Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Seafloor hydrothermal control over ocean dynamics in Enceladus

Abstract

Cassini observations imply that there is a global ocean underneath Enceladus’s ice shell with hydrothermal seafloor activity. Previous numerical simulations showed that convection in Enceladus’s unconsolidated core may produce a heterogeneous seafloor heat flux and hydrothermal activity, potentially explaining the South Polar ice thinning and plume activity. How the ocean transports heat and hydrothermal products is the missing piece of the Enceladus puzzle. Here we perform three-dimensional numerical simulations of the ocean dynamics using a very heterogeneous bottom boundary condition from three-dimensional hydrothermal core simulations. We gradually increase the heterogeneity amplitude of the bottom heat flux until its peak-to-peak value reaches 60 times its mean. We show that a strong zonal flow diminishes low-latitude heat transfer, whereas the heat flux remains efficient in polar regions, which explains the ice shell variations derived from gravity and topography observations. Using passive tracers, we predict rising times of hours to weeks, which are compatible with previous predictions. Our simulations confirm that a strong heterogeneous seafloor heat flux concentrates upwellings at the South Pole, thus efficiently transporting organic matter from hydrothermal vents to erupting plumes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the different flow regimes.
Fig. 2: Quantitative connection between the heat flux extracted from the core and the heat flux supplied to the ice shell.
Fig. 3: Estimating the rising times of hydrothermal products.

Similar content being viewed by others

Data availability

The datasets generated during or analysed during the current study are available from the corresponding author on reasonable request. Correspondence and requests for materials should be addressed to M.B. (mathieu.bouffard@univ-nantes.fr).

Code availability

The source code is available at https://bitbucket.org/mathieubouffard/source_code_enceladus/src/master/.

References

  1. Čadek, O. et al. Long-term stability of Enceladus’ uneven ice shell. Icarus 319, 476–484 (2019).

    Article  ADS  Google Scholar 

  2. Iess, L. et al. The gravity field and interior structure of Enceladus. Science 344, 78–80 (2014).

    Article  ADS  Google Scholar 

  3. Choblet, G. et al. Powering prolonged hydrothermal activity inside Enceladus. Nat. Astron. 1, 841–847 (2017).

    Article  ADS  Google Scholar 

  4. Olson, P. & Christensen, U. R. The time-averaged magnetic field in numerical dynamos with non-uniform boundary heat flow. Geophys. J. Int. 151, 809–823 (2002).

    Article  ADS  Google Scholar 

  5. Aurnou, J., Andreadis, S., Zhu, L. & Olson, P. Experiments on convection in Earth’s core tangent cylinder. Earth Planet. Sci. Lett. 212, 119–134 (2003).

    Article  ADS  Google Scholar 

  6. Gastine, T., Wicht, J. & Aubert, J. Scaling regimes in spherical shell rotating convection. J. Fluid Mech. 808, 690–732 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  7. Busse, F. H. Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44, 441–460 (1970).

    Article  ADS  Google Scholar 

  8. Beuthe, M. Crustal control of dissipative ocean tides in Enceladus and other icy moons. Icarus 280, 278–299 (2016).

    Article  ADS  Google Scholar 

  9. Hsu, H. W. et al. Ongoing hydrothermal activities within Enceladus. Nature 519, 207–210 (2015).

    Article  ADS  Google Scholar 

  10. Sekine, Y. et al. High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat. Commun. 6, 8604 (2015).

    Article  ADS  Google Scholar 

  11. Schoenfeld, A. M. et al. Particle entrainment and rotating convection in Enceladus’ ocean. Commun. Earth Environ. 4, 28 (2023).

    Article  ADS  Google Scholar 

  12. Jansen, M. F., Kang, W., Kite, E. S. & Zeng, Y. Energetic constraints on ocean circulations of icy ocean worlds. Planet. Sci. J. 4, 117 (2023).

    Article  Google Scholar 

  13. Zeng, Y. & Jansen, M. F. Ocean circulation on Enceladus with a high- versus low-salinity ocean. Planet. Sci. J. 2, 151 (2021).

    Article  Google Scholar 

  14. Kang, W., Mittal, T., Bire, S., Campin, J. M. & Marshall, J. How does salinity shape ocean circulation and ice geometry on Enceladus and other icy satellites? Sci. Adv. 8, eabm4665 (2022).

    Article  Google Scholar 

  15. Ashkenazy, Y. & Tziperman, E. Dynamic Europa ocean shows transient Taylor columns and convection driven by ice melting and salinity. Nat. Commun. 12, 6376 (2021).

    Article  ADS  Google Scholar 

  16. Lobo, A. H., Thompson, A. F., Vance, S. D. & Tharimena, S. A pole-to-equator ocean overturning circulation on Enceladus. Nat. Geosci. 14, 185–189 (2021).

    Article  ADS  Google Scholar 

  17. Hemingway, D. J., Rudolph, M. L. & Manga, M. Cascading parallel fractures on Enceladus. Nat. Astron. 4, 234–239 (2020).

