intervals due to stable progression

Humidity High humidity Earliest critical threshold at age 43
Accelerated risk between 60 and 70 years
Moderate progression pattern

Provide consistent maintenance throughout the service life
Pay particular attention after age 60

Medium humidity Critical threshold at 48 years
Gradual growth 48–60 years
Sharp acceleration after 60 years

Intensively monitor and prevent around age 60
Enhance measures during the risk acceleration phase

Low humidity Critical threshold at 45 years
Rapid in early stages before stabilizing
around age 63
Maintains a relatively low final risk level

Establish regular inspection schedules
After stabilization, maintain standardized maintenance
intervals

District New Territories Earliest warning level at 42 years
Steady risk increase until age 63
Lowest final risk among all regions

Conduct routine maintenance between the ages 42 and 63
Implement enhanced preventive measures after age 63

Kowloon Warning level at 47 years
Moderate risk growth until age 59
Sharp upward trend after age 59

Performmoderatemaintenance between the ages 47 and 59
Significantly enhance interventions after age 59
Intensify maintenance after age 60

Hong Kong Island Warning level at 48 years
Steady, slow growth until age 68
Significant turning point at 68

Standard maintenance before age 68
Reinforced measures after age 68
Renewal plans after age 76

Island Latest warning period at 49 years
Best early survival characteristics
Most dramatic risk increase after age 59

Apply moderate interventions before age 59
Intensify maintenance after age 60
Develop comprehensive renewal plans for the highest risk
period

Temperature High temperature Latest warning threshold at 49 years
Better reliability until age 75
Rapid deterioration after age 75

Enhance preventive maintenance from age 49
Prioritize replacement planning after age 75
Replacement after 75 years

Medium
temperature

Warning threshold at 46 years
Most stable risk progression

Schedule regular maintenance intervals from age 46
Consistent monitoring throughout the lifecycle

Low temperature Earliest warning threshold at 43 years
Gradual risk increase between ages 43
and 61
Rapid risk ascent after age 61

Initiate intensive early-stage monitoring from age 43
Sustain attention throughout the lifecycle
Enhance monitoring during the acceleration phase

Traffic load Heavy traffic Earliest warning threshold in 44 years
Risk increases between the ages 44 and
60
Significant risk acceleration after age 60

Commence rigorous monitoring from age 44
Prioritize for replacement after age 60

Moderate traffic Warning threshold at 48 years
Most stable risk growth pattern

Scheduled inspections from age 48
Longer maintenance intervals permitted

Light traffic Warning threshold at 47 years
Stable late-stage risk growth

Scheduled inspections from age 47
Longer maintenance intervals permitted

No traffic Warning threshold at 46 years
Moderate risk growth

Regular maintenance from age 46
Standard inspection protocols
Moderate maintenance frequency

Rainfall High rainfall Latest warning threshold at 48 years
Risk remains stable until age 64
Sharp increase between ages 65 and 79

Maintain standard maintenance until age 64
Implement intensive preventive maintenance after age 65
with replacement consideration when necessary

Medium rainfall Earliest warning threshold in 44 years
Risk remains stable until age 64
Moderate, steady increase thereafter

Conduct moderate preventive maintenance
Schedule regular inspection intervals

Low rainfall Warning threshold at 46 years
Risk remains stable until age 64
Most gradual risk progression thereafter

Extend preventive maintenance cycles
Optimize inspection frequencies
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system changes and emerging risk developments. To address these limita-
tions, future research should focus on enhancing the framework’s real-time
monitoring and predictive capabilities. Integration with SCADA (Super-
visory Control and Data Acquisition) systems could enable continuous
monitoring and dynamicmaintenance planning41,42, while incorporation of
Building Information Modeling (BIM) tools could improve data visualiza-
tion and decision support capabilities43. Such technological integration
could help bridge the gap between predicted and actual risk conditions.
Given these significant limitations, the framework should not be used as a
standalone risk assessment tool. Instead, it should be integrated with other
evaluation methods that can compensate for its weaknesses in capturing
factor interactions, sudden failures, and emerging risks. Future researchmay
extend thismethodology by incorporatingmulti-factormodels, such asCox
proportional hazards regressionor othermultivariate techniques, to provide
further insights into the relative influence of these factors. In summary,
while the framework effectively captures the relationship between variations
in individual factors and failure patterns, its application should be com-
plemented with other assessment methods to provide a comprehensive risk
evaluation.

Methods
This section presents the overarching research methodology employed in
this study, including the survival analysis techniques (Kaplan–Meier,
Nelson–Aalen) and the dynamic failure analysis framework for sewer
pipelines. The details regarding data acquisition, preprocessing, and data-
base management are subsequently introduced in the “Data sources and
requirements”, “Data cleaning and interoperability”, “Data integration and
management”, and “Database construction” sections.

Survival analysis
Survival analysis is a specialized statistical approach used to study the time
duration from a defined starting point to the occurrence of a specific
event44,45. Inmedical research, such events commonly include death, disease
recurrence, or other clinical endpoints46,47. A notable feature of survival
analysis is its capacity to manage censored data, which represents instances
where the event of interest has not occurredby the study’s conclusion48. This
method is particularly well-suited for analyzing failure time data in infra-
structure systems49,50, as it effectively accounts for censored data, where
assets remain functional at the observation period’s end. Given that many
pipelines in sewer networks remain operational during the study period,

survival analysismethods can comprehensively utilize data from these non-
failedpipes to assess service life. This sectionwill introduce two fundamental
functions in survival analysis: the survival function SðtÞ and the cumulative
hazard function H tð Þ, along with their estimation methods.

Survival function
The survival function SðtÞ is a fundamental function in survival analysis,
defined as the probability that a subject survives beyond time t:

SðtÞ ¼ PðT > tÞ ð1Þ

Where T is a random variable representing survival time. The survival
function SðtÞ is a monotonically decreasing right-continuous function,
exhibiting important statistical properties: at t ¼ 0, S tð Þ ¼ 1, indicating all
subjects are alive at the start of the study; as t approaches infinity, SðtÞ
approaches 0, reflecting that all subjects will eventually experience the
target event.

The Kaplan–Meier method provides a nonparametric estimation
approach for the survival function, with its estimator defined as:

ŜðtÞ ¼
Y

tðiÞ ≤ t
1� di

ni

� �
ð2Þ

Where tðiÞ represents the observed failure time, di is the number of failures at
time tðiÞ, and ni is the number of individuals in the risk set at time tðiÞ. This
method requires no prior assumptions about the distribution of survival
times and can effectively handle censored data.

The log-rank test is a nonparametric method used to compare differ-
ences in survival curves between two or more independent groups. Its test
statistics are based on the difference between observed and expected values
at each failure time point:

χ2 ¼
X Oi � Ei

� �2
Vi

ð3Þ

WhereOi represents theobservednumberof failures for group i at each time
point,Ei is the expectednumberof failures under thenull hypothesis, andVi
is the corresponding variance. Under the null hypothesis, this statistic
approximately follows a χ2 distributionwith (k-1) degrees of freedom,where
k is the number of groups being compared. Based on the calculated χ2 value,

Table 12 (continued) | Environmental characteristics and risk assessment indicators: a statistical reference for industrial
maintenance

Categories Subcategories Types Risk characteristics Maintenance strategies

Soil Graphite-bearing Earliest warning threshold at 33 years
Minimal risk increase
Remarkable long-term stability

Initiate basic monitoring from age 33
Conduct periodic structural integrity checks
Implement preventive measures only when necessary

Backfilled areas Warning threshold at 42 years
Accelerated degradation 50–70 years

Begin preventive maintenance from age 42
Focus on compaction testing and soil improvement for
50–70 years
Perform regular density assessments

Tuff and lava Warning threshold at 44 years
Sharp risk increase between 55 and
70 years

Start monitoring from age 44
Implement weathering prevention measures during the
55–70 years
Conduct regular strength assessments

Granodiorite Warning threshold at 45 years
Rapid risk increase between 45 and 58
years
Risk stabilizes after age 58

Monitor from age 45
Intensify inspections between the ages 45 and 58
Reduce inspection frequency after age 65

Superficial deposits Warning threshold at 47 years
Sharp rise 72–75 years
Late-stage deterioration

Monitoring from age 47
Implement ground stabilization before 72–75 years
Perform regular settlement control

Granite Latest warning threshold at 49 years
Moderate risk increase between 60-
65 years

Begin monitoring from age 49
Monitor stress concentration after age 65
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the corresponding P-value can be obtained from tables, and when P < 0.05
indicates statistically significant differences in survival curves between
groups.

Cumulative hazard function
The cumulative hazard functionHðtÞ is a fundamental function in survival
analysis, defined as the total accumulated risk of experiencing the target
event from the start of the study up to time t:

H tð Þ ¼
Z t

0
h uð Þdu ð4Þ

Where:
h uð Þ is the hazard function at time u, representing the instantaneous

risk of the event occurring at that specific time.
The cumulative hazard function is commonly estimated using the

Nelson–Aalenmethod, which has gainedwidespread acceptance in survival
analysis. The Nelson–Aalen estimator provides a robust nonparametric
estimation method for the cumulative hazard function:

ĤðtÞ ¼
X
tðiÞ ≤ t

di
ni

ð5Þ

Where di is the number of failures at time tðiÞ, and ni is the number of
individuals in the risk set.

Development of the dynamic failure analysis and maintenance
strategy framework
To address the uncertainty and evolving nature of pipeline conditions, this
study established an integrated data analysis framework (Fig. 2) that adopts
a dynamic, multi-dimensional approach to continuously update risk
metrics through the latest data integration and systematic feedback loops.
The framework comprises three primary stages: data integration, core sta-
tistical function generation, and time-based failure analysis. In the data
integration stage, historical data are collected and consolidated using the
ArcGIS platform, yielding a unified and standardized dataset for subsequent
univariate analyses.

In the core statistical function generation stage, both theKaplan–Meier
and Nelson–Aalen methods are employed. The Kaplan–Meier pathway
(depicted on the left side of Fig. 2) conducts survival analysis by constructing
survival curves, examining inter-groupdifferences undervarious conditions
via the log-rank test, and identifying a key temporal threshold (T0) at a 95%
survival probability level. Concurrently, the Nelson–Aalen estimation
method (shown on the right side of Fig. 2) quantifies the cumulative hazard
function, providing a quantitative basis for defining the system failure
boundary time.

Building on these statistical underpinnings, a time-based failure ana-
lysis and strategy framework was developed. Initially, data segmentation is
performed according to the predefined temporal threshold (T0). Subse-
quently, a post-threshold survival analysis was conducted and summarized
to evaluate pipeline degradation trends after T0. Key risk boundaries are
then established through tertile analysis of the cumulative hazard function
beyond T0: T0marks the onset of the risk period, while T1 (the lower tertile)
and T2 (the upper tertile) delineate risk boundaries within the cumulative
hazard data. In the risk classification and spatial visualization stage, the
system is categorized into four risk levels based on these boundaries: safe
(below T0, green), low risk (between T0 and T1, yellow), moderate risk
(between T1 and T2, orange), and high risk (above T2, red). A GIS map
subsequently offers an intuitive visual representation. This classification
framework supports the determination of failure boundary time by defining
three critical moments. The conservative failure boundary Time T0 is
identified when failure features first appear, making it suitable for con-
servative management strategies with low risk tolerance. The balanced
failure boundary Time T1 is determined when failure features become sig-
nificant without showing deterioration, offering a balanced approach

between risk and benefit. The aggressive failure boundary Time T2 is
recognized when failure features approach a state of functional failure,
guiding management strategies that accept higher risks. Overall, this fra-
mework provides a concise summary of key performance indicators and
maintenance strategies, allowing decision-makers to select the appropriate
failure boundary time based on their risk tolerance.

Finally, the framework incorporates a self-updating mechanism for
continuous model evolution. As new pipeline installation and failure data
are added to the database, the model automatically updates its parameters.
The survival curves and risk thresholds are recalculated dynamically, and
comparative analyses are refreshedwith the latest failure data. This adaptive
process transforms the framework from a static tool into a dynamic system
that effectively captures the evolving failure patterns as the dataset grows.

Data sources and requirements
Single-factor analysis focuses onhow individual factors independently affect
pipeline failure. This approach requires two essential data elements: (1)
failure age, (2) the specific factor under analysis. Using these basic records,
Kaplan–Meier andNelson–Aalen estimations can establish reliable time-to-
failure relationships.

The primary dataset was sourced from the Drainage Services
Department (DSD) of Hong Kong. It covers a broad range of pipeline
attributes in GIS format, including district, installation date, length, mate-
rial, age, diameter, spatial layout, and connection relationships, along with
detailed CCTV inspection reports from 2007 to 2021.

Numerous studies have highlighted the critical influence of external
environmental factors on pipeline deterioration. In response to these find-
ings, the present study systematically expanded the dataset to incorporate a
range of environmental variables from various Hong Kong government
departments. Annual Average Daily Traffic (AADT) data were acquired
from the Transport Department to capture the load conditions above or
adjacent to pipeline segments. Climatic measurements, including daily
temperature extremes (maximum,minimum, andaverage), humidity levels,
and rainfall records, were retrieved from the historical database of theHong
Kong Observatory. Land use information, sourced from the Planning
Department and Lands Department, was derived from statutory plans and
land utilization databases. Soil condition data, including geological and
ground investigation records, were collected from the Geotechnical Engi-
neering Office of the Civil Engineering and Development Department.
These governmental bodies maintain regular data collection and quality
control procedures to ensure the reliability and consistency of their
respective datasets.

Data cleaning and interoperability
During the data cleaning process, the first major challenge was the incon-
sistency in data format, which made the collected data unsuitable for direct
analysis. CCTV inspection records were provided in PDF format, con-
taining inspectiondates and conditiondetails, whereas pipeline information
was stored in GIS format, which included attributes such as district instal-
lation date, length, material, age, diameter, and spatial layout. Environ-
mental data from various government departments were presented in
diverse digital formats. To resolve these inconsistencies, a Python script was
developed to standardize the diverse data formats, withmanual verification
performed to ensure accuracy. The standardization process involved con-
verting all data into a uniform tabular structure, standardizing date formats
andmeasurement units, and harmonizing naming conventions for pipeline
attributes.

The second challenge in data cleaning involved the management of
maintenance records. The inspection records included informationonpipes
with maintenance activities mixed with those without. To tackle this issue,
maintenance records were identified through keyword filtering, such as
“renew,” “replacement,” and “rehabilitation.” For pipes with maintenance
history, their records were meticulously processed to generate two separate
entries: one covering the period from installation to the maintenance date,
and the other from the maintenance date to the latest inspection. This
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Fig. 2 | Dynamic failure analysis and maintenance strategy framework. The
workflow consists of three main components and a feedback loop. The data inte-
gration process begins with historical data processing through the ArcGIS platform
for feature-based data extraction. This feeds into two parallel analytical approaches:
Kaplan–Meier function generation (including survival analysis, log-rank tests, and
critical time threshold identification) and Nelson–Aalen function generation
(comprising estimation and cumulative hazard rate function calculation). These

analyses converge into a comprehensive time-based failure analysis and strategy
component, which includes six sequential steps: time-threshold-based segmenta-
tion, post-threshold survival analysis, temporal risk boundary calculation, risk
categorization and spatial visualization, feature-based failure time determination,
and key indicators and maintenance strategies summary. The process concludes
with new installation and failure data collection, which updates the GIS database,
creating a continuous improvement cycle through data feedback.
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method ensured that the age and condition parameters accurately repre-
sented the pipeline’s true state at specific time points.

Data integration and management
A robust data integration and management process was established on the
ArcGIS platform to aggregate the cleaned datasets from multiple sources
into a centralized repository. This repository not only consolidates historical
records but also accommodates new pipeline installation and failure
information in real-time.

Specifically, each maintenance or inspection entry is spatially linked
with the corresponding pipeline segment via unique pipeline identifiers.
ArcGIS spatial analysis tools enable automatic matching of pipeline loca-
tions, ensuring efficient extraction and organization of data. Environmental
inputs, such as traffic loads, climate indicators, and land use classifications,
are likewise joined to pipeline layers based on geographic coordinates.

To keep pace with ongoing sewer network changes, the ArcGIS data-
base is regularly updated with newly acquired data. This continuous update
mechanism ensures that the latest operational information—for example,
recent maintenance activities or sudden failures—immediately feeds back
into the maintenance decision framework. As such, the dynamic repository
streamlines further analysis, allowing managers to monitor risk indicators
and intervene promptly.

Database construction
Following the data integration process, a comprehensive database was
constructed to facilitate in-depth failure time analysis. The final database is
organized into three main categories—physical parameters, functional
factors, and environmental factors—and each category encompasses mul-
tiple fields that collectively support subsequent modeling efforts. Specifi-
cally, physical parameters comprise attributes such as pipeline length,
material (e.g., concrete, vitrified clay), diameter, and age, which directly link
to the structural aspects influencing pipeline deterioration. Meanwhile,
functional factors label eachpipeline segment as stormwater or foul sewer to
enable targeted analyses based on service function, further including
operational aspects like flow rates and ownership, where available. In
addition, environmental factors incorporate external variables such as
temperature, humidity, rainfall, land use categories (industrial, commercial,
residential, green/open spaces), district classification (Hong Kong Island,
Kowloon, New Territories, Islands), traffic load (AADT), and soil char-
acteristics. Twenty-year averages of traffic and climate data are also included
to represent stable background conditions. Each data record in the database
is timestamped for time-series analysis, ensuring traceability of pipeline
conditions over multiple inspection intervals. Figure 3 illustrates the major

steps of this construction process, from data cleaning to geospatial align-
ment and final attribute segmentation. By systematically consolidating all
relevant parameters, the ArcGIS-based database not only provides a robust
foundation for survival analysis and hazard estimation but also lays the
groundwork for future expansions—new fields or data sources can be
readily added as additional factors are identified.

Data availability
All data supporting the conclusions of this study are available on request
from the corresponding author.
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