Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence of the fast acceleration of AGN-driven winds at kiloparsec scales

Abstract

Supermassive black holes at the centres of galaxies gain mass through accretion disks. Different models predict that quasi-spherical winds, expelled by black holes during accretion, have a key role in galaxy evolution through regulating star formation and the distribution of metals over kiloparsec scales and sweeping ambient gas to the outskirts of galaxies. Nonetheless, the mechanism that drives these outflows and the amount of energy exchanged between the wind and the galaxy’s interstellar medium remain unclear. Here we analyse the kinematic properties of these winds in a sample of nearby active galaxies using the MOKA3D model, which reproduces the clumpy nature of the interstellar medium. We provide evidence that outflows exhibit a regular radial velocity trend—initially constant or slightly decreasing, followed by rapid acceleration starting at approximately 1 kpc from the nucleus—despite the seemingly complex kinematics. The observed behaviour is consistent with current theoretical understanding of active galactic nucleus outflows, where a momentum-driven phase transitions to an energy-conserving phase beyond 1 kpc. The constant velocity of the momentum-driven wind is then rapidly accelerated following inefficient Compton cooling of post-shock material. The measured radial terminal velocities of the outflows are larger than the escape velocities from the host galaxies, confirming the role of outflows in shaping galaxy evolution as a manifestation of active galactic nucleus feedback.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison between observed and modelled moment maps for NGC 1365.
Fig. 2: Intrinsic outflow radial velocity profile as a function of the distance from the AGN in logarithmic scale.
Fig. 3: Ratio between the outflow intrinsic radial velocity and the host galaxy escape velocity as a function of the distance from the AGN.

Similar content being viewed by others

Data availability

All data are public and available on the ESO archive processed data portal at https://archive.eso.org/scienceportal/home.

References

  1. Tombesi, F. et al. Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines. Astron. Astrophys. 521, A57 (2010).

    Article  Google Scholar 

  2. Sturm, E. et al. Massive molecular outflows and negative feedback in ULIRGs observed by Herschel-PACS. Mon. Not. R. Astron. Soc. 733, L16 (2011).

    Google Scholar 

  3. Cicone, C. et al. Massive molecular outflows and evidence for AGN feedback from CO observations. Astron. Astrophys. 562, A21 (2014).

    Article  Google Scholar 

  4. Cresci, G. et al. Blowin’ in the wind: both negative and positive feedback in an obscured high quasar. Astrophys. J. 799, 82 (2015).

    Article  ADS  Google Scholar 

  5. Carniani, S. et al. Ionised outflows in z ~ 2.4 quasar host galaxies. Astron. Astrophys. 580, A102 (2015).

    Article  Google Scholar 

  6. Carniani, S. et al. Fast outflows and star formation quenching in quasar host galaxies. Astron. Astrophys. 591, A28 (2016).

    Article  Google Scholar 

  7. Cicone, C. et al. The largely unconstrained multiphase nature of outflows in AGN host galaxies. Nat. Astron. 2, 176–178 (2018).

    Article  ADS  Google Scholar 

  8. Harrison, C. M. et al. AGN outflows and feedback twenty years on. Nat. Astron. 2, 198–205 (2018).

    Article  ADS  Google Scholar 

  9. Fluetsch, A. et al. Cold molecular outflows in the local Universe and their feedback effect on galaxies. Mon. Not. R. Astron. Soc. 483, 4586–4614 (2019).

    ADS  Google Scholar 

  10. Pérez-González, P. G. et al. The stellar mass assembly of galaxies from z = 0 to z = 4: analysis of a sample selected in the rest-frame near-infrared with Spitzer. Astrophys. J. 675, 234–261 (2008).

    Article  ADS  Google Scholar 

  11. Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

    Article  ADS  Google Scholar 

  12. Zubovas, K. & King, A. Clearing out a galaxy. Astrophys. J. Lett. 745, L34 (2012).

    Article  ADS  Google Scholar 

  13. Cresci, G. & Maiolino, R. Observing positive and negative AGN feedback. Nat. Astron. 2, 179–180 (2018).

    Article  ADS  Google Scholar 

  14. Cano-Díaz, M. et al. Observational evidence of quasar feedback quenching star formation at high redshift. Astron. Astrophys. 537, L8 (2012).