    Article  ADS  Google Scholar 

  18. Souček, O. et al. Tidal dissipation in Enceladus’ uneven, fractured ice shell. Icarus 328, 218–231 (2019).

    Article  ADS  Google Scholar 

  19. Kang, W. & Flierl, G. Spontaneous formation of geysers at only one pole on Enceladus’s ice shell. Proc. Natl Acad. Sci. USA 117, 14764–14768 (2020).

    Article  ADS  Google Scholar 

  20. Jones, H. & Marshall, J. Convection with rotation in a neutral ocean: a study of open-ocean deep convection. J. Phys. Oceanogr. 23, 1009–1039 (1993).

    Article  ADS  Google Scholar 

  21. Haine, T. W. & Marshall, J. Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr. 28, 634–658 (1998).

    Article  ADS  Google Scholar 

  22. Bush, J. W. & Woods, A. W. Vortex generation by line plumes in a rotating stratified fluid. J. Fluid Mech. 388, 289–313 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  23. Amit, H., Aubert, J. & Hulot, G. Stationary, oscillating or drifting mantle-driven geomagnetic flux patches? J. Geophys. Res.: Solid Earth https://doi.org/10.1029/2009JB006542 (2010).

  24. Amit, H. et al. Cooling patterns in rotating thin spherical shells – application to Titan’s subsurface ocean. Icarus 338, 113509 (2020).

    Article  Google Scholar 

  25. Terra-Nova, F. et al. The influence of heterogeneous seafloor heat flux on the cooling patterns of Ganymede’s and Titan’s subsurface oceans. Icarus 389, 115232 (2023).

    Article  Google Scholar 

  26. Glein, C. R., Zolotov, M. Y. & Shock, E. L. The oxidation state of hydrothermal systems on early Enceladus. Icarus 197, 157–163 (2008).

    Article  ADS  Google Scholar 

  27. Couston, L. A. & Siegert, M. Dynamic flows create potentially habitable conditions in Antarctic subglacial lakes. Sci. Adv. 7, eabc3972 (2021).

    Article  ADS  Google Scholar 

  28. Postberg, F. et al. Macromolecular organic compounds from the depths of Enceladus. Nature 558, 564–568 (2018).

    Article  ADS  Google Scholar 

  29. Choblet, G. et al. Enceladus as a potential oasis for life: science goals and investigations for future explorations. Exp. Astron. 54, 809–847 (2022).

    Article  ADS  Google Scholar 

  30. Aubert, J., Aurnou, J. & Wicht, J. The magnetic structure of convection-driven numerical dynamos. Geophys. J. Int. 172, 945–956 (2008).

    Article  ADS  Google Scholar 

  31. Aubert, J., Gastine, T. & Fournier, A. Spherical convective dynamos in the rapidly rotating asymptotic regime. J. Fluid Mech. 813, 558–593 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  32. Schaeffer, N., Jault, D., Nataf, H. C. & Fournier, A. Turbulent geodynamo simulations: a leap towards Earth’s core. Geophys. J. Int. 211, 1–29 (2017).

    Article  ADS  Google Scholar 

  33. Howett, C. J. A., Spencer, J. R., Pearl, J. & Segura, M. High heat flux from Enceladus’ south polar region measured using 10–600 cm−1 Cassini/CIRS data. J. Geophys. Res.: Planets https://doi.org/10.1029/2010JE003718 (2011).

  34. Ingersoll, A. P. & Pankine, A. A. Subsurface heat transfer on Enceladus: conditions under which melting occurs. Icarus 206, 594–607 (2010).

    Article  ADS  Google Scholar 

  35. Kite, E. S. & Rubin, A. M. Sustained eruptions on Enceladus explained by turbulent dissipation in tiger stripes. Proc. Natl Acad. Sci. USA 113, 3972–3975 (2016).

    Article  ADS  Google Scholar 

  36. Bouffard, M. et al. A particle-in-cell method for studying double-diffusive convection in the liquid layers of planetary interiors. J. Comput. Phys. 346, 552–571 (2017).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Simulations were performed at the CCIPL facility (Centre de Calcul Intensif des Pays de la Loire, Nantes, France). We acknowledge financial support from the French Agence Nationale de Recherche (Project ANR COLOSSE and Grant No. ANR-2020-CE49-0010 to G.C). F.T.-N. is supported by the Centre National des Études Spatiales France. O.Č. is a member of the Nečas Center for Numerical Modeling. H.A. acknowledges financial support from the French Agence Nationale de Recherche, project DYRE-COMB (grant ANR-22-CE49-0016-01).

Author information

Authors and Affiliations

Authors

Contributions

G.C. conceived the idea for the study. M.B. modified the PARODY code, performed the simulations, processed the data, wrote the manuscript and made the figures. All authors contributed to data analysis and interpretation, as well as manuscript writing and wording.

Corresponding author

Correspondence to Mathieu Bouffard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks John Marshall, Steven Vance and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary sections, Tables 1 and 2, and Figs. 1–9.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouffard, M., Choblet, G., Amit, H. et al. Seafloor hydrothermal control over ocean dynamics in Enceladus. Nat Astron 9, 650–657 (2025). https://doi.org/10.1038/s41550-025-02490-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-025-02490-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing