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Calibrating activated sludge models
through hyperparameter optimization: a
new framework for wastewater treatment
plant simulation
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Traditional calibration of Activated Sludge Models (ASM) is often manual, expert-dependent, and
inefficient. This study introduces a hyperparameter optimisation framework usingOptuna to automate
the calibration of the ASM2dmodel. Built on Python, the model integrates the Tree-structured Parzen
Estimator (TPE) for single-objective and NSGA-II for multi-objective optimisation. A 50-day dataset
froma full-scalewastewater treatment plant inShenzhen,China, validates the approach.Compared to
traditional methods, TPE reduced average relative errors for TN and COD from 4.587 and 24.846% to
0.798 and 15.291%, respectively, while decreasing iterations by 15–20%. NSGA-II lowered TN and
COD errors to 4.72 and 15.17%, further improving to 0.095% and 8.43% with full-parameter tuning.
Calibration efficiency increased by 65–75%. By effectively exploring parameter interdependencies,
TPE and NSGA-II enhance calibration robustness and generalisation. This automated optimisation
method significantly improves the accuracy and efficiency of ASM calibration, advancing intelligent
wastewater process modelling.

The Activated SludgeModel (ASM) has been widely applied for simulating
the biological wastewater treatment process since its introduction in the
1980s, serving as the theoretical foundation for process design, operation
optimisation, and digital twin applications inmodernwastewater treatment
plants. Challenges have remained in complex parameter calibration and
uncertainties in parameter selection, which pose significant difficulties
during model validation and implementation1.

TT for ASM typically involves manual optimisation of stoichiometric
and kinetic parameters to ensure that the predicted values of the ASM
closely match the observed data2. In this process, all parameters (e.g., 7 in
ASM13 and 40 in ASM2d4) are adjusted manually and individually,
requiring extensive and repetitive operations. This approach is not only
labor-intensive but also heavily reliant on personal experience, which sig-
nificantly limits its scalability and practicality in full-scale wastewater
treatment plants, especially under stricter discharge regulations and grow-
ing demand for automation and energy efficiency, making it challenging to
address the nonlinear interactions between parameters and the high-
dimensional parameter spaces, which are commonly encountered in the
ASM5. Additionally, parameter optimisation for ASM usually targets a

single objective, such as effluent COD, total nitrogen, or total phosphate6–8,
while the practical demand would be a model that fits all effluent indices
well. This warrants the necessity of multi-objective optimisation. The tra-
ditional parameter optimisation relying excessively on personal judgment
would suffer from poor reproducibility and limited transferability in this
multi-objective optimisation9. These limitations highlight the critical need
for automated and intelligent tuningmethods that can efficiently handle the
complexity and high dimensionality of ASMs10, while improving reprodu-
cibility and optimisation outcomes.

Various automatedcalibrationmethods forASMhavebeendeveloped,
with Genetic Algorithm (GA)6 and Monte Carlo methods7 being widely
applied to achieve automation and systematisation of the calibration pro-
cess. GA, with its global optimisation capabilities, can effectively explore the
parameter space, avoiding the issue of local optima commonly encountered
in TT, thereby improving calibration efficiency and accuracy. However,
when dealing with complex nonlinear systems, GAmay still face challenges
such as high computational costs anddifficulties inparameter identifiability.
On the other hand, theMonteCarlomethod transforms traditionalmanual
trial-and-error calibration into a systematic process through automated
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parameter space sampling and large-scale simulations.While this approach
reduces manual intervention and enhances efficiency, it also faces chal-
lenges, including high computational demands, parameter non-uniqueness,
and insufficient handling of uncertainties.

Automatic calibration ofASMtypically requires the realisationofASM
and parameter optimisation on a programming platform, such as C++ or
MATLAB, which demands extensive expertise in algorithms and pro-
gramming. Thus, studies and publications on this topic are pretty limited,
since the relevant skill requirement is considerably challenging for
researchers in water and wastewater treatment11.

However, existing studies still have obvious deficiencies in several key
aspects: First, most of them are limited to single-objective optimization and
cannot meet the optimization requirements of multiple effluent indicators;
second, there is a lack of systematic consideration of the interaction between
parameters, and the analysis is often conducted in a single dependent
variable parameter adjustment manner, ignoring the influence of high-
dimensional nonlinear relationships; third, there is a lack of flexible, effi-
cient, and scalable automatic parameter adjustment frameworks, and no
study has systematically introduced modern machine learning’s hyper-
parameter optimization tools into the calibration of ASM models.

This study innovatively introduces the Optuna framework under the
Python platform, combining TPE andNSGA-II optimisation algorithms to
construct an automatic multi-objective parameter adjustment system sui-
table for ASM2d. This system can not only achieve complete parameter
optimisation but also dynamically capture the nonlinear interaction
between parameters, effectively improving the parameter adjustment effi-
ciency andmodel prediction accuracy,filling the gap in traditionalmethods’
ability to handle high-dimensional parameter spaces and multi-objective
trade-offs.

Massive open-source libraries are available on the Python platform
nowadays. Quantitative Sustainable Design sanitation (QSDsan) and Pee-
PyPoo are two professional Python libraries for ASM12, and Optuna is a
comprehensive Python framework for hyperparameter optimisation and
multi-objective optimisation.

QSDsan enables modular construction of ASM, allowing for the flex-
ible definition of wastewater compositions, reactor structures, and system
processes13. Additionally, its dynamic simulation capabilities capture the
changes in complex wastewater treatment processes, providing realistic and
reliable model outputs for optimisation. Meanwhile, the rapid dynamic
simulation and predefined ASM design concepts from PeePyPoo enhance
the efficiency and simplicity of themodelling process, making it particularly
suitable for efficiently constructing complex wastewater treatment systems.

Once the ASM is established on the Python platform, parameter
optimisation can be easily realised with specialised libraries, like Optuna,
which arewidely used inmachine learning anddeep learning.Optuna offers
the Tree-structured Parzen Estimator (TPE)14 and the Non-dominated
Sorting Genetic Algorithm II (NSGA-II)15, which can quickly and auto-
matically search for the best combination of hyperparameters while sup-
porting multi-objective optimisation. The TPE effectively explores the
parameter space using probabilistic models, achieving higher search effi-
ciency in high-dimensional and complex problems. NSGA-II, on the other
hand, is particularly suited for multi-objective scenarios, such as balancing
different effluent indexes in wastewater treatment processes. For ASM
calibration, TPE may offer an efficient and adaptive approach for single-
objective optimisation by focusing on promising regions of the search space
through probabilistic modelling. At the same time, NSGA-II may excel at
multi-objective optimisation by providing diverse and robust Pareto-
optimal solutions. In contrast, Monte Carlo is computationally expensive
and lacks focus, and traditionalGAareprone topremature convergenceand
struggle with multi-objective trade-offs in ASM calibration. Therefore, it is
believed that TPE coupling with NSGA-II would outcompete the GA and
Monte Carlo methods in addressing the challenges of ASM optimisation.

It is anticipated that TPE and NSGA-II may enable automated and
efficient parameter tuning for ASM to provide comprehensive support for
wastewater treatment modelling and optimisation. This would be quite

realisable with themature programming language ecosystem of Python. To
the best of the authors’ knowledge, this approach has not been explored yet.

Therefore, this study aims to develop an automated and efficient
calibration framework for ASM by integrating Optuna-based optimisation
with TT methods. In this work, the ASM2d model was constructed on the
Python platform using the QSDsan package and calibrated using opera-
tional data from a full-scale municipal wastewater treatment plant in
Shenzhen, China. The model was then coupled with Optuna’s TPE for
single-objective optimisation and NSGA-II for multi-objective optimisa-
tion, enabling dynamic parameter interactionmodelling and full-parameter
tuning. By comparing the results obtained from Optuna-based and tradi-
tional trial-and-error strategies, this study evaluates the accuracy, efficiency,
and robustness of both approaches. The proposed framework not only
improves calibration performance but also contributes to scalable, intelli-
gent, and automated modelling strategies for real-world wastewater treat-
ment system optimisation and control.

Results and discussion
Parameter sensitivity analysis
Sensitivity analysis is always conducted to alleviate the burden of parameter
optimisation, so that theoptimisation canbe focusedon theparameterswith
high sensitivity. The Traditional sensitivity analysis and the optuna sensi-
tivity analysis were compared. The sensitivity coefficients of the top 7
parameters identified by eachmethodwere normalised and shown in Fig. 1.
It can be observed that in the TSA, the sensitivity coefficients were relatively
evenly distributed, with no significantly dominant parameter. However, in
the OSA method, the sensitivity coefficient of YH was substantially higher
than other parameters in both single- and multi-objective optimisations,
demonstrating its strong dominance.

This phenomenon can be attributed to the fact that TSA evaluates
parameters by individually adjusting themwithout considering interactions
between parameters. As a result, the influence of each parameter on the
model outcome is treated separately, leading to a relatively even distribution
of sensitivity coefficients. In contrast, theOSAadopted a global optimisation
approach, which simultaneously considered the interactions and competi-
tive relationships between parameters.

In the ASM, YH plays a crucial role in COD degradation and TN
removal processes16. Heterotrophic bacteria, whose growth efficiency is
determined by YH, are the primary microorganisms responsible for COD
degradation. Moreover, in nitrogen removal, heterotrophic bacteria con-
sume carbon sources during denitrification, and changes in YH directly
affect carbon source utilisation efficiency and denitrification performance.
Consequently, in the global optimisation process, the sensitivity of YH is
significantly amplified, resulting in a much higher sensitivity coefficient17.
This highlighted that the Optuna method was more effective in identifying
the key parameters that have the most significant impact on the objective
function. In contrast, TT, which overlooks complex parameter interactions,
tends to produce more evenly distributed results.

Single-objective optimisation
In this study, OSA and TSA were employed as two different RSF methods,
along with OT and TT as two distinct parameter tuning methods. These
different sensitivity analysis methods and tuning methods were paired in a
two-by-two combination, and the relative error between the simulated
values and actual values was recorded daily for each combination. The data
collected over 50 dayswere then aggregated and analysed using boxplots for
comparative analysis. The parameters identified in the sensitivity analyses
were optimised through TT and TPE. With the optimised parameters, the
relative errors between the model predictions and the observations are
shown in Fig. 2.

In single-objective parameter tuning, when TN is set as the optimisa-
tion target, the average relative errors forTSA-TT,TSA-OT,OSA-TT,OSA-
OT are 4.587, 8.079, 0.550, 0.798%, respectively. When COD is set as the
optimisation target, the average relative errors for TSA-TT, TSA-OT, OSA-
TT, OSA-OT are 24.846, 25.793, 14.491, 15.291%, respectively. A t-test
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analysis showed that there is no significant difference betweenTSA-TT and
TSA-OT, as well as between OSA-TT and OSA-OT, indicating that under
the same RSF method, TT and OT yield similar optimisation results. By
performing a t-test analysis, it was found that there was no significant
difference between TSA-TT and TSA-OT, as well as between OSA-TT and
OSA-OT. This indicates that under the same RSFmethod, the optimisation
results forTTandOTperformed similarly.The reason for thisphenomenon
lies in the activated sludgemodel,where theTPE, as anoptimisationmethod
for tuning multiple parameters, typically requires a larger number of

parameters to participate in the optimisation process. In contrast, TT tends
to highlight the importance of individual parameters more effectively when
thenumber of parameters is limited18. This characteristic suggests thatwhen
fewer parameters are involved, the performance of the TPEmay be similar
to that of TT, or it may not exhibit a significant advantage.

As shown in Fig. 2, there is a significant difference between OSA and
TSA (p-value < 0.05), indicating that the sensitivity analysis results of the
TPE algorithm in ASM2d tuning are significantly better than those of tra-
ditional methods. The main advantage lies in TPE’s use of Bayesian

Fig. 1 | The sensitivity analysis results for TN and
COD using different methods. The first row a and
b represent the relative sensitivity coefficients for the
seven different parameters of TN and COD,
respectively, using TSA. The second row c and
d show the relative sensitivity coefficients for TN
and COD, respectively, using OSA, with
e representing the results of MO-OT and
f representing the results of MO-TT. The sensitivity
analysis compares the impact of different methods
on parameter selection, providing insights for
choosing the optimisation method.
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optimisation and Gaussian processes to handle uncertainty. By iteratively
updating the surrogate model and selecting parameter combinations based
on the “Expected Improvement (EI)” criterion, TPE can quickly identify
parameter sets that are close to the global optimum, thereby accelerating
convergence. InASM, this approach efficiently identifies the best parameter
sets, minimising TN and COD, and avoids the local optima that traditional
methods may encounter. The Bayesian optimisation in TPE is particularly
suited for handling complex systems involvingmultiple biological processes
and reaction rates, enabling effective parameter adjustment underuncertain
conditions. Therefore, TPE can capture complex nonlinear relationships
between parameters more deeply, significantly improving the accuracy and
efficiency of sensitivity analysis compared to TSA.

Although TT and OT showed insignificant difference in the optimi-
sation, TT usually relies on expert experience, introducing considerable
uncertainty, and it is time-consuming even if it was programmed for
automation here5. Due to the limitation of human resources and its low
efficiency, TT often focuses on limited parameters with higher sensitivity
coefficients, restricting its scope. OT leveraging the TPE could support full
parameter tuning.

Multi-objective optimisation
The single-objective optimisation above, focused on either TN or COD,
could hardly predict the other one, as indicated in Fig. S1 in the Supple-
mentary Information. This warranted the necessity of multi-objective
optimisation, which was expected to track both effluent TN and CODwell.

According to the supplementary data, in single-objective tuning with
TN as the target, the average relative error of CODunderOSA-MO-TTwas
20.674%. Similarly, in single-objective tuning with COD as the target, the
average relative error of TNunderOSA-MO-TTwas 14.299%.However, by

using the multi-objective tuning method, the overall relative errors of TN
and CODwere significantly reduced. Compared to the single-objective TN
and COD methods, the multi-objective tuning approach significantly
lowered the overall relative errors of TN and COD. As shown in Fig. 3, in
MO-OT, the average values of COD and TN were 15.17 and 4.72%,
respectively, which are better than the TN results reported in19. As shown in
Fig. 5, OSA-MO-OT and OSA-FP-MO-OT performed better in TN than
OSA-MO-TT and OSA-FP-MO-TT (p value < 0.05), indicating that the
OSA-MO-OTmethod is significantly better than the OSA-MO-TT tuning
method. The obtained COD value is lower than that of single-objective
tuning, further validating the superiority of the multi-objective tuning
method in optimisation performance.

The reason for Optuna superiority over traditional methods lies in the
complex interactions between TN and COD in the ASM system. Optuna
multi-objective tuning method uses the NSGA-II algorithm, which per-
forms global searches via a GA, allowing for better parameter adjustment
andmore balanced optimisation solutions. In contrast, TPE ismore suitable
for single-objective optimisation, as it is based on Bayesian optimisation,
which converges faster on smaller datasets. However, in multi-objective
optimisation, it may lead to imbalanced optimisation, making it difficult to
improve the removal rates of TN and COD simultaneously. Therefore,
NSGA-II is more suitable for multi-objective optimisation.

OSA-FP-MO-OT measured the average relative errors for COD and
TN at 8.43% and 0.01%, respectively. Compared toMO-OT,OSA-FP-MO-
OT exhibited lower medians, smaller maximum differences, and fewer
overall outliers. By comparing MO-OT and OSA-FP-MO-OT with OSA-
MO-TT and OSA-FP-MO-TT, it is evident that the strength of the OT
method lies not in locally adjusting individual parameters but in considering
all parameters comprehensively. This demonstrates that, when using

Fig. 2 | Relative errors in the single-objective optimisation using different RSF (TSA and OSA) and tuning methods (TT and OT). a Relative error of TN and b telative
error of COD.

Fig. 3 | Relative error in the models using different multi-objective optimisation different methods (OSA-MO-OT, OSA-FP-MO-OT, OSA-MO-TT, OSA-FP-MO-
TT). a Relative error of TN and b relative error of COD.
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Optuna for multi-objective tuning, the main reason why Optuna outper-
forms traditional methods in full parameter tuning is its ability to consider
the synergistic effects and nonlinear relationships between multiple para-
meters, avoiding the potential oversight of interactions that occur when
adjusting each parameter individually. Traditional methods often rely on
empirical rules, making it difficult to effectively address parameter inter-
actions in complex systems and face challenges in setting appropriate
weights. On the other hand, Optuna, using Bayesian optimisation and
adaptive techniques, dynamically adjusts the search process and auto-
matically optimises multiple parameter combinations, avoiding bias from
manually set weights, thereby improving optimisation efficiency and
accuracy. In complete parameter optimisation,Optunanot only avoids local
optima but also significantly increases computational efficiency, offering
more comprehensive and precise optimisation results, outperforming
single-parameter tuning.

The number of iterations to achieve the target result
From Fig. 4, it was observed that under the same RSF method, the TT
approach required more iterations to reach the target value (p < 0.05). This

indicated that OT had a higher tuning efficiency than TT and was more
effective in searching the parameter space. The results showed that, com-
pared to theTTmethod, theOTmethod obtained the optimal parameter set
required for simulation more quickly. This was because, unlike the TT
algorithm, which computed the optimal solution one by one, the TPE
algorithm constructed a probabilistic model, classified the evaluated para-
meters, and intelligently selected hyperparameters with high potential
benefits, thereby reducing unnecessary searches. Compared to traditional
optimisationmethods,TPEconverged to theoptimal solutionmorequickly,
resulting in fewer optimisation iterations.

In MO-TT, as shown in Fig. 4c, compared to the TT approach (OSA-
MO-TT and OSA-FP-MO-TT), the OT approach (OSA-MO-OT and
OSA-FP-MO-OT) required significantly fewer iterations (p < 0.05). This
suggested that the OT method achieved faster convergence during opti-
misation, thereby reducing the computational cost required for parameter
tuning. Additionally, most of the iteration counts in the TT method were
close to the maximum value, indicating that its optimisation process was
relatively slow and might have suffered from convergence difficulties or
inefficient searching. Compared to theOT tuning approach, the TTmethod
required more iterations to complete the optimisation process, implying
that it might have failed to find a superior solution within a limited com-
putational budget. Moreover, hyperparameter tuning based on Optuna,
utilising the TPE algorithm and the NSGA-II genetic algorithm, achieved
target values more efficiently during the tuning process. Therefore, it was
concluded that the number of iterations required for tuning primarily
depended on the optimisation method used.

Compared with the TT adjustment method, the OT method requires
fewer iterations to complete the optimisation process, indicating that it can
find a better solution more effectively within a limited computational
budget. Additionally, the hyperparameter tuning based on Optuna further
optimises the adjustment process by using an SQLite database to store trial
information. Multiple servers can work collaboratively to accelerate the
optimisation process and allow for interruption during execution, with the
ability to resume from the interruption point later. Thismechanism ensures
the stability and reproducibilityof the tuningprocess, thereby enhancing the
flexibility and reliability of the entire optimisation flow.

The time required for parameters to converge
As shown in Fig. 5a, the computation time for most methods ranged
between 10 and 30 seconds, indicating that, at the single optimisation level,
all methods maintained an acceptable computational cost, with efficiency
primarily depending on the algorithm itself. As shown in Fig. 5a, the
computation timeof theOTmethods (TSA-OT,OSA-OT)was shorter than
that of the TT methods (TSA-TT, OSA-TT) (p < 0.5), demonstrating that
OT methods achieved faster convergence in each optimisation step,
resulting in lower computational costs. In contrast, multi-objective opti-
misation methods (OSA-FP-MO-OT, OSA-FP-MO-TT) generally
required slightly longer single optimisation times than single-objective
methods but remained within a reasonable range.

Figure 5b shows that multi-objective full-parameter optimisation
methods typically required longer total computation times, reaching
approximately 15,000 s. However, the total tuning time for OSA-FP-MO-
OT was relatively shorter, indicating higher optimisation efficiency. As
illustrated in Fig. 5a, the single tuning time generally remained within an
acceptable range (10–30 s), suggesting that most methods maintained a
controlled computational cost at the single computation level. Furthermore,
Fig. 5b highlights that the OT methods consistently outperformed the TT
methods in both single and total tuning times (p < 0.5),making themamore
favourable choice. This is because, compared to TT, multi-objective opti-
misation approaches such as OSA-FP-MO-OT demonstrated shorter
computation times and higher efficiency than conventional multi-objective
methods (e.g., OSA-FP-MO-TT), making them more computationally
acceptable20.

This improvement can be attributed to Optuna’s diverse optimisation
capabilities, especially its application in single-objective andmulti-objective

Fig. 4 | Comparison of Iteration Counts Across Different Methods for TN
and COD. a The number of iterations in the single-objective optimisation for TN,
b the number of iterations for single objective optimisation for COD, and c the
number of iterations for multi-objective optimisation.
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optimisation, as well as its unique parallel optimisation, pruning algorithm,
and dynamic search space adjustmentmechanism.Compared to traditional
optimisationmethods,Optuna significantly reduces the computational time
during the optimisation process. Firstly, Optuna can conduct multiple trial
tasks simultaneously through parallel optimisation, significantly enhancing
computational efficiency, particularly in high-dimensional parameter
spaces. The NSGA-II algorithm adopted by Optuna in multi-objective
optimisation outperforms traditional multi-objective optimisation
methods19, enabling more efficient exploration of the search space. Addi-
tionally, Optuna’s pruning algorithm automatically terminates under-
performing trials in real-time by monitoring their performance, thereby
reducing redundant computations. This approach avoids the need for
complete calculations of all parameters in each iteration, as in traditional
tuning methods, significantly improving efficiency. Traditional methods
such as TSA and TT typically rely on expert experience for manual
adjustments. At the same time, Optuna uses Bayesian optimisation and the
TPE algorithm to dynamically update the search space based on acquired
data, gradually narrowing the optimisation range and avoiding the risk of
getting trapped in local optima21. Particularly in multi-objective optimisa-
tion, Optuna can perform global search and consider the interaction of
multiple objectives through Pareto optimal solutions.

In contrast, traditionalmethods often combinemultiple objectives into
a single objective for adjustment, which limits the optimisation effect22.
Compared to the sequential parameter tuning of conventional methods,
Optuna’s pruning algorithm andmulti-threading significantly improve the
speed. These features enable Optuna not only to converge to the optimal
solution quickly but also to enhance computational efficiency significantly,
especially when dealing with complex multi-objective problems, demon-
strating more substantial advantages over traditional methods.

Interrelatedness of single target parameters
Parallel coordinate plots intuitively display relationships between variables
and the distribution patterns of samples inmultidimensional data, as shown
in Fig. 6. Each vertical axis represents the range of a parameter, and each line
corresponds to a tuning process. The trajectory of the lines reflects rela-
tionships between parameters, while the colour intensity indicates the
magnitude of the objective value. From the distribution of lines, the influ-
ence of key variables, trends in objective value changes, and potential out-
liers can be directly observed.

As shown in Fig. 6a, each vertical axis represents the tuning range and
value of a parameter. For example, when the value of the parameter eta_-
NO3_H is 1.2, ten lines extend from this point to the other parameter axes,
indicating that during the tuning process, the optimal tuning value of
eta_NO3_H was selected as 1.2, and this value was fixed for subsequent
tuning of the remaining parameters. Similarly, Fig. 6b displays a similar
tuning pattern, and the line distribution reveals the optimal values of the
different parameters.

The interactions between these parameters reflect the varying degrees
of influence each parameter has on the optimisation of TN or COD. In
Fig. 6c, the values of Y_H are concentrated between 0.35 and 0.6, indicating
that when b_H is lower, the optimisation of TN removal is more effective.
Therefore, lower values of b_H help improve optimisation efficiency. The
distribution of eta_NO3 and K_O2_H is broader, suggesting that these two
parameters have a more scattered influence on the optimisation target, and
their varying values produce only minor changes. This implies their weaker
contribution to the optimisation, allowing them to be considered as sec-
ondary optimisation factors.

In Fig. 6d, the values of Y_H are concentrated between 0.7 and 0.85,
K_h values range from 1.5 to 2.4, and K_IPP values are concentrated
between 0.024 and 0.003. The concentration of these parameters within
specific ranges indicates that the optimal values of these parameters are
crucial to achieve better optimisation results. For example, the concentra-
tion of K_h values in the lower range suggests that lower K_h values may
lead to better TN removal23. The concentrated range of K_IPP likely indi-
cates that this parameter has a strong influence on the optimisation target
and plays a key role in the removal efficiency.

Overall, the interactions between these parameters ensured the balance,
efficiency, and stability of the TN and COD removal processes. Optimising
and adjusting each parameter within a specific range guaranteed the stable
operation of the entire process, preventing any single parameter from overly
influencing the results or causing instability in the optimisation outcomes.

Overall, OSA effectively captured the nonlinear relationships and
interactions between parameters through coordinated adjustments, sig-
nificantly enhancing the optimisation results. For example, by analysing the
concentration ranges of parameters in (c) and (d), it became clearer how
different parameters influenced each other and collectively affected the
optimisation results. In the TN tuning process, higher K_h values con-
tributed to faster PHA hydrolysis and nitrate reduction, which, when
combined with lower Y_H and b_H values, helped balance aerobic and
anaerobic reactions and optimised nitrogen removal efficiency24. This
interaction and coordinated adjustment of parameters demonstrated their
nonlinear relationships, and OSA effectively captured and optimised these
relationships and interactions.

OSA not only coordinated the adjustment of multiple parameters but
also captured the interactions between them, significantly improving opti-
misation results. In contrast, although TSA assessed the sensitivity of
individual parameters, it could not consider the interactions between
parameters in complex systems, limiting its optimisation potential, espe-
cially in multidimensional optimisation problems. Therefore, OSA pro-
vided a more comprehensive and precise approach to solving complex
multidimensional optimisation challenges.

The interrelation of parameters in multi-objective optimisation
As shown in Fig. 7, in panel (c), under the OSA-MO-OT optimisation
method, a strong correlation exists between Y_H and K_NO3_PAO, which

Fig. 5 | The elapsed time for single time adjustment and total adjustment in the
optimisations using different parameter tuning methods. a Single adjustment
time and b total adjustment time.
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may be closely related to reaction rates or mechanisms in the wastewater
treatment process. Additionally, the significant correlation between f_XI_H
and K_NO3_PAO indicates that the concentration of NO3 or its reaction
rate has a considerable impact onTN removal efficiency. In panel (a), under
the OSA-MO-TT optimisation method, a strong correlation is observed
between Y_H and K_NO3_PAO, suggesting that these parameters are

closely related to organic matter degradation rates andmicrobial metabolic
processes.

For COD removal efficiency, panels (d) and (b) illustrate the associa-
tions between key parameters under the OSA-MO-OT and OSA-MO-TT
optimisation methods, respectively. In panel (d), under the OSA-MO-OT
optimisation method, the relationship between eta_fe and K_NO3_PAO

Fig. 6 | Relationship between the model para-
meters in the single-objective optimisation
showed by parallel coordinate plots. a Correlation
between TN removal efficiency and key parameters
under the TSA-TT optimization method;
b Correlation between COD removal efficiency and
key parameters under the TSA-TT optimization
method; c Correlation between TN removal effi-
ciency and key parameters under the OSA-OT
optimization method; d Correlation between COD
removal efficiency and key parameters under the
TSA-OT optimization method.
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further emphasises the impact of NO3 concentration on COD removal
efficiency. In panel (b), under the OSA-MO-TT optimisation method, the
significant correlation between f_XI_H and b_H suggests that these two
parameters may play a key role in COD removal, involving reaction rates
and dissolved oxygen levels.

The difference between the OSA-MO-OT andOSA-MO-TTmethods
lies in their optimisation approaches. Optuna NSGA-II algorithm can

simultaneously consider multiple objectives and flexibly adjust parameters,
exploring more possible solutions to help find the optimal one. In contrast,
the traditional method combines various objectives into a single one. It
adjusts parameters step by step, often being confined to a specific range and
unable to find the best solution. Therefore, NSGA-II provides more com-
prehensive optimisation, while the traditional method has limited
effectiveness.

Fig. 7 | Relationship between the model para-
meters in the multi-objective optimisation
showed by parallel coordinate plots. a Correlation
between TN removal efficiency and key parameters
under the OSA-MO-TT optimisation method.
b Association between COD removal efficiency and
key parameters under the OSA-MO-TT optimisa-
tion method. c Correlation between TN removal
efficiency and key parameters under the OSA-MO-
OT optimisation method. d Association between
COD removal efficiency and key parameters under
the OSA-MO-OT optimisation method.

https://doi.org/10.1038/s41545-025-00513-y Article

npj Clean Water |            (2025) 8:80 8

www.nature.com/npjcleanwater


In summary, Optuna demonstrates remarkable optimisation cap-
abilities in TN and COD tuning by capturing parameter sensitivity and
correlations, significantly enhancingoptimisation results and expanding the
range of objective values. In contrast, the traditional method relies more on
single-parameter adjustments, making it less effective at capturing complex
parameter relationships andweaker in handling complex systems formulti-
objective optimisation problems with high complexity. Optuna is
undoubtedly the better choice, with its advantages in applicability and
efficiency inhigh-dimensional nonlinear systems standingout prominently.

Research on the application of the Optuna framework in para-
meter optimization for intelligent sewage treatment
The proposed Optuna-based calibration framework demonstrates strong
potential for practical application in wastewater treatment plant (WWTP)
modelling and optimisation. By integrating TPE and the NSGA-II algo-
rithm, the method enables full-parameter, multi-objective optimisation
with improved convergence efficiency. Built entirely on an open-source
Pythonplatform, the framework supportsmodular integrationwith process
simulators such as QSDsan, making it flexible for use in diverse operational
scenarios. It is particularly suitable for automated model calibration, multi-
objective process control, and intelligent optimisation in data-rich WWTP
environments.

Although the Optuna-based automatic calibration framework pro-
posed in this study achieved high accuracy and efficiency in optimising
parameters of the ASM, several limitations remain that should be
acknowledged for future improvements. First, the dataset usedwas obtained
from a single full-scale WWTP located in Shenzhen, China. This limited
spatial and process coverage restricts the model’s generalizability to other
WWTPs with different treatment technologies, influent characteristics, or
operational strategies. Additionally, the proposed frameworkwas developed
specifically for the ASM2d model and has not yet been validated for other
emerging process models, such as anaerobic ammonium oxidation (Ana-
mmox) ormembrane-aerated biofilm reactors (MABR), whichmay exhibit
different kinetic behaviours and optimisation requirements.

Moreover, like most data-driven modelling approaches, the perfor-
mance of the proposed method heavily depends on the quality and avail-
ability of input data. Incomplete, noisy, or inconsistent influent and effluent
measurements may disrupt the optimisation process and lead to biased
parameter estimates.While the framework significantly reduces themanual
effort associated with traditional trial-and-error calibration, it still imposes
substantial computational demands under full-parameter optimisation and
long-term simulation scenarios, particularly in real-time or low-resource
environments. Finally, the current model is trained exclusively on static
historical datasets without incorporating real-time monitoring or feedback
mechanisms. This limits its adaptive capability in dynamic operating
environments and reduces its suitability for intelligentwastewater treatment
systems that require continuous learning and real-time control.

The parameter optimisation method for the ASM model, based on
Optuna, proposed in this study, provides a new idea for improving the
performance ofwastewater treatment plants, especially in terms of adjusting

operating parameters. Although this paper does not directly address the
improvement of energy consumption, in actual wastewater treatment
plants, precisely adjusting operating parameters (such as aeration volume,
reaction time, etc.) is crucial for enhancing treatment efficiency and redu-
cing energy consumption. In the operation of actual wastewater treatment
plants, precisely regulating operating parameters plays a key role in
improving treatment efficiency and optimising energy efficiency, especially
in dynamic adjustment and energy optimisation25,26. These studies
emphasise the use of adjusting wastewater treatment operating parameters
to reduce energy consumption and improve treatment quality, especially in
regulation strategies under different climatic conditions. By optimising
operation modes and adopting more effective control strategies, energy use
efficiency can be significantly improved, and environmental impacts can be
reduced.Combining the application ofOptuna and an SQLdatabase,multi-
threaded distributed operation can be achieved under dynamic simulation,
which not only improves computational efficiency but also ensures the
security and stability of data, promoting the practical application of data-
driven optimisation adjustment methods in wastewater treatment plants.
This suggests that Optuna will play a crucial role in adjusting operating
parameters in future wastewater treatment plants, thereby enhancing
energy efficiency and treatment processes.

These results indicate that the proposed optimisation framework is not
only applicable to offline model calibration, but also has promising pro-
spects in practical applications of intelligent wastewater treatment. In the
future, if this method is further integrated into real-time monitoring sys-
tems, adaptive control strategies, reinforcement learning, and other intel-
ligent algorithms, it is expected to achieve an automatic update and
parameter adjustmentmechanism for dynamic operating conditions.At the
same time, extending this method to emerging models other than ASM2d
(such as Anammox, IFAS, MABR, etc.) will also be a key step in achieving
universal applicability for various processes.

Methods
WWTP and data overview
The data used in this study were collected from a WWTP in Shenzhen,
which adopts the treatment process as shown in Fig. 8. First, coarse screens
and fine screens are used to remove large debris and fine suspended solids.
The aerated grit chamber removes settling particles, while the
Anaerobic–Anoxic–Aerobic (AAO) process eliminates pollutants such as
chemical oxygen demand (COD), nitrogen, and phosphorus. The second-
ary sedimentation tank separates suspended solids from supernatant, and
magnetic coagulation helps in removing colloidal substances. Finally,
ultraviolet (UV) disinfection and sodium hypochlorite ensure the complete
elimination of pathogenic microorganisms, meeting discharge standards.

The data from this WWTP covers various water quality and opera-
tional parameters, including inflow and outflow volumes, pH, COD, BOD,
SS,TP, ammonianitrogen,TN,NO3-N,TKN,daily sludge cakeproduction,
sludge cakemoisture content, sludge concentration, external reflux volume,
average DO, and PAC and PAMusage in the high sedimentation tank. The
data was collected over a period from November 20, 2018, to January 8,

Fig. 8 | Schematic diagram of the wastewater treat-
ment process in the WWTP.
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2019. A statistical summary of the data used for modelling in this study is
shown in Table 1.

ASM on Python
This study uses the QSDsan Python package to model and analyse waste-
water treatment processes based on the WWTP model, and conducts
simulation processing analysis using the ASM2d. The ASM2d is developed
based on ASM1 (1987) and ASM2 (early 1990s) models, and it compre-
hensively integrates the processes of organicmatter removal, denitrification,
and phosphorus removal27. It is widely applied in the design and optimi-
sation of WWTP. The process configuration includes five interconnected
reactors and a final sedimentation tank, as shown in Fig. 1. The treatment
system consists of anoxic and aerobic sections to optimise biological
nitrogen removal and organic matter degradation.

The QSDsan model is used to simulate the WWTP system. Key data,
including influent flow, residual sludge flow, external reflux flow, COD, and
TNconcentrations, werefirst input into themodel, with the temperature set
to 20 °C (293.15 K). Reactors were set up on the model according to the
process in the WWTP, as shown in Fig. 1. More details on the process
configuration in the ASM could be found in the Supplementary
Information.

The dynamic simulation of the system is created using the Systemclass
in QSDsan, with a simulation time of 50 days. The Backwards Differ-
entiation Formula (BDF) integrationmethod is used for solving the system,
with a mass conservation error tolerance of 10-5 to ensure high-precision
numerical calculations. During the simulation, the system tracks the con-
centration changes of key components, such as dissolved oxygen, ammonia
nitrogen, nitrate nitrogen, and organic matter, while also tracking the
dynamics of biological components, including heterotrophic bacteria,
phosphorus-accumulating bacteria, and nitrifying bacteria. Finally, the
simulation results are exported as anExcelfile for further analysis, providing
data support for optimising the wastewater treatment system.

Parameter optimisation through the traditional method
TT, relying on empirical adjustments, was also automated in Python. In this
study, a 50-day tuning period (November 20, 2018, to January 8, 2019) was
used, with January 2, 2019, selected for sensitivity coefficient analysis. The
goal was to minimise the difference between simulated and actual TN and
COD values in the ASM2d.

The sensitivity analysis, conducted using the Traditional Sensitivity
Analysis (TSA)3method, involved increasing each of the 55 parameters by
10% and calculating the sensitivity coefficient for TN and COD. The sen-
sitivity coefficient was calculated using the formula:

RSF ¼ Δy
y × Δp

p ð1Þ

where y is the simulated value, Δyy is the difference from the actual value, p is
the default value, and Δp

p is the change in the parameter value.RSF represents
the sensitivity coefficient of the parameter.

After calculating the relative sensitivity coefficients for all parameters,
select the top seven parameters3 with the highest relative sensitivity
coefficients2. To reduce the fluctuations caused by TT methods, the para-
meters should be adjusted in descending order of their relative sensitivity
coefficients. The optimisation steps for traditional parameter tuning are as
follows: First, reduce the value of the parameter with the highest relative
sensitivity coefficient to 50% of its default value, while keeping the other
parameters unchanged. Then, increase the parameter’s value in 10%
increments, recording the relative error between the simulated values and
the actual values at each adjustment, until the parameter reaches 150% of its
default value. From these ten simulation results, select the parameter value
that corresponds to the lowest relative error as the optimal value for that
parameter. Next, repeat the same procedure for the next parameter, until all
seven selected parameters have been adjusted. For each adjustment, the
relative error was calculated9:

Relative Error ¼ MeasuredValue�TrueValue
TrueValue × 100 ð2Þ

The adjustment with the smallest relative error was selected as the
optimal value. This process was repeated for all key parameters to find the
optimal set for the model.

Hyperparameter optimisation
The approach of relative Optuna sensitivity analysis (OSA) was as follows:
Duringparameter tuning,Optuna executed a full parameter single-objective
optimisation process for each of the 50 days, dynamically adjusting all
parameters within a range of 50% to 150% of their default values28. This
process was repeated 70 times daily. For each day, the relative sensitivity
coefficients of all parameters were calculated. The relative sensitivity coef-
ficients obtained for all parameters over the 50 days were then summed and
averaged to determine the relative sensitivity coefficients for all parameters.
The top seven parameters with the highest relative sensitivity coefficients
were selected as the parameter set for Optuna Tuning (OT).

The OT approach was conducted as follows: The seven selected
parameters were used as the parameter set, and these parameters were
dynamically adjusted within a range of 50% to 150% of their default values.
For each day, the tuning process was executed 70 times. From these 70
iterations, the minimum relative error between the TN obtained by tuning
with TN as the objective and the actual TN, and theminimum relative error
between the COD obtained by tuning with COD as the objective and the
actual COD, were extracted. The optimal parameter sets for TN and COD
were subsequently determined based on these results.

Throughout these processes, Optuna served as an auxiliary tool to
identify and select the most influential and critical parameters, guiding and
controlling the optimisation process. The TPE implemented in Optuna
enhanced the search efficiency within the high-dimensional and complex
search space of the ASM2d. TPE constructed two probability models, l(x)
and g(x), representing the distributions of hyperparameters for better
(lower) and worse (higher) objective values, respectively. By defining a
threshold y∗(the current best objective value) and a quantile γ, TPE cate-
gorised the hyperparameters and utilised Parzen kernel density estimation
(KDE) to build the probability models. The algorithm also incorporated a
Truncated Gaussian Mixture Model (TGMM), which excluded poorly
performing regions and focused the search on more promising areas.
Ultimately, this approach achieved precise convergence toward the optimal
parameter configuration.

Multi-objective optimisation
WWTPalways involvesmulti-objective optimisation, such asCODandTN
in effluent; therefore, it is necessary to explain the situation of multi-
objective tuning further. In TT, it is challenging to compute the relationship
between tuning TN and COD parameters, as well as to control the effluent
concentrations of TN and COD simultaneously. Expert judgment and
experience often play a decisive role.

Table 1 | Statistical Summary of data collected from WWTP

Parameter Max Min Mean Std Dev

Inlet Flow Rate (m³/h) 134,543.742 65,859.891 86,904.315 13,295.581

External Reflux Flow
Rate (m³/h)

95,552 36,062 66,738.44 8521.644

Inlet COD (mg/L) 532 202 328.82 58.947

Inlet TN (mg/L) 43.88 20.82 29.604 4.823

Inlet TP (mg/L) 4.1 1.32 3.005 0.552

Outlet COD (mg/L) 45.4 28.4 37.244 3.776

Outlet TN (mg/L) 9.58 6.1 7.736 0.803

Outlet TP (mg/L) 0.16 0.04 0.1 0.027
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The data used in the multi-object parameter adjustment process is the
same as that used in the single-object parameter adjustment process. If the
TT of RSF were used, it would be challenging to accurately determine the
appropriate weights for each objective, resulting in significant instability. In
contrast, the TPE can simultaneously account for the impact of two
objective values on the parameters, thereby deriving a unified relative sen-
sitivity coefficient. Consequently, the optimisation process continued to
utilise the TPE for RSF. MO-TT.

In the optimisation of the ASM2d, the multi-objective traditional
tuning method (MO-TT) approach typically involves aggregating all
objective values into a single objective value. This aggregation allows for a
unified measure of model performance, making it easier to optimise mul-
tiple objectives(obj) simultaneously29.

obj ¼ α1obj1 þ α2obj2 þ α3obj3 þ . . . : ð3Þ

MO-TT typically relies on expert judgment to assign weights, denoted
as α. In this optimisation process, the focus is primarily on TN and COD
values, where TN and COD are defined as obj1 and obj2, respectively, with
both α1 and α2 initially assigned a value of 1 for calculation. Subsequently,
the overall objective is defined as the sum of all individual objectives.

Since Optuna provides the NSGA-II multi-objective optimisation
algorithm, which utilises Pareto frontiers to guide the search process, this
study adopted multi-objective Optuna-based optimisation (MO-OT) to
optimise the ASM2d30. The method for performing multi-objective para-
meter tuning in Optuna was primarily based on the implementation of the
NSGA-II algorithm.First, the objectivesweredefinedas the relative errors of
TN and COD, to minimize these two relative error values simultaneously.
Next, the search spacewasdefined to include theparameters to be optimised
(e.g., Y_H, K_A_PAO, eta_NO3), with each parameter’s range set between
50% and 150% of its default value. Based on this setup, a multi-objective
optimisation function was constructed, which returned the error values for
the two objectives during each evaluation. For instance, the relative errors of
TN and COD were calculated by comparing the simulated values of the
optimised parameters to their actual values. The optimisation direction was
then set to minimisation, enabling Optuna to explore the parameter space
during trials to find parameter combinations that minimised both objective
errors as much as possible.

Using theNSGA-II algorithm,Optunawas able to handle the complex
relationships between multiple objectives simultaneously. In each genera-
tion of the population, the algorithm selected a set of Pareto front solutions
that were not dominated by any other solutions using non-dominated
sorting. It further evaluated the diversity and uniformity of the solution set
through crowding distance. With successive iterations, the algorithm gra-
dually converged to a set of Pareto-optimal solutions, containing multiple
parameter combinations that balanced TN andCODoptimally. Finally, the
Pareto front solutions were further filtered to select the parameter config-
uration that best met specific optimisation requirements31, ensuring prac-
tical applications of the ASM2d multi-objective optimisation model.

Evaluation of tuning process efficiency
The efficiency of the tuning process is evaluated as follows13. For each tuning
session, the total time required for each tuning iteration is calculated, along
with the time for each tuning step within a day. These times are then
recorded. Additionally, the number of iterations required to reach the
minimum objective value for each tuning session is tracked. By comparing
the total tuning time, the time per individual tuning step, and the number of
iterations needed to reach theminimumobjective value, the elapsed time of
different tuning methods and strategies was assessed.

Computational environment
All simulations and optimisation tasks in this study were performed on a
computer. The systemwas equipped with an Intel(R) Core(TM) i9-12900K
processor (16 cores, 24 threads), 32 GB of RAM, and an NVIDIA GeForce
RTX 4060 Ti discrete graphics card. During model training and

optimisation, the GPU remained largely idle, indicating that computations
were primarily executed on the CPU andGPUaccelerationwas not utilised.
The operating system was 64-bitWindows 10 Professional (version 22H2).
Themachine included a 477GB Samsung NVMe solid-state drive (SSD) as
the system disk and a 1.8 TB WDC mechanical hard disk (HDD) for data
storage. The SSD ensured fast system response and high read/write effi-
ciency, while the HDD was used for long-term storage of raw data and
simulation outputs. This configuration provided stable and efficient per-
formance for medium- to large-scale machine learning modelling and
simulation tasks.

Data Availability
The data and results reported in this paper are provided in full. Supple-
mentary datasets and code are available under an open-source license in
[wu-a11y/Calibrating-ASM-with-Optuna](https:/github.com/wu-a11y/
Calibrating-ASM-with-Optuna), facilitating reproducibility and further
research.
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