    Article  ADS  Google Scholar 

  15. Harrison, C. M., Alexander, D. M., Mullaney, J. R. & Swinbank, A. M. Kiloparsec-scale outflows are prevalent among luminous AGN: outflows and feedback in the context of the overall AGN population. Mon. Not. R. Astron. Soc. 441, 3306–3347 (2014).

    Article  ADS  Google Scholar 

  16. Mingozzi, M. et al. The MAGNUM survey: different gas properties in the outflowing and disc components in nearby active galaxies with MUSE. Astron. Astrophys. 622, A146 (2019).

    Article  Google Scholar 

  17. Kakkad, D. et al. Dissecting the active galactic nucleus in Circinus – IV. MUSE-NFM observations unveil a tuning-fork ionized outflow morphology. Mon. Not. R. Astron. Soc. 519, 5324–5332 (2023).

    Article  ADS  Google Scholar 

  18. Speranza, G. et al. Multiphase characterization of AGN winds in five local type-2 quasars. Astron. Astrophys. 681, A63 (2024).

    Article  Google Scholar 

  19. Chu, B. R. et al. DUVET: sub-kiloparsec resolved star formation driven outflows in a sample of local starbursting disk galaxies. Mon. Not. R. Astron. Soc. 536, 1799–1821 (2025).

    Google Scholar 

  20. Lai, T. S.-Y. et al. GOALS-JWST: tracing AGN feedback on the star-forming interstellar medium in NGC 7469. Astrophys. J. Lett. 941, L36 (2022).

    Article  ADS  Google Scholar 

  21. Crenshaw, D. M. et al. A kinematic model for the narrow-line region in NGC 4151. Astron. J. 120, 1731–1738 (2000).

    Article  ADS  Google Scholar 

  22. Das, V. et al. Mapping the kinematics of the narrow-line region in the Seyfert galaxy NGC 4151. Astron. J. 130, 945–956 (2005).

    Article  ADS  Google Scholar 

  23. Storchi-Bergmann, T. et al. Feeding versus feedback in NGC 4151 probed with Gemini NIFS – I. Excitation. Mon. Not. R. Astron. Soc. 394, 1148–1166 (2009).

    Article  ADS  Google Scholar 

  24. Marconcini, C. et al. MOKA3D: an innovative approach to 3D gas kinematic modelling. I. Application to AGN ionised outflows. Astron. Astrophys. 677, A58 (2023).

    Article  Google Scholar 

  25. Cresci, G. et al. The MAGNUM survey: positive feedback in the nuclear region of NGC 5643 suggested by MUSE. Astron. Astrophys. 582, A63 (2015).

    Article  Google Scholar 

  26. Venturi, G. et al. MAGNUM survey: a MUSE-Chandra resolved view on ionized outflows and photoionization in the Seyfert galaxy NGC1365. Astron. Astrophys. 619, A74 (2018).

    Article  Google Scholar 

  27. King, A. Black holes, galaxy formation, and the MBH-σ relation. Astrophys. J. Lett. 596, L27–L29 (2003).

    Article  ADS  Google Scholar 

  28. Ciotti, L. & Ostriker, J. P. Cooling flows and quasars: different aspects of the same phenomenon? I. Concepts. Mon. Not. R. Astron. Soc. Lett. 487, L105–L108 (1997).

    Google Scholar 

  29. King, A. R., Zubovas, K. & Power, C. Large-scale outflows in galaxies. Mon. Not. R. Astron. Soc. 415, L6–L10 (2011).

    Article  ADS  Google Scholar 

  30. King, A. R. & Pounds, K. A. Black hole winds. Mon. Not. R. Astron. Soc. 345, 657–659 (2003).

    Article  ADS  Google Scholar 

  31. Veilleux, S., Maiolino, R., Bolatto, A. D. & Aalto, S. Cool outflows in galaxies and their implications. Astron. Astrophys. Rev. 28, 2 (2020).

    Article  ADS  Google Scholar 

  32. Feruglio, C. et al. The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow. Astron. Astrophys. 583, A99 (2015).

    Article  Google Scholar 

  33. Di Matteo, T., Springel, V. & Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604–607 (2005).

    Article  ADS  Google Scholar 

  34. Manzano-King, C. M., Canalizo, G. & Sales, L. V. AGN-driven outflows in dwarf galaxies. Astrophys. J. 884, 54 (2019).

    Article  ADS  Google Scholar 

  35. Smethurst, R. J. et al. Kiloparsec-scale AGN outflows and feedback in merger-free galaxies. Mon. Not. R. Astron. Soc. 507, 3985–3997 (2021).

    Article  ADS  Google Scholar 

  36. Cresci, G. et al. Bubbles and outflows: the novel JWST/NIRSpec view of the z = 1.59 obscured quasar XID2028. Astron. Astrophys. 672, A128 (2023).

    Article  Google Scholar 

  37. Perna, M. et al. GA-NIFS: a galaxy-wide outflow in a Compton-thick mini-BAL quasar at z = 3.5 probed in emission and absorption. Astron. Astrophys. 694, A170 (2025). `.

    Article  Google Scholar 

  38. Ulivi, L. et al. JWST/NIRSpec insights into the circumnuclear region of Arp 220: a detailed kinematic study. Astron. Astrophys. 693, A36 (2025).

    Article  Google Scholar 

  39. Bacon, R. et al. The MUSE second-generation VLT instrument. Proc. SPIE 7735, 773508 (2010).

    Article  Google Scholar 

  40. Marasco, A. et al. Galaxy-scale ionised winds driven by ultra-fast outflows in two nearby quasars. Astron. Astrophys. 644, A15 (2020).

    Article  Google Scholar 

  41. Tozzi, G. et al. Connecting X-ray nuclear winds with galaxy-scale ionised outflows in two z ~ 1.5 lensed quasars. Astron. Astrophys. 648, A99 (2021).

    Article  ADS  Google Scholar 

  42. Maiolino, R. & Rieke, G. H. Low-luminosity and obscured Seyfert nuclei in nearby galaxies. Astrophys. J. 454, 95 (1995).

    Article  ADS  Google Scholar 

  43. Risaliti, G., Maiolino, R. & Salvati, M. The distribution of absorbing column densities among Seyfert 2 galaxies. Astrophys. J. 522, 157–164 (1999).

    Article  ADS  Google Scholar 

  44. Baumgartner, W. H. et al. The 70 month Swift-BAT all-sky hard X-ray survey. Astrophys. J. Suppl. Ser. 207, 19 (2013).

    Article  ADS  Google Scholar 

  45. Zanchettin, M. V. et al. NGC 2992: interplay between the multiphase disc, wind, and radio bubbles. Astron. Astrophys. 679, A88 (2023).

    Article  Google Scholar 

  46. Elmouttie, M., Haynes, R. F., Jones, K. L., Sadler, E. M. & Ehle, M. Radio continuum evidence for nuclear outflow in the Circinus galaxy. Mon. Not. R. Astron. Soc. 297, 1202–1218 (1998).

    Article  ADS  Google Scholar 

  47. Fischer, T. C. et al. Modeling the outflow in the narrow-line region of Markarian 573: biconical illumination of a gaseous disk. Astron. J. 140, 577–583 (2010).

    Article  ADS  Google Scholar 

  48. Müller-Sánchez, F. et al. Outflows from active galactic nuclei: kinematics of the narrow-line and coronal-line regions in Seyfert galaxies. Astrophys. J. 739, 69 (2011).

    Article  ADS  Google Scholar 

  49. Bae, H.-J. & Woo, J.-H. The prevalence of gas outflows in type 2 AGNs. II. 3D biconical outflow models. Astrophys. J. 828, 97 (2016).

    Article  ADS  Google Scholar 

  50. Venturi, G. et al. MAGNUM survey: compact jets causing large turmoil in galaxies. Enhanced line widths perpendicular to radio jets as tracers of jet-ISM interaction. Astron. Astrophys. 648, A17 (2021).

    Article  Google Scholar 

  51. Fonseca-Faria, M. A., Rodríguez-Ardila, A., Contini, M. & Reynaldi, V. The ionized gas outflow in the Circinus galaxy: kinematics and physical conditions. Mon. Not. R. Astron. Soc. 506, 3831–3852 (2021).

    Article  ADS  Google Scholar 

  52. Kakkad, D. et al. BASS XXXI: outflow scaling relations in low redshift X-ray AGN host galaxies with MUSE. Mon. Not. R. Astron. Soc. 511, 2105–2124 (2022).

    Article  ADS  Google Scholar 

  53. Venturi, G. et al. Ionized gas outflows from the MAGNUM survey: NGC 1365 and NGC 4945. Front. Astron. Space Sci. 4, 46 (2017).

    Article  ADS  Google Scholar 

  54. Durré, M. & Mould, J. The AGN ionization cones of NGC 5728. II. Kinematics. Astrophys. J. 870, 37 (2019).

    Article  ADS  Google Scholar 

  55. Shimizu, T. T. et al. The multiphase gas structure and kinematics in the circumnuclear region of NGC 5728. Mon. Not. R. Astron. Soc. 490, 5860–5887 (2019).

    Article  ADS  Google Scholar 

  56. Guolo-Pereira, M. et al. Exploring the AGN-merger connection in Arp 245 I: nuclear star formation and gas outflow in NGC 2992. Mon. Not. R. Astron. Soc. 502, 3618–3637 (2021).

    Article  ADS  Google Scholar 

  57. García-Bernete, I. et al. Multiphase feedback processes in the Sy2 galaxy NGC 5643. Astron. Astrophys. 645, A21 (2021).

    Article  Google Scholar 

  58. Juneau, S. et al. The black hole–galaxy connection: interplay between feedback, obscuration, and host galaxy substructure. Astrophys. J. 925, 203 (2022).

    Article  ADS  Google Scholar 

  59. Tozzi, G. et al. SUPER VIII. Fast and furious at z ~ 2: obscured type-2 active nuclei host faster ionised winds than type-1 systems. Astron. Astrophys. 690, A141 (2024).

    Article  Google Scholar 

  60. Bovy, J. galpy: a python library for galactic dynamics. Astrophys. J. Suppl. Ser 216, 29 (2015).

    Article  ADS  Google Scholar 

  61. Girelli, G. et al. The stellar-to-halo mass relation over the past 12 Gyr. I. Standard ΛCDM model. Astron. Astrophys. 634, A135 (2020).

    Article  Google Scholar 

  62. Dutton, A. A. & Macciò, A. V. Cold dark matter haloes in the Planck era: evolution of structural parameters for Einasto and NFW profiles. Mon. Not. R. Astron. Soc. 441, 3359–3374 (2014).

    Article  ADS  Google Scholar 

  63. Mowla, L., van der Wel, A., van Dokkum, P. & Miller, T. B. A mass-dependent slope of the galaxy size–mass relation out to z ~ 3: further evidence for a direct relation between median galaxy size and median halo mass. Astrophys. J. Lett. 872, L13 (2019).

    Article  ADS  Google Scholar 

  64. Greenhill, L. J., Moran, J. M. & Herrnstein, J. R. The distribution of H2O maser emission in the nucleus of NGC 4945. Mon. Not. R. Astron. Soc. Lett. 481, L23–L26 (1997).

    Google Scholar 

  65. Davis, B. L. et al. The black hole mass function derived from local spiral galaxies. Astrophys. J. 789, 124 (2014).

    Article  ADS  Google Scholar 

  66. Wold, M., Lacy, M., Käufl, H. U. & Siebenmorgen, R. The nuclear regions of NGC 7582 from [Ne II] spectroscopy at 12.8 μm – an estimate of the black hole mass. Astron. Astrophys. 460, 449–457 (2006).

    Article  ADS  Google Scholar 

  67. Cappellari, M. et al. The mass of the black hole in Centaurus A from SINFONI AO-assisted integral-field observations of stellar kinematics. Mon. Not. R. Astron. Soc. 394, 660–674 (2009).

    Article  ADS  Google Scholar 

  68. Caglar, T. et al. LLAMA: the MBH-σ relation of the most luminous local AGNs. Astron. Astrophys. 634, A114 (2020).

    Article  Google Scholar 

  69. Goulding, A. D., Alexander, D. M., Lehmer, B. D. & Mullaney, J. R. Towards a complete census of active galactic nuclei in nearby galaxies: the incidence of growing black holes. Mon. Not. R. Astron. Soc. 406, 597–611 (2010).

    Article  ADS  Google Scholar 

  70. López-Cobá, C. et al. The AMUSING++ nearby galaxy compilation. I. Full sample characterization and galactic-scale outflow selection. Astron. J. 159, 167 (2020).

    Article  ADS  Google Scholar 

  71. For, B.-Q., Koribalski, B. S. & Jarrett, T. H. Gas and star formation in the Circinus galaxy. Mon. Not. R. Astron. Soc. 425, 1934–1950 (2012).

    Article  ADS  Google Scholar 

  72. Koss, M. J. et al. BAT AGN spectroscopic survey. XX. Molecular gas in nearby hard-X-ray-selected AGN galaxies. Astrophys. J. Suppl. Ser. 252, 29 (2021).

    Article  ADS  Google Scholar 

  73. Dahlem, M. et al. The distribution of CO in NGC 4945. Astron. Astrophys. 270, 29–42 (1993).

    ADS  Google Scholar 

  74. Dahlem, M. Intergalactic neutral hydrogen gas in the Grus quartet of galaxies. Astron. Astrophys. 429, L5–L8 (2005).

    Article  ADS  Google Scholar 

  75. Parkin, T. J. et al. The gas-to-dust mass ratio of Centaurus A as seen by Herschel. Mon. Not. R. Astron. Soc. 422, 2291–2301 (2012).

    Article  ADS  Google Scholar 

  76. Lianou, S., Barmby, P., Mosenkov, A. A., Lehnert, M. & Karczewski, O. Dust properties and star formation of approximately a thousand local galaxies. Astron. Astrophys. 631, A38 (2019).

    Article  ADS  Google Scholar 

  77. Jorsater, S. & van Moorsel, G. A. High resolution neutral hydrogen observations of the barred spiral galaxy NGC 1365. Astron. J. 110, 2037 (1995).

    Article  ADS  Google Scholar 

  78. Morganti, R. et al. The fast molecular outflow in the Seyfert galaxy IC 5063 as seen by ALMA. Astron. Astrophys. 580, A1 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

C.M., G.C., A.M., F.M., F.B., E.B. and G.V. acknowledge the support of the INAF Large Grant 2022 ‘The metal circle: a new sharp view of the baryon cycle up to Cosmic Dawn with the latest generation IFU facilities’. C.M., G.C., A.M., G.T., F.M., F.B. and E.B. also acknowledge the support of grant number PRIN-MUR 2020ACSP5K_002 financed by the European Union–Next Generation EU. E.D.T. is supported by the European Research Council (ERC) under grant agreement number 101040751. A.M., F.M. and G.C. acknowledge support from the PRIN-MUR project ‘PROMETEUS’ financed by the European Union–Next Generation EU Mission 4 Component 1 CUP B53D23004750006. S.C. and G.V. acknowledge funding from the European Union (ERC, WINGS, grant number 101040227). G.T. acknowledges financial support from the ERC Advanced Grant under the European Union’s Horizon Europe research and innovation programme (grant agreement AdG GALPHYS, number 101055023).

Author information

Authors and Affiliations

Authors

Contributions

C.M. and A.M. designed and coordinated the work, prepared the figures and drafted the manuscript. All authors contributed to the analysis and interpretation of the data, the results and the final text.

Corresponding author

Correspondence to Cosimo Marconcini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Vincenzo Maineri and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–3, Figs. 1–16 and References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marconcini, C., Marconi, A., Cresci, G. et al. Evidence of the fast acceleration of AGN-driven winds at kiloparsec scales. Nat Astron 9, 907–915 (2025). https://doi.org/10.1038/s41550-025-02518-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41550-025-02518-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing