Abstract
The Chandra X-ray Observatory is a mainstay of modern observational astrophysics. With the highest angular resolution of any X-ray facility, its imaging and spectral capabilities in the 0.5–10 keV band have led to both unique and complementary breakthroughs in nearly all areas of the field. Now, more than a quarter of a century into its mission, Chandra continues to provide invaluable information on the contributions of compact objects to the evolution of galaxies, the nature of supernova explosions, the impact of energetic jets from supermassive black holes on their host environments and the fate of exoplanet atmospheres in systems rich with stellar flares. Here we provide a summary of Chandra results—one that is embarrassingly incomplete, but representative of both the exquisite past and promising future of Chandra’s contributions to high-energy astrophysics and all of mainstream astronomy.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Wilkes, B. & Tucker, W. The Chandra X-ray Observatory: Exploring the High Energy Universe (IOP, 2019).
Favata, F. & Micela, G. Stellar coronal astronomy. Space Sci. Rev. 108, 577–708 (2003).
Getman, K. V., Feigelson, E. D. & Kuhn, M. A. Core-halo age gradients and star formation in the Orion Nebula and NGC 2024 young stellar clusters. Astrophys. J. 787, 109 (2014).
Kuhn, M. A. et al. The spatial structure of young stellar clusters. I. Subclusters. Astrophys. J. 787, 107 (2014).
Kuhn, M. A., Getman, K. V. & Feigelson, E. D. The spatial structure of young stellar clusters. II. Total young stellar populations. Astrophys. J. 802, 60 (2015).
Brickhouse, N. S., Cranmer, S. R., Dupree, A. K., Luna, G. J. M. & Wolk, S. A deep Chandra X-ray spectrum of the accreting young star TW Hydrae. Astrophys. J. 710, 1835–1847 (2010).
Audard, M. et al. in Protostars and Planets VI (eds Beuther, H. et al.) 387–410 (Univ. Arizona Press, 2014).
Liebhart, A., Güdel, M., Skinner, S. L. & Green, J. X-ray emission from an FU Orionis star in early outburst: HBC 722. Astron. Astrophys. 570, L11 (2014).
Skinner, S. L. & Güdel, M. Chandra resolves the double FU Orionis system RNO 1B/1C in X-rays. Astron. J. 159, 221 (2020).
Skinner, S. L., Güdel, M., Briggs, K. R. & Lamzin, S. A. Chandra reveals variable multi-component X-ray emission from FU Orionis. Astrophys. J. 722, 1654–1665 (2010).
Pravdo, S. H. et al. Discovery of X-rays from the protostellar outflow object HH2. Nature 413, 708–711 (2001).
Guarcello, M. G. et al. Photoevaporation and close encounters: how the environment around Cygnus OB2 affects the evolution of protoplanetary disks. Astrophys. J. Suppl. Ser. 269, 13 (2023).
Segura, A., Walkowicz, L. M., Meadows, V., Kasting, J. & Hawley, S. The effect of a strong stellar flare on the atmospheric chemistry of an Earth-like planet orbiting an M dwarf. Astrobiology 10, 751–771 (2010).
Argiroffi, C. et al. A stellar flare-coronal mass ejection event revealed by X-ray plasma motions. Nat. Astron. 3, 742–748 (2019).
Pooley, D. et al. X-ray, optical, and radio observations of the type II supernovae 1999em and 1998S. Astrophys. J. 572, 932–943 (2002).
Soderberg, A. M., Chevalier, R. A., Kulkarni, S. R. & Frail, D. A. The radio and X-ray luminous SN 2003bg and the circumstellar density variations around radio supernovae. Astrophys. J. 651, 1005–1018 (2006).
Misra, K. et al. Type IIP supernova SN 2004et: a multiwavelength study in X-ray, optical and radio. Mon. Not. R. Astron. Soc. 381, 280–292 (2007).
Brethauer, D. et al. Seven years of coordinated Chandra-NuSTAR observations of SN 2014C unfold the extreme mass-loss history of its stellar progenitor. Astrophys. J. 939, 105 (2022).
Thomas, B. P. et al. Seven years of SN 2014C: a multiwavelength synthesis of an extraordinary supernova. Astrophys. J. 930, 57 (2022).
Mauerhan, J. C. et al. Stripped-envelope supernova SN 2004dk is now interacting with hydrogen-rich circumstellar material. Mon. Not. R. Astron. Soc. 478, 5050–5055 (2018).
Pooley, D. et al. Interaction of SN Ib 2004dk with a previously expelled envelope. Astrophys. J. 883, 120 (2019).
Miller, J. M. et al. The accretion disk wind in the black hole GRO J1655-40. Astrophys. J. 680, 1359–1377 (2008).
Fabbiano, G. X-ray populations in galaxies. Adv. Space Res. 38, 2937–2941 (2006).
Mineo, S., Gilfanov, M. & Sunyaev, R. X-ray emission from star-forming galaxies – I. High-mass X-ray binaries. Mon. Not. R. Astron. Soc. 419, 2095–2115 (2012).
Boroson, B., Kim, D.-W. & Fabbiano, G. Revisiting with Chandra the scaling relations of the X-ray emission components (binaries, nuclei, and hot gas) of early-type galaxies. Astrophys. J. 729, 12 (2011).
Lehmer, B. D. et al. The evolution of normal galaxy X-ray emission through cosmic history: constraints from the 6 MS Chandra deep field-south. Astrophys. J. 825, 7 (2016).
Madau, P. & Fragos, T. Radiation backgrounds at cosmic dawn: X-rays from compact binaries. Astrophys. J. 840, 39 (2017).
Pacucci, F., Mesinger, A., Mineo, S. & Ferrara, A. The X-ray spectra of the first galaxies: 21 cm signatures. Mon. Not. R. Astron. Soc. 443, 678–686 (2014).
Ivanova, N. et al. Common envelope evolution: where we stand and how we can move forward. Astron. Astrophys. Rev. 21, 59 (2013).
Clark, G. W. X-ray binaries in globular clusters. Astrophys. J. Lett. 199, L143–L145 (1975).
Katz, J. I. Two kinds of stellar collapse. Nature 253, 698–699 (1975).
Hertz, P. & Grindlay, J. E. X-ray evidence for white dwarf binaries in globular clusters. Astrophys. J. Lett. 267, L83–L87 (1983).
Hertz, P. & Grindlay, J. E. An X-ray survey of globular clusters and their X-ray luminosity function. Astrophys. J. 275, 105–119 (1983).
Verbunt, F. A census with ROSAT of low-luminosity X-ray sources in globular clusters. Astron. Astrophys. 368, 137–159 (2001).
Grindlay, J. E., Heinke, C., Edmonds, P. D. & Murray, S. S. High-resolution X-ray imaging of a globular cluster core: compact binaries in 47Tuc. Science 292, 2290–2295 (2001).
Grindlay, J. E., Heinke, C. O., Edmonds, P. D., Murray, S. S. & Cool, A. M. Chandra exposes the core-collapsed globular cluster NGC 6397. Astrophys. J. Lett. 563, L53–L56 (2001).
Pooley, D. et al. Optical identification of multiple faint X-ray sources in the globular cluster NGC 6752: evidence for numerous cataclysmic variables. Astrophys. J. 569, 405–417 (2002).
Rutledge, R. E., Bildsten, L., Brown, E. F., Pavlov, G. G. & Zavlin, V. E. A possible transient neutron star in quiescence in the globular cluster NGC 5139. Astrophys. J. 578, 405–412 (2002).
Pooley, D. et al. Chandra observation of the globular cluster NGC 6440 and the nature of cluster X-ray luminosity functions. Astrophys. J. 573, 184–190 (2002).
Pooley, D. et al. Dynamical formation of close binary systems in globular clusters. Astrophys. J. Lett. 591, L131–L134 (2003).
Heinke, C. O. et al. Analysis of the quiescent low-mass X-ray binary population in galactic globular clusters. Astrophys. J. 598, 501–515 (2003).
Gendre, B., Barret, D. & Webb, N. A. An XMM-Newton observation of the globular cluster Omega Centauri. Astron. Astrophys. 400, 521–531 (2003).
Pooley, D. & Hut, P. Dynamical formation of close binaries in globular clusters: cataclysmic variables. Astrophys. J. Lett. 646, L143–L146 (2006).
Haggard, D. et al. A deep Chandra X-ray study of neutron star coalescence GW170817. Astrophys. J. Lett. 848, L25 (2017).
Margutti, R. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. V. Rising X-ray emission from an off-axis jet. Astrophys. J. Lett. 848, L20 (2017).
Troja, E. et al. The X-ray counterpart to the gravitational-wave event GW170817. Nature 551, 71–74 (2017).
Troja, E. et al. A thousand days after the merger: continued X-ray emission from GW170817. Mon. Not. R. Astron. Soc. 498, 5643–5651 (2020).
Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).
Piro, L. et al. A long-lived neutron star merger remnant in GW170817: constraints and clues from X-ray observations. Mon. Not. R. Astron. Soc. 483, 1912–1921 (2019).
Hughes, J. P., Rakowski, C. E., Burrows, D. N. & Slane, P. O. Nucleosynthesis and mixing in Cassiopeia A. Astrophys. J. Lett. 528, L109–L113 (2000).
Hwang, U. & Laming, J. M. A Chandra X-ray survey of ejecta in the Cassiopeia A supernova remnant. Astrophys. J. 746, 130 (2012).
Milisavljevic, D. et al. A JWST survey of the supernova remnant Cassiopeia A. Astrophys. J. Lett. 965, L27 (2024).
Shternin, P. S., Ofengeim, D. D., Heinke, C. O. & Ho, W. C. G. Constraints on neutron star superfluidity from the cooling neutron star in Cassiopeia A using all Chandra ACIS-S observations. Mon. Not. R. Astron. Soc. 518, 2775–2793 (2023).
Frank, K. A. et al. Chandra observes the end of an era in SN 1987A. Astrophys. J. 829, 40 (2016).
Ravi, A. P. et al. Latest evolution of the X-ray remnant of SN 1987A: beyond the inner ring. Astrophys. J. 966, 147 (2024).
Reynolds, S. P. et al. A dep Chandra observation of Kepler’s supernova remnant: a type Ia event with circumstellar interaction. Astrophys. J. Lett. 668, L135–L138 (2007).
Lopez, L. A., Ramirez-Ruiz, E., Huppenkothen, D., Badenes, C. & Pooley, D. A. Using the X-ray morphology of young supernova remnants to constrain explosion type, ejecta distribution, and chemical mixing. Astrophys. J. 732, 114 (2011).
Yamaguchi, H. et al. Discriminating the progenitor type of supernova remnants with iron K-shell emission. Astrophys. J. Lett. 785, L27 (2014).
Reynolds, S. P. Particle acceleration in supernova-remnant shocks. Astrophys. Space Sci. 336, 257–262 (2011).
Vink, J. Supernova remnants: the X-ray perspective. Astron. Astrophys. Rev. 20, 49 (2012).
Slane, P., Ferrazzoli, R., Zhou, P. & Vink, J. Probing magnetic fields in young supernova remnants with IXPE. Galaxies 12, 59 (2024).
Fryer, C. L. & Kusenko, A. Effects of neutrino-driven kicks on the supernova explosion mechanism. Astrophys. J. Suppl. Ser. 163, 335–343 (2006).
Lai, D., Chernoff, D. F. & Cordes, J. M. Pulsar jets: implications for neutron star kicks and initial spins. Astrophys. J. 549, 1111–1118 (2001).
Spruit, H. & Phinney, E. S. Birth kicks as the origin of pulsar rotation. Nature 393, 139–141 (1998).
Scheck, L., Kifonidis, K., Janka, H. T. & Müller, E. Multidimensional supernova simulations with approximative neutrino transport. I. Neutron star kicks and the anisotropy of neutrino-driven explosions in two spatial dimensions. Astron. Astrophys. 457, 963–986 (2006).
Wongwathanarat, A., Janka, H. T. & Müller, E. Three-dimensional neutrino-driven supernovae: neutron star kicks, spins, and asymmetric ejection of nucleosynthesis products. Astron. Astrophys. 552, A126 (2013).
Holland-Ashford, T., Lopez, L. A., Auchettl, K., Temim, T. & Ramirez-Ruiz, E. Comparing neutron star kicks to supernova remnant asymmetries. Astrophys. J. 844, 84 (2017).
Weisskopf, M. C. et al. Discovery of spatial and spectral structure in the X-ray emission from the Crab Nebula. Astrophys. J. Lett. 536, L81–L84 (2000).
Slane, P., Helfand, D. J., van der Swaluw, E. & Murray, S. S. New constraints on the structure and evolution of the pulsar wind nebula 3C 58. Astrophys. J. 616, 403–413 (2004).
Ng, C. Y. & Romani, R. W. Fitting pulsar wind Tori. Astrophys. J. 601, 479–484 (2004).
Kargaltsev, O. & Pavlov, G. G. in 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More (eds Bassa, C. et al.) 171–185 (AIP, 2008).
Park, S. et al. A half-megasecond Chandra observation of the oxygen-rich supernova remnant G292.0+1.8. Astrophys. J. Lett. 670, L121–L124 (2007).
Temim, T. et al. Probing the innermost ejecta layers in supernova remnant Kes 75: implications for the supernova progenitor. Astrophys. J. Lett. 878, L19 (2019).
Bandiera, R. On the X-ray feature associated with the Guitar nebula. Astron. Astrophys. 490, L3–L6 (2008).
Luo, B. et al. The Chandra Deep Field-South Survey: 7 Ms source catalogs. Astrophys. J. Suppl. Ser. 228, 2 (2017).
Hickox, R. C. & Markevitch, M. Absolute measurement of the unresolved cosmic X-ray background in the 0.5-8 keV band with Chandra. Astrophys. J. 645, 95–114 (2006).
Gilli, R., Comastri, A. & Hasinger, G. The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era. Astron. Astrophys. 463, 79–96 (2007).
Silverman, J. D. et al. The luminosity function of X-ray-selected active galactic nuclei: evolution of supermassive black holes at high redshift. Astrophys. J. 679, 118–139 (2008).
Hasinger, G. The X-ray background and AGNs. Nucl. Phys. B Proc. Suppl. 132, 86–96 (2004).
Brandt, W. N. & Alexander, D. M. Cosmic X-ray surveys of distant active galaxies. The demographics, physics, and ecology of growing supermassive black holes. Astron. Astrophys. Rev. 23, 1 (2015).
Koyama, K., Makishima, K., Tanaka, Y. & Tsunemi, H. Thermal X-ray emission with intense 6.7-keV iron line from the galactic ridge. Publ. Astron. Soc. Jpn 38, 121–131 (1986).
Revnivtsev, M., Vikhlinin, A. & Sazonov, S. Resolving the Galactic ridge X-ray background. Astron. Astrophys. 473, 857–862 (2007).
Revnivtsev, M. et al. Discrete sources as the origin of the Galactic X-ray ridge emission. Nature 458, 1142–1144 (2009).
Revnivtsev, M., Churazov, E., Sazonov, S., Forman, W. & Jones, C. X-ray emission from the stellar population in M 32. Astron. Astrophys. 473, 783–789 (2007).
Bogdán, Á. & Gilfanov, M. Unresolved emission and ionized gas in the bulge of M31. Mon. Not. R. Astron. Soc. 388, 56–66 (2008).
Strickland, D. K. & Heckman, T. M. Supernova feedback efficiency and mass loading in the starburst and galactic superwind exemplar M82. Astrophys. J. 697, 2030–2056 (2009).
Voit, G. M. et al. Supernova sweeping and black hole feedback in elliptical galaxies. Astrophys. J. Lett. 803, L21 (2015).
Yao, Y. & Wang, Q. D. X-ray absorption line spectroscopy of the galactic hot interstellar medium. Astrophys. J. 624, 751–764 (2005).
Gupta, A., Mathur, S., Krongold, Y., Nicastro, F. & Galeazzi, M. A huge reservoir of ionized gas around the Milky Way: accounting for the missing mass? Astrophys. J. Lett. 756, L8 (2012).
Bogdán, Á. et al. Hot X-ray coronae around massive spiral galaxies: a unique probe of structure formation models. Astrophys. J. 772, 97 (2013).
Anderson, M. E. & Bregman, J. N. Detection of a hot gaseous halo around the giant spiral galaxy NGC 1961. Astrophys. J. 737, 22 (2011).
White, S. D. M. & Rees, M. J. Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978).
White, S. D. M. & Frenk, C. S. Galaxy formation through hierarchical clustering. Astrophys. J. 379, 52 (1991).
Markevitch, M. et al. Direct constraints on the dark matter self-interaction cross section from the merging galaxy cluster 1E 0657-56. Astrophys. J. 606, 819–824 (2004).
Clowe, D. et al. A direct empirical proof of the existence of dark matter. Astrophys. J. Lett. 648, L109–L113 (2006).
Randall, S. W., Markevitch, M., Clowe, D., Gonzalez, A. H. & Bradač, M. Constraints on the self-interaction cross section of dark matter from numerical simulations of the merging galaxy cluster 1E 0657-56. Astrophys. J. 679, 1173–1180 (2008).
Allen, S. W., Schmidt, R. W., Ebeling, H., Fabian, A. C. & van Speybroeck, L. Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters. Mon. Not. R. Astron. Soc. 353, 457–467 (2004).
Vikhlinin, A. et al. Chandra cluster cosmology project III: cosmological parameter constraints. Astrophys. J. 692, 1060–1074 (2009).
Forman, W. et al. Reflections of active galactic nucleus outbursts in the gaseous atmosphere of M87. Astrophys. J. 635, 894–906 (2005).
Fabian, A. C. et al. Hidden cooling flows - IV. More details on Centaurus and the efficiency of AGN feedback in clusters. Mon. Not. R. Astron. Soc. 535, 2173–2188 (2024).
Fabian, A. C. et al. Chandra imaging of the complex X-ray core of the Perseus cluster. Mon. Not. R. Astron. Soc. 318, L65–L68 (2000).
Fabian, A. C. et al. A deep Chandra observation of the Perseus cluster: shocks and ripples. Mon. Not. R. Astron. Soc. 344, L43–L47 (2003).
Sanders, J. S. & Fabian, A. C. A deeper X-ray study of the core of the Perseus galaxy cluster: the power of sound waves and the distribution of metals and cosmic rays. Mon. Not. R. Astron. Soc. 381, 1381–1399 (2007).
Komossa, S. et al. Discovery of a binary active galactic nucleus in the ultraluminous infrared galaxy NGC 6240 using Chandra. Astrophys. J. Lett. 582, L15–L19 (2003).
Ballo, L. et al. Arp 299: a second merging system with two active nuclei? Astrophys. J. 600, 634–639 (2004).
Bianchi, S., Chiaberge, M., Piconcelli, E., Guainazzi, M. & Matt, G. Chandra unveils a binary active galactic nucleus in Mrk 463. Mon. Not. R. Astron. Soc. 386, 105–110 (2008).
Reines, A. E., Sivakoff, G. R., Johnson, K. E. & Brogan, C. L. An actively accreting massive black hole in the dwarf starburst galaxy Henize2-10. Nature 470, 66–68 (2011).
Baldassare, V. F., Reines, A. E., Gallo, E. & Greene, J. E. A ~50,000 M⊙ solar mass black hole in the nucleus of RGG 118. Astrophys. J. Lett. 809, L14 (2015).
Baldassare, V. F., Reines, A. E., Gallo, E. & Greene, J. E. X-ray and ultraviolet properties of AGNs in nearby dwarf galaxies. Astrophys. J. 836, 20 (2017).
Schwartz, D. A. et al. Chandra discovery of a 100 kiloparsec X-ray jet in PKS 0637-752. Astrophys. J. Lett. 540, 69–72 (2000).
Marshall, H. L. et al. A high-resolution X-ray image of the jet in M87. Astrophys. J. 564, 683–687 (2002).
Snios, B. et al. Detection of superluminal motion in the X-ray jet of M87. Astrophys. J. 879, 8 (2019).
Celotti, A., Ghisellini, G. & Chiaberge, M. Large-scale jets in active galactic nuclei: multiwavelength mapping. Mon. Not. R. Astron. Soc. 321, L1–L5 (2001).
Madau, P. & Rees, M. J. Massive black holes as population III remnants. Astrophys. J. Lett. 551, L27–L30 (2001).
Lodato, G. & Natarajan, P. Supermassive black hole formation during the assembly of pre-galactic discs. Mon. Not. R. Astron. Soc. 371, 1813–1823 (2006).
Bogdán, Á. et al. Evidence for heavy-seed origin of early supermassive black holes from a z ≈ 10 X-ray quasar. Nat. Astron. 8, 126–133 (2024).
Goulding, A. D. et al. UNCOVER: the growth of the first massive black holes from JWST/NIRSpec—spectroscopic redshift confirmation of an X-ray luminous AGN at z = 10.1. Astrophys. J. Lett. 955, L24 (2023).
Kovács, O. E. et al. A candidate supermassive black hole in a gravitationally lensed galaxy at Z≈ 10. Astrophys. J. Lett. 965, L21 (2024).
Giacconi, R., Gursky, H., Paolini, F. R. & Rossi, B. B. Evidence for x rays from sources outside the Solar System. Phys. Rev. Lett. 9, 439–443 (1962).
Drake, J. J. in The Chandra X-ray Observatory (eds Wilkes, B. & Tucker, W.) Ch. 4 (IOP, 2019).
Poppenhaeger, K. & Wolk, S. J. Indications for an influence of hot Jupiters on the rotation and activity of their host stars. Astron. Astrophys. 565, L1 (2014).
Poppenhaeger, K., Schmitt, J. H. M. M. & Wolk, S. J. Transit observations of the hot Jupiter HD 189733b at X-ray wavelengths. Astrophys. J. 773, 62 (2013).
Ilić, N. et al. The first evidence of tidally induced activity in a brown dwarf-M dwarf pair: a Chandra study of the NLTT 41135/41136 system. Mon. Not. R. Astron. Soc. 524, 5954–5970 (2023).
France, K. et al. The high-energy radiation environment around a 10 Gyr M dwarf: habitable at last? Astron. J. 160, 237 (2020).
Rukdee, S. et al. X-ray variability of the triplet star system LTT1445 and evaporation history of the planets around its A component. Astron. Astrophys. 687, A237 (2024).
Zhu, E. & Preibisch, T. X-ray activity of nearby G-, K-, and M-type stars and implications for planet habitability around M stars. Astron. Astrophys. 694, A93 (2025).
Getman, K. V. & Feigelson, E. D. X-ray superflares from pre-main-sequence stars: flare energetics and frequency. Astrophys. J. 916, 32 (2021).
Binder, B. A. et al. X-ray emission of nearby low-mass and sunlike stars with directly imageable habitable zones. Astrophys. J. Suppl. Ser. 275, 1 (2024).
Steiner, A. W., Lattimer, J. M. & Brown, E. F. The neutron star mass-radius relation and the equation of state of dense matter. Astrophys. J. Lett. 765, L5 (2013).
Mezcua, M. et al. Intermediate-mass black holes in dwarf galaxies out to redshift ~2.4 in the Chandra COSMOS-Legacy survey. Mon. Not. R. Astron. Soc. 478, 2576–2591 (2018).
Reynolds, C. S. et al. Astrophysical limits on very light axion-like particles from Chandra grating spectroscopy of NGC 1275. Astrophys. J. 890, 59 (2020).
Bhardwaj, A. et al. First terrestrial soft X-ray auroral observation by the Chandra X-ray Observatory. J. Atmos. Sol. Terr. Phys. 69, 179–187 (2007).
Bhardwaj, A. et al. The discovery of oxygen Kα X-ray emission from the rings of Saturn. Astrophys. J. Lett. 627, L73–L76 (2005).
Mori, K. et al. An X-ray measurement of Titan’s atmospheric extent from its transit of the Crab Nebula. Astrophys. J. 607, 1065–1069 (2004).
Snios, B. et al. Chandra Observations of comets C/2012 S1 (ISON) and C/2011 L4 (PanSTARRS). Astrophys. J. 818, 199 (2016).
Acknowledgements
P.S. and Á.B. acknowledge support from NASA contract number NAS8-03060.
Author information
Authors and Affiliations
Contributions
P.S., Á.B. and D.P. devised the concept and structure of the Review.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Andrew Fabian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Slane, P., Bogdán, Á. & Pooley, D. 25 years of groundbreaking discoveries with Chandra. Nat Astron (2025). https://doi.org/10.1038/s41550-025-02675-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41550-025-02675-8