Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Aggregate effects of proliferating low-Earth-orbit objects and implications for astronomical data lost in the noise

Abstract

The rising population of artificial satellites and associated debris in low-altitude orbits is increasing the overall brightness of the night sky, threatening ground-based astronomy as well as a diversity of stakeholders and ecosystems reliant on dark skies. We present calculations of the potentially large rise in global sky brightness from space objects in low Earth orbit, including qualitative and quantitative assessments of how professional astronomy may be affected. Debris proliferation is of special concern: we calculate that all log-decades in debris size contribute approximately the same amount of night sky radiance, so debris-generating events are expected to lead to a rapid rise in night sky brightness along with serious collision risks for satellites from centimetre-sized objects. This increase in low-Earth-orbit traffic will lead to loss of astronomical data and diminish opportunities for ground-based discoveries as faint astrophysical signals become increasingly lost in the noise. Lastly, we discuss the broader consequences of brighter skies for a range of sky constituencies, equity/inclusion and accessibility for Earth- and space-based science, and cultural sky traditions. Space and dark skies represent an intangible heritage that deserves intentional preservation and safeguarding for future generations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: S/N as a function of background NSB for point sources in the Vera Rubin Observatory’s LSST.
Fig. 2: Exposure time required to reach a S/N of 10.

Similar content being viewed by others

References

  1. Lawrence, A. et al. The case for space environmentalism. Nat. Astron. 6, 428–435 (2022).

    Article  ADS  Google Scholar 

  2. Walker, C. et al. Impact of Satellite Constellations on Optical Astronomy and Recommendations Toward Mitigations (NOIRLab, NSF, 2020); https://aas.org/sites/default/files/2020-08/SATCON1-Report.pdf

  3. Walker, C. et al. Dark and Quiet Skies for Science and Society (International Astronomical Union, 2020); https://www.iau.org/static/publications/dqskies-book-29-12-20.pdf

  4. Hall, J. et al. Report of the SATCON2 Workshop 12-16 July 2021: Executive Summary (NOIRLab, NSF, 2021); https://noirlab.edu/public/media/archives/techdocs/pdf/techdoc031.pdf

  5. Walker, C. & Benvenuti, P. (eds) Dark and Quiet Skies for Science and Society II: Working Group Reports (NOIRLab, NSF, 2022); https://noirlab.edu/public/media/archives/techdocs/pdf/techdoc021.pdf

  6. Rawls, M. & Bektešević, D. Trailblazer (International Astronomical Union Centre for the Protection of the Dark and Quiet Sky from Satellite Constellation Interference, 2022); https://trailblazer.dirac.dev/

  7. McDowell, J. The low earth orbit satellite population and impacts of the SpaceX Starlink constellation. Astrophys. J. 892, L36 (2020).

    Article  ADS  Google Scholar 

  8. Hainaut, O. & Williams, A. Impact of satellite constellations on astronomical observations with ESO telescopes in the visible and infrared domains. Astron. Astrophys. 636, A121 (2020).

    Article  ADS  Google Scholar 

  9. Ragazzoni, R. The surface brightness of megaconstellation satellite trails on large telescopes. Publ. Astron. Soc. Pac. 132, 114502 (2020).

    Article  ADS  Google Scholar 

  10. Mróz, P. et al. Impact of the SpaceX Starlink satellites on the Zwicky Transient Facility Survey observations. Astrophys. J. Lett. 924, L30 (2022).

    Article  ADS  Google Scholar 

  11. Lawler, S., Boley, A. & Rein, H. Visibility predictions for near-future satellite megaconstellations: latitudes near 50° will experience the worst light pollution. Astron. J. 163, 21 (2021).

    Article  ADS  Google Scholar 

  12. Kocifaj, M., Kundracik, F., Barentine, J. & Bará, S. The proliferation of space objects is a rapidly increasing source of artificial night sky brightness. Mon. Not. R. Astron. Soc. Lett. 504, L40–L44 (2021).

    Article  ADS  Google Scholar 

  13. Bassa, C., Hainaut, O. & Galadí-Enríquez, D. Analytical simulations of the effect of satellite constellations on optical and near-infrared observations. Astron. Astrophys. 657, A75 (2022).

    Article  ADS  Google Scholar 

  14. Space Environment Report (European Space Agency, 2022); https://sdup.esoc.esa.int/discosweb/statistics/

  15. Yap, X.-S. & Truffer, B. Contouring ‘earth-space sustainability’. Environ. Innov. Soc. Transit. 44, 185–193 (2022).

    Article  Google Scholar 

  16. Kruk, S. et al. The impact of satellite trails on Hubble Space Telescope observations. In From Measurements to Understanding: MASTER Modelling Workshop2–4 March 2021 (eds Oikonomidou, X. et al.) (European Space Agency, 2021); https://indico.esa.int/event/370/contributions/5925/attachments/4238/6337/Sandor_Kruk_The_impact_of_satellite_trails_on_Hubble_observations_compressed.pdf

  17. Tyson, J. A. et al. Mitigation of LEO satellite brightness and trail effects on the Rubin Observatory LSST. Astron. J. 160, 226 (2020).

    Article  ADS  Google Scholar 

  18. Hasan, I., Tyson, J. A., Saunders, C., & Xin, B. Mitigating satellite trails: A study of residual light after masking. Astron. Comput. 39, 100584 (2022).

  19. Green, R., Luginbuhl, C., Wainscoat, R. & Duriscoe, D. The growing threat of light pollution to ground-based observatories. Astron. Astrophys. Rev. 30, 1 (2022).

  20. Falchi, F. et al. Light pollution indicators for all the major astronomical observatories. Mon. Not. R. Astron. Soc. 519, 26–33 (2022).

    Article  ADS  Google Scholar 

  21. Borovička, J. et al. The trajectory, structure and origin of the Chelyabinsk asteroidal impactor. Nature 503, 235–237 (2013).

    Article  ADS  Google Scholar 

  22. Impact of Satellite Constellations (Vera Rubin Observatory, 2022); https://www.lsst.org/content/lsst-statement-regarding-increased-deployment-satellite-constellations

  23. Jiang, L. et al. A possible bright ultraviolet flash from a galaxy at redshift z ≈ 11. Nat. Astron. 5, 262–267 (2020).

    Article  ADS  Google Scholar 

  24. Nir, G., Ofek, E. & Gal-Yam, A. The GN-z11-flash event can be a satellite glint. Res. Not. Am. Astron. Soc. 5, 27 (2021).

    ADS  Google Scholar 

  25. Michałowski, M., Kamiński, K., Kamińska, M. & Wnuk, E. GN-z11-flash from a man-made satellite not a gamma-ray burst at redshift 11. Nat. Astron. 5, 995–997 (2021).

    Article  ADS  Google Scholar 

  26. Ivezić, Ž. et al. LSST: from science drivers to reference design and anticipated data products. Astrophys. J. 873, 111 (2019).

    Article  ADS  Google Scholar 

  27. Sternberg, J. & Ingham, M. Observations of the airglow continuum. Mon. Not. R. Astron. Soc. 159, 1–20 (1972).

    Article  ADS  Google Scholar 

  28. NSF FY 2021 Budget Request to Congress (NSF, 2020); https://nsf.gov/about/budget/fy2021/pdf/34g_fy2021.pdf

  29. Muntoni, G., Montisci, G., Pisanu, T., Andronico, P. & Valente, G. Crowded space: a review on radar measurements for space debris monitoring and tracking. Appl. Sci. 11, 1364 (2021).

    Article  Google Scholar 

  30. Mandeville, J. & Berthoud, L. From LDEF to EURECA: orbital debris and meteoroids in low earth orbit. Adv. Space Res. 16, 67–72 (1995).

    Article  ADS  Google Scholar 

  31. Le May, S., Gehly, S., Carter, B. & Flegel, S. Space debris collision probability analysis for proposed global broadband constellations. Acta Astronaut. 151, 445–455 (2018).

    Article  ADS  Google Scholar 

  32. Mallama, A. A bidirectional reflectance distribution function for VisorSat calibrated with 10,628 magnitudes from the MMT-9 database. Preprint at https://arxiv.org/abs/2109.07345 (2021).

  33. Tregloan-Reed, J. et al. Optical-to-NIR magnitude measurements of the Starlink LEO darksat satellite and effectiveness of the darkening treatment. Astron. Astrophys. 647, A54 (2021).

  34. Mallama, A., Cole, R., Harrington, S. & Maley, P. Visual magnitude of the BlueWalker 3 satellite. Preprint at https://arxiv.org/abs/2211.09811 (2022).

  35. McDowell, J. Enormous (‘mega’) satellite constellations. Jonathan’s Space Report https://planet4589.org/space/con/conlist.html (2023).

  36. Barentine, J. Night sky brightness measurement, quality assessment and monitoring. Nat. Astron. 6, 1120–1132 (2022).

    Article  ADS  Google Scholar 

  37. Ruggles, C. Astronomy and world heritage. Proc. Int. Astron. Union 6, 12–17 (2010).

    Article  Google Scholar 

  38. Venkatesan, A., Lowenthal, J., Prem, P. & Vidaurri, M. The impact of satellite constellations on space as an ancestral global commons. Nat. Astron. 4, 1043–1048 (2020).

    Article  ADS  Google Scholar 

  39. Gullberg, S. et al. A cultural comparison of the ‘dark constellations’ in the Milky Way. J. Astron. Hist. Herit. 23, 390–404 (2020).

    Article  ADS  Google Scholar 

  40. Lee, A. et al. Indigenous astronomy: best practices and protocols for including Indigenous astronomy in the planetarium setting. In Proceedings of the 25th International Planetarium Society Conference 3-7 August 2020 (ed. Smith, D. W.) 69–77. (International Planetarium Society, 2020) https://cdn.ymaws.com/www.ips-planetarium.org/resource/resmgr/vcon2020/papers/IPS_2020.pdf

  41. Venkatesan, A. et al. in SATCON2 Working Group Reports (eds Hall, J. & Walker, C) 102 (NOIRLab, 2021).

  42. Nadybal, S., Collins, T. & Grineski, S. Light pollution inequities in the continental United States: adistributive environmental justice analysis. Environ. Res. 189, 109959 (2020).

    Article  Google Scholar 

  43. Foster, J., Smolka, J., Nilsson, D.-E. & Dacke, M. How animals follow the stars. Proc. R. Soc. B 285, 20172322 (2018).

    Article  Google Scholar 

  44. Stone, E., Harris, S. & Jones, G. Impacts of artificial lighting on bats: a review of challenges and solutions. Mamm. Biol. 80, 213–219 (2015).

  45. Pakhomov, A., Anashina, A. & Chernetsov, N. Further evidence of a time-independent stellar compass in a night-migrating songbird. Behav. Ecol. Sociobiol. 71, 48 (2017).

    Article  Google Scholar 

  46. Patrick, S., Grissom, J., Woods, S. & Newsome, U. Broadband access, district policy, and student opportunities for remote learning during COVID-19 school closures. AERA Open 7, 233285842110642 (2021).

    Article  Google Scholar 

  47. Rawls, M. et al. Satellite constellation internet affordability and need. Res. Notes Am. Astron. Soc. 4, 189 (2020).

    ADS  Google Scholar 

  48. Massey, R., Lucatello, S. & Benvenuti, P. The challenge of satellite megaconstellations. Nat. Astron. 4, 1022–1023 (2020).

    Article  ADS  Google Scholar 

  49. Lalbakhsh, A. et al. Darkening low-Earth orbit satellite constellations: a review. IEEE Access 10, 24383–24394 (2022).

    Article  Google Scholar 

  50. Cole, R. Measurement of the brightness of the Starlink spacecraft named ‘DARKSAT’. Res. Notes Am. Astron. Soc. 4, 42 (2020).

  51. Tregloan-Reed, J. et al. First observations and magnitude measurement of Starlink’s Darksat. Astron. Astrophys. 637, L1 (2020).

    Article  ADS  Google Scholar 

  52. Mallama, A. Starlink satellite brightness—characterized from 100,000 visible light magnitudes. Preprint at https://arxiv.org/abs/2111.09735 (2021).

  53. Cole, R. A sky brightness model for the Starlink ‘Visorsat’ spacecraft. Res. Notes Am. Astron. Soc. 4, 182 (2020).

  54. Horiuchi, T., Hanayama, H. & Ohishi, M. Simultaneous multicolor observations of Starlink’s Darksat by the Murikabushi Telescope with MITSuME. Astrophys. J. 905, 3 (2020).

    Article  ADS  Google Scholar 

  55. Brightness Mitigation Best Practices for Satellite Operators (SpaceX, 2022); https://api.starlink.com/public-files/BrightnessMitigationBestPracticesSatelliteOperators.pdf

  56. Byers, M., Wright, E., Boley, A. & Byers, C. Unnecessary risks created by uncontrolled rocket reentries. Nat. Astron. 6, 1093–1097 (2022).

    Article  ADS  Google Scholar 

  57. Space Innovation IB Docket No. 22-271 Mitigation of Orbital Debris in the New Space Age IB Docket No. 18-313 (Federal Communications Commission, 2022); https://www.fcc.gov/document/fcc-adopts-new-5-year-rule-deorbiting-satellites-0

  58. Shan, M., Guo, J. & Gill, E. Review and comparison of active space debris capturing and removal methods. Prog. Aerosp. Sci. 80, 18–32 (2016).

    Article  Google Scholar 

  59. Mark, C. & Kamath, S. Review of active space debris removal methods. Space Policy 47, 194–206 (2019).

    Article  Google Scholar 

  60. Rybus, T. Obstacle avoidance in space robotics: review of major challenges and proposed solutions. Prog. Aerosp. Sci. 101, 31–48 (2018).

    Article  Google Scholar 

  61. Lewis, H. Understanding long-term orbital debris population dynamics. J. Space Saf. Eng. 7, 164–170 (2020).

    Article  Google Scholar 

  62. Silk, J., Crawford, I., Elvis, M. & Zarnecki, J. Astronomy from the Moon: the next decades. Phil. Trans. R. Soc. A 379, 20190560 (2020).

    Article  ADS  Google Scholar 

  63. Spudis, P. in Toward a Theory of Spacepower (eds Lutes, C. D. & Hays, P. L.) 241–251 (Institute For National Strategic Studies, National Defense Univ. Press, 2011).

  64. Crumey, A. Human contrast threshold and astronomical visibility. Mon. Not. R. Astron. Soc. 442, 2600–2619 (2014).

    Article  ADS  Google Scholar 

  65. Bortle, J. Introducing the Bortle Dark-Sky Scale. Sky Telescope 101, 126–129 (2001).

Download references

Acknowledgements

M.K. acknowledges support from the Slovak Research and Development Agency under contract number APVV-18-0014. A.V. gratefully acknowledges support from the University of San Francisco Faculty Development Fund. The views expressed in this Perspective do not necessarily represent the positions of either the American Astronomical Society or the International Astronomical Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Barentine.

Ethics declarations

Competing interests

J.C.B., A.V., J.H. and J.L. are unpaid members of committees of the American Astronomical Society and International Astronomical Union, whose scopes of concern include the topics covered by this Perspective.

Peer review

Peer review information

Nature Astronomy thanks Piero Benvenuti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barentine, J.C., Venkatesan, A., Heim, J. et al. Aggregate effects of proliferating low-Earth-orbit objects and implications for astronomical data lost in the noise. Nat Astron 7, 252–258 (2023). https://doi.org/10.1038/s41550-023-01904-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-023-01904-2

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene