Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

25 years of groundbreaking discoveries with Chandra

Abstract

The Chandra X-ray Observatory is a mainstay of modern observational astrophysics. With the highest angular resolution of any X-ray facility, its imaging and spectral capabilities in the 0.5–10 keV band have led to both unique and complementary breakthroughs in nearly all areas of the field. Now, more than a quarter of a century into its mission, Chandra continues to provide invaluable information on the contributions of compact objects to the evolution of galaxies, the nature of supernova explosions, the impact of energetic jets from supermassive black holes on their host environments and the fate of exoplanet atmospheres in systems rich with stellar flares. Here we provide a summary of Chandra results—one that is embarrassingly incomplete, but representative of both the exquisite past and promising future of Chandra’s contributions to high-energy astrophysics and all of mainstream astronomy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chandra studies of stellar systems and X-ray binaries.
Fig. 2: Chandra imaging of the aftermath of stellar explosions.
Fig. 3: Chandra resolves the X-ray sky from deep fields to nearby galaxies into discrete sources while separating it from the truly diffuse galactic emission.
Fig. 4: Chandra observations of galaxy clusters transformed our understanding of dark matter, the gas physics of the ICM and the emergence of the first SMBHs.
Fig. 5: Chandra observations of galaxy clusters independently confirm cosmic acceleration and constrain the dark energy equation of state.
Fig. 6: Chandra investigations of planets within the Solar System and beyond.

Similar content being viewed by others

References

  1. Wilkes, B. & Tucker, W. The Chandra X-ray Observatory: Exploring the High Energy Universe (IOP, 2019).

  2. Favata, F. & Micela, G. Stellar coronal astronomy. Space Sci. Rev. 108, 577–708 (2003).

    Article  ADS  Google Scholar 

  3. Getman, K. V., Feigelson, E. D. & Kuhn, M. A. Core-halo age gradients and star formation in the Orion Nebula and NGC 2024 young stellar clusters. Astrophys. J. 787, 109 (2014).

    Article  ADS  Google Scholar 

  4. Kuhn, M. A. et al. The spatial structure of young stellar clusters. I. Subclusters. Astrophys. J. 787, 107 (2014).

    Article  ADS  Google Scholar 

  5. Kuhn, M. A., Getman, K. V. & Feigelson, E. D. The spatial structure of young stellar clusters. II. Total young stellar populations. Astrophys. J. 802, 60 (2015).

    Article  ADS  Google Scholar 

  6. Brickhouse, N. S., Cranmer, S. R., Dupree, A. K., Luna, G. J. M. & Wolk, S. A deep Chandra X-ray spectrum of the accreting young star TW Hydrae. Astrophys. J. 710, 1835–1847 (2010).

    Article  ADS  Google Scholar 

  7. Audard, M. et al. in Protostars and Planets VI (eds Beuther, H. et al.) 387–410 (Univ. Arizona Press, 2014).

  8. Liebhart, A., Güdel, M., Skinner, S. L. & Green, J. X-ray emission from an FU Orionis star in early outburst: HBC 722. Astron. Astrophys. 570, L11 (2014).

    Article  ADS  Google Scholar 

  9. Skinner, S. L. & Güdel, M. Chandra resolves the double FU Orionis system RNO 1B/1C in X-rays. Astron. J. 159, 221 (2020).

    Article  ADS  Google Scholar 

  10. Skinner, S. L., Güdel, M., Briggs, K. R. & Lamzin, S. A. Chandra reveals variable multi-component X-ray emission from FU Orionis. Astrophys. J. 722, 1654–1665 (2010).

    Article  ADS  Google Scholar 

  11. Pravdo, S. H. et al. Discovery of X-rays from the protostellar outflow object HH2. Nature 413, 708–711 (2001).

    Article  ADS  Google Scholar 

  12. Guarcello, M. G. et al. Photoevaporation and close encounters: how the environment around Cygnus OB2 affects the evolution of protoplanetary disks. Astrophys. J. Suppl. Ser. 269, 13 (2023).

    Article  ADS  Google Scholar 

  13. Segura, A., Walkowicz, L. M., Meadows, V., Kasting, J. & Hawley, S. The effect of a strong stellar flare on the atmospheric chemistry of an Earth-like planet orbiting an M dwarf. Astrobiology 10, 751–771 (2010).

    Article  ADS  Google Scholar 

  14. Argiroffi, C. et al. A stellar flare-coronal mass ejection event revealed by X-ray plasma motions. Nat. Astron. 3, 742–748 (2019).

    Article  ADS  Google Scholar 

  15. Pooley, D. et al. X-ray, optical, and radio observations of the type II supernovae 1999em and 1998S. Astrophys. J. 572, 932–943 (2002).

    Article  ADS  Google Scholar 

  16. Soderberg, A. M., Chevalier, R. A., Kulkarni, S. R. & Frail, D. A. The radio and X-ray luminous SN 2003bg and the circumstellar density variations around radio supernovae. Astrophys. J. 651, 1005–1018 (2006).

    Article  ADS  Google Scholar 

  17. Misra, K. et al. Type IIP supernova SN 2004et: a multiwavelength study in X-ray, optical and radio. Mon. Not. R. Astron. Soc. 381, 280–292 (2007).

    Article  ADS  Google Scholar 

  18. Brethauer, D. et al. Seven years of coordinated Chandra-NuSTAR observations of SN 2014C unfold the extreme mass-loss history of its stellar progenitor. Astrophys. J. 939, 105 (2022).

    Article  ADS  Google Scholar 

  19. Thomas, B. P. et al. Seven years of SN 2014C: a multiwavelength synthesis of an extraordinary supernova. Astrophys. J. 930, 57 (2022).

    Article  ADS  Google Scholar 

  20. Mauerhan, J. C. et al. Stripped-envelope supernova SN 2004dk is now interacting with hydrogen-rich circumstellar material. Mon. Not. R. Astron. Soc. 478, 5050–5055 (2018).

    Article  ADS  Google Scholar 

  21. Pooley, D. et al. Interaction of SN Ib 2004dk with a previously expelled envelope. Astrophys. J. 883, 120 (2019).

    Article  ADS  Google Scholar 

  22. Miller, J. M. et al. The accretion disk wind in the black hole GRO J1655-40. Astrophys. J. 680, 1359–1377 (2008).

    Article  ADS  Google Scholar 

  23. Fabbiano, G. X-ray populations in galaxies. Adv. Space Res. 38, 2937–2941 (2006).

    Article  ADS  Google Scholar 

  24. Mineo, S., Gilfanov, M. & Sunyaev, R. X-ray emission from star-forming galaxies – I. High-mass X-ray binaries. Mon. Not. R. Astron. Soc. 419, 2095–2115 (2012).

    Article  ADS  Google Scholar 

  25. Boroson, B., Kim, D.-W. & Fabbiano, G. Revisiting with Chandra the scaling relations of the X-ray emission components (binaries, nuclei, and hot gas) of early-type galaxies. Astrophys. J. 729, 12 (2011).

    Article  ADS  Google Scholar 

  26. Lehmer, B. D. et al. The evolution of normal galaxy X-ray emission through cosmic history: constraints from the 6 MS Chandra deep field-south. Astrophys. J. 825, 7 (2016).

    Article  ADS  Google Scholar 

  27. Madau, P. & Fragos, T. Radiation backgrounds at cosmic dawn: X-rays from compact binaries. Astrophys. J. 840, 39 (2017).

    Article  ADS  Google Scholar 

  28. Pacucci, F., Mesinger, A., Mineo, S. & Ferrara, A. The X-ray spectra of the first galaxies: 21 cm signatures. Mon. Not. R. Astron. Soc. 443, 678–686 (2014).

    Article  ADS  Google Scholar 

  29. Ivanova, N. et al. Common envelope evolution: where we stand and how we can move forward. Astron. Astrophys. Rev. 21, 59 (2013).

    Article  ADS  Google Scholar 

  30. Clark, G. W. X-ray binaries in globular clusters. Astrophys. J. Lett. 199, L143–L145 (1975).

    Article  ADS  Google Scholar 

  31. Katz, J. I. Two kinds of stellar collapse. Nature 253, 698–699 (1975).

    Article  ADS  Google Scholar 

  32. Hertz, P. & Grindlay, J. E. X-ray evidence for white dwarf binaries in globular clusters. Astrophys. J. Lett. 267, L83–L87 (1983).

    Article  ADS  Google Scholar 

  33. Hertz, P. & Grindlay, J. E. An X-ray survey of globular clusters and their X-ray luminosity function. Astrophys. J. 275, 105–119 (1983).

    Article  ADS  Google Scholar 

  34. Verbunt, F. A census with ROSAT of low-luminosity X-ray sources in globular clusters. Astron. Astrophys. 368, 137–159 (2001).

    Article  ADS  Google Scholar 

  35. Grindlay, J. E., Heinke, C., Edmonds, P. D. & Murray, S. S. High-resolution X-ray imaging of a globular cluster core: compact binaries in 47Tuc. Science 292, 2290–2295 (2001).

    Article  ADS  Google Scholar 

  36. Grindlay, J. E., Heinke, C. O., Edmonds, P. D., Murray, S. S. & Cool, A. M. Chandra exposes the core-collapsed globular cluster NGC 6397. Astrophys. J. Lett. 563, L53–L56 (2001).

    Article  ADS  Google Scholar 

  37. Pooley, D. et al. Optical identification of multiple faint X-ray sources in the globular cluster NGC 6752: evidence for numerous cataclysmic variables. Astrophys. J. 569, 405–417 (2002).

    Article  ADS  Google Scholar 

  38. Rutledge, R. E., Bildsten, L., Brown, E. F., Pavlov, G. G. & Zavlin, V. E. A possible transient neutron star in quiescence in the globular cluster NGC 5139. Astrophys. J. 578, 405–412 (2002).

    Article  ADS  Google Scholar 

  39. Pooley, D. et al. Chandra observation of the globular cluster NGC 6440 and the nature of cluster X-ray luminosity functions. Astrophys. J. 573, 184–190 (2002).

    Article  ADS  Google Scholar 

  40. Pooley, D. et al. Dynamical formation of close binary systems in globular clusters. Astrophys. J. Lett. 591, L131–L134 (2003).

    Article  ADS  Google Scholar 

  41. Heinke, C. O. et al. Analysis of the quiescent low-mass X-ray binary population in galactic globular clusters. Astrophys. J. 598, 501–515 (2003).

    Article  ADS  Google Scholar 

  42. Gendre, B., Barret, D. & Webb, N. A. An XMM-Newton observation of the globular cluster Omega Centauri. Astron. Astrophys. 400, 521–531 (2003).

    Article  ADS  Google Scholar 

  43. Pooley, D. & Hut, P. Dynamical formation of close binaries in globular clusters: cataclysmic variables. Astrophys. J. Lett. 646, L143–L146 (2006).

    Article  ADS  Google Scholar 

  44. Haggard, D. et al. A deep Chandra X-ray study of neutron star coalescence GW170817. Astrophys. J. Lett. 848, L25 (2017).

    Article  ADS  Google Scholar 

  45. Margutti, R. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. V. Rising X-ray emission from an off-axis jet. Astrophys. J. Lett. 848, L20 (2017).

    Article  ADS  Google Scholar 

  46. Troja, E. et al. The X-ray counterpart to the gravitational-wave event GW170817. Nature 551, 71–74 (2017).

    Article  ADS  Google Scholar 

  47. Troja, E. et al. A thousand days after the merger: continued X-ray emission from GW170817. Mon. Not. R. Astron. Soc. 498, 5643–5651 (2020).

    Article  ADS  Google Scholar 

  48. Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    Article  ADS  Google Scholar 

  49. Piro, L. et al. A long-lived neutron star merger remnant in GW170817: constraints and clues from X-ray observations. Mon. Not. R. Astron. Soc. 483, 1912–1921 (2019).

    Article  ADS  Google Scholar 

  50. Hughes, J. P., Rakowski, C. E., Burrows, D. N. & Slane, P. O. Nucleosynthesis and mixing in Cassiopeia A. Astrophys. J. Lett. 528, L109–L113 (2000).

    Article  ADS  Google Scholar 

  51. Hwang, U. & Laming, J. M. A Chandra X-ray survey of ejecta in the Cassiopeia A supernova remnant. Astrophys. J. 746, 130 (2012).

    Article  ADS  Google Scholar 

  52. Milisavljevic, D. et al. A JWST survey of the supernova remnant Cassiopeia A. Astrophys. J. Lett. 965, L27 (2024).

    Article  ADS  Google Scholar 

  53. Shternin, P. S., Ofengeim, D. D., Heinke, C. O. & Ho, W. C. G. Constraints on neutron star superfluidity from the cooling neutron star in Cassiopeia A using all Chandra ACIS-S observations. Mon. Not. R. Astron. Soc. 518, 2775–2793 (2023).

    Article  ADS  Google Scholar 

  54. Frank, K. A. et al. Chandra observes the end of an era in SN 1987A. Astrophys. J. 829, 40 (2016).

    Article  ADS  Google Scholar 

  55. Ravi, A. P. et al. Latest evolution of the X-ray remnant of SN 1987A: beyond the inner ring. Astrophys. J. 966, 147 (2024).

    Article  ADS  Google Scholar 

  56. Reynolds, S. P. et al. A dep Chandra observation of Kepler’s supernova remnant: a type Ia event with circumstellar interaction. Astrophys. J. Lett. 668, L135–L138 (2007).

    Article  ADS  Google Scholar 

  57. Lopez, L. A., Ramirez-Ruiz, E., Huppenkothen, D., Badenes, C. & Pooley, D. A. Using the X-ray morphology of young supernova remnants to constrain explosion type, ejecta distribution, and chemical mixing. Astrophys. J. 732, 114 (2011).

    Article  ADS  Google Scholar 

  58. Yamaguchi, H. et al. Discriminating the progenitor type of supernova remnants with iron K-shell emission. Astrophys. J. Lett. 785, L27 (2014).

    Article  ADS  Google Scholar 

  59. Reynolds, S. P. Particle acceleration in supernova-remnant shocks. Astrophys. Space Sci. 336, 257–262 (2011).

    Article  ADS  Google Scholar 

  60. Vink, J. Supernova remnants: the X-ray perspective. Astron. Astrophys. Rev. 20, 49 (2012).

    Article  ADS  Google Scholar 

  61. Slane, P., Ferrazzoli, R., Zhou, P. & Vink, J. Probing magnetic fields in young supernova remnants with IXPE. Galaxies 12, 59 (2024).

    Article  ADS  Google Scholar 

  62. Fryer, C. L. & Kusenko, A. Effects of neutrino-driven kicks on the supernova explosion mechanism. Astrophys. J. Suppl. Ser. 163, 335–343 (2006).

    Article  ADS  Google Scholar 

  63. Lai, D., Chernoff, D. F. & Cordes, J. M. Pulsar jets: implications for neutron star kicks and initial spins. Astrophys. J. 549, 1111–1118 (2001).

    Article  ADS  Google Scholar 

  64. Spruit, H. & Phinney, E. S. Birth kicks as the origin of pulsar rotation. Nature 393, 139–141 (1998).

    Article  ADS  Google Scholar 

  65. Scheck, L., Kifonidis, K., Janka, H. T. & Müller, E. Multidimensional supernova simulations with approximative neutrino transport. I. Neutron star kicks and the anisotropy of neutrino-driven explosions in two spatial dimensions. Astron. Astrophys. 457, 963–986 (2006).

    Article  ADS  Google Scholar 

  66. Wongwathanarat, A., Janka, H. T. & Müller, E. Three-dimensional neutrino-driven supernovae: neutron star kicks, spins, and asymmetric ejection of nucleosynthesis products. Astron. Astrophys. 552, A126 (2013).

    Article  Google Scholar 

  67. Holland-Ashford, T., Lopez, L. A., Auchettl, K., Temim, T. & Ramirez-Ruiz, E. Comparing neutron star kicks to supernova remnant asymmetries. Astrophys. J. 844, 84 (2017).

    Article  ADS  Google Scholar 

  68. Weisskopf, M. C. et al. Discovery of spatial and spectral structure in the X-ray emission from the Crab Nebula. Astrophys. J. Lett. 536, L81–L84 (2000).

    Article  ADS  Google Scholar 

  69. Slane, P., Helfand, D. J., van der Swaluw, E. & Murray, S. S. New constraints on the structure and evolution of the pulsar wind nebula 3C 58. Astrophys. J. 616, 403–413 (2004).

    Article  ADS  Google Scholar 

  70. Ng, C. Y. & Romani, R. W. Fitting pulsar wind Tori. Astrophys. J. 601, 479–484 (2004).

    Article  ADS  Google Scholar 

  71. Kargaltsev, O. & Pavlov, G. G. in 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More (eds Bassa, C. et al.) 171–185 (AIP, 2008).

  72. Park, S. et al. A half-megasecond Chandra observation of the oxygen-rich supernova remnant G292.0+1.8. Astrophys. J. Lett. 670, L121–L124 (2007).

    Article  ADS  Google Scholar 

  73. Temim, T. et al. Probing the innermost ejecta layers in supernova remnant Kes 75: implications for the supernova progenitor. Astrophys. J. Lett. 878, L19 (2019).

    Article  ADS  Google Scholar 

  74. Bandiera, R. On the X-ray feature associated with the Guitar nebula. Astron. Astrophys. 490, L3–L6 (2008).

    Article  ADS  Google Scholar 

  75. Luo, B. et al. The Chandra Deep Field-South Survey: 7 Ms source catalogs. Astrophys. J. Suppl. Ser. 228, 2 (2017).

    Article  ADS  Google Scholar 

  76. Hickox, R. C. & Markevitch, M. Absolute measurement of the unresolved cosmic X-ray background in the 0.5-8 keV band with Chandra. Astrophys. J. 645, 95–114 (2006).

    Article  ADS  Google Scholar 

  77. Gilli, R., Comastri, A. & Hasinger, G. The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era. Astron. Astrophys. 463, 79–96 (2007).

    Article  ADS  Google Scholar 

  78. Silverman, J. D. et al. The luminosity function of X-ray-selected active galactic nuclei: evolution of supermassive black holes at high redshift. Astrophys. J. 679, 118–139 (2008).

    Article  ADS  Google Scholar 

  79. Hasinger, G. The X-ray background and AGNs. Nucl. Phys. B Proc. Suppl. 132, 86–96 (2004).

    Article  ADS  Google Scholar 

  80. Brandt, W. N. & Alexander, D. M. Cosmic X-ray surveys of distant active galaxies. The demographics, physics, and ecology of growing supermassive black holes. Astron. Astrophys. Rev. 23, 1 (2015).

    Article  ADS  Google Scholar 

  81. Koyama, K., Makishima, K., Tanaka, Y. & Tsunemi, H. Thermal X-ray emission with intense 6.7-keV iron line from the galactic ridge. Publ. Astron. Soc. Jpn 38, 121–131 (1986).

    Article  ADS  Google Scholar 

  82. Revnivtsev, M., Vikhlinin, A. & Sazonov, S. Resolving the Galactic ridge X-ray background. Astron. Astrophys. 473, 857–862 (2007).

    Article  ADS  Google Scholar 

  83. Revnivtsev, M. et al. Discrete sources as the origin of the Galactic X-ray ridge emission. Nature 458, 1142–1144 (2009).

    Article  ADS  Google Scholar 

  84. Revnivtsev, M., Churazov, E., Sazonov, S., Forman, W. & Jones, C. X-ray emission from the stellar population in M 32. Astron. Astrophys. 473, 783–789 (2007).

    Article  ADS  Google Scholar 

  85. Bogdán, Á. & Gilfanov, M. Unresolved emission and ionized gas in the bulge of M31. Mon. Not. R. Astron. Soc. 388, 56–66 (2008).

    Article  ADS  Google Scholar 

  86. Strickland, D. K. & Heckman, T. M. Supernova feedback efficiency and mass loading in the starburst and galactic superwind exemplar M82. Astrophys. J. 697, 2030–2056 (2009).

    Article  ADS  Google Scholar 

  87. Voit, G. M. et al. Supernova sweeping and black hole feedback in elliptical galaxies. Astrophys. J. Lett. 803, L21 (2015).

    Article  ADS  Google Scholar 

  88. Yao, Y. & Wang, Q. D. X-ray absorption line spectroscopy of the galactic hot interstellar medium. Astrophys. J. 624, 751–764 (2005).

    Article  ADS  Google Scholar 

  89. Gupta, A., Mathur, S., Krongold, Y., Nicastro, F. & Galeazzi, M. A huge reservoir of ionized gas around the Milky Way: accounting for the missing mass? Astrophys. J. Lett. 756, L8 (2012).

    Article  ADS  Google Scholar 

  90. Bogdán, Á. et al. Hot X-ray coronae around massive spiral galaxies: a unique probe of structure formation models. Astrophys. J. 772, 97 (2013).

    Article  ADS  Google Scholar 

  91. Anderson, M. E. & Bregman, J. N. Detection of a hot gaseous halo around the giant spiral galaxy NGC 1961. Astrophys. J. 737, 22 (2011).

    Article  ADS  Google Scholar 

  92. White, S. D. M. & Rees, M. J. Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978).

    Article  ADS  Google Scholar 

  93. White, S. D. M. & Frenk, C. S. Galaxy formation through hierarchical clustering. Astrophys. J. 379, 52 (1991).

    Article  ADS  Google Scholar 

  94. Markevitch, M. et al. Direct constraints on the dark matter self-interaction cross section from the merging galaxy cluster 1E 0657-56. Astrophys. J. 606, 819–824 (2004).

    Article  ADS  Google Scholar 

  95. Clowe, D. et al. A direct empirical proof of the existence of dark matter. Astrophys. J. Lett. 648, L109–L113 (2006).

    Article  ADS  Google Scholar 

  96. Randall, S. W., Markevitch, M., Clowe, D., Gonzalez, A. H. & Bradač, M. Constraints on the self-interaction cross section of dark matter from numerical simulations of the merging galaxy cluster 1E 0657-56. Astrophys. J. 679, 1173–1180 (2008).

    Article  ADS  Google Scholar 

  97. Allen, S. W., Schmidt, R. W., Ebeling, H., Fabian, A. C. & van Speybroeck, L. Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters. Mon. Not. R. Astron. Soc. 353, 457–467 (2004).

    Article  ADS  Google Scholar 

  98. Vikhlinin, A. et al. Chandra cluster cosmology project III: cosmological parameter constraints. Astrophys. J. 692, 1060–1074 (2009).

    Article  ADS  Google Scholar 

  99. Forman, W. et al. Reflections of active galactic nucleus outbursts in the gaseous atmosphere of M87. Astrophys. J. 635, 894–906 (2005).

    Article  ADS  Google Scholar 

  100. Fabian, A. C. et al. Hidden cooling flows - IV. More details on Centaurus and the efficiency of AGN feedback in clusters. Mon. Not. R. Astron. Soc. 535, 2173–2188 (2024).

    Article  ADS  Google Scholar 

  101. Fabian, A. C. et al. Chandra imaging of the complex X-ray core of the Perseus cluster. Mon. Not. R. Astron. Soc. 318, L65–L68 (2000).

    Article  ADS  Google Scholar 

  102. Fabian, A. C. et al. A deep Chandra observation of the Perseus cluster: shocks and ripples. Mon. Not. R. Astron. Soc. 344, L43–L47 (2003).

    Article  ADS  Google Scholar 

  103. Sanders, J. S. & Fabian, A. C. A deeper X-ray study of the core of the Perseus galaxy cluster: the power of sound waves and the distribution of metals and cosmic rays. Mon. Not. R. Astron. Soc. 381, 1381–1399 (2007).

    Article  ADS  Google Scholar 

  104. Komossa, S. et al. Discovery of a binary active galactic nucleus in the ultraluminous infrared galaxy NGC 6240 using Chandra. Astrophys. J. Lett. 582, L15–L19 (2003).

    Article  ADS  Google Scholar 

  105. Ballo, L. et al. Arp 299: a second merging system with two active nuclei? Astrophys. J. 600, 634–639 (2004).

    Article  ADS  Google Scholar 

  106. Bianchi, S., Chiaberge, M., Piconcelli, E., Guainazzi, M. & Matt, G. Chandra unveils a binary active galactic nucleus in Mrk 463. Mon. Not. R. Astron. Soc. 386, 105–110 (2008).

    Article  ADS  Google Scholar 

  107. Reines, A. E., Sivakoff, G. R., Johnson, K. E. & Brogan, C. L. An actively accreting massive black hole in the dwarf starburst galaxy Henize2-10. Nature 470, 66–68 (2011).

    Article  ADS  Google Scholar 

  108. Baldassare, V. F., Reines, A. E., Gallo, E. & Greene, J. E. A ~50,000 M solar mass black hole in the nucleus of RGG 118. Astrophys. J. Lett. 809, L14 (2015).

    Article  ADS  Google Scholar 

  109. Baldassare, V. F., Reines, A. E., Gallo, E. & Greene, J. E. X-ray and ultraviolet properties of AGNs in nearby dwarf galaxies. Astrophys. J. 836, 20 (2017).

    Article  ADS  Google Scholar 

  110. Schwartz, D. A. et al. Chandra discovery of a 100 kiloparsec X-ray jet in PKS 0637-752. Astrophys. J. Lett. 540, 69–72 (2000).

    Article  ADS  Google Scholar 

  111. Marshall, H. L. et al. A high-resolution X-ray image of the jet in M87. Astrophys. J. 564, 683–687 (2002).

    Article  ADS  Google Scholar 

  112. Snios, B. et al. Detection of superluminal motion in the X-ray jet of M87. Astrophys. J. 879, 8 (2019).

    Article  ADS  Google Scholar 

  113. Celotti, A., Ghisellini, G. & Chiaberge, M. Large-scale jets in active galactic nuclei: multiwavelength mapping. Mon. Not. R. Astron. Soc. 321, L1–L5 (2001).

    Article  ADS  Google Scholar 

  114. Madau, P. & Rees, M. J. Massive black holes as population III remnants. Astrophys. J. Lett. 551, L27–L30 (2001).

    Article  ADS  Google Scholar 

  115. Lodato, G. & Natarajan, P. Supermassive black hole formation during the assembly of pre-galactic discs. Mon. Not. R. Astron. Soc. 371, 1813–1823 (2006).

    Article  ADS  Google Scholar 

  116. Bogdán, Á. et al. Evidence for heavy-seed origin of early supermassive black holes from a z ≈ 10 X-ray quasar. Nat. Astron. 8, 126–133 (2024).

    Article  ADS  Google Scholar 

  117. Goulding, A. D. et al. UNCOVER: the growth of the first massive black holes from JWST/NIRSpec—spectroscopic redshift confirmation of an X-ray luminous AGN at z = 10.1. Astrophys. J. Lett. 955, L24 (2023).

    Article  ADS  Google Scholar 

  118. Kovács, O. E. et al. A candidate supermassive black hole in a gravitationally lensed galaxy at Z≈ 10. Astrophys. J. Lett. 965, L21 (2024).

    Article  ADS  Google Scholar 

  119. Giacconi, R., Gursky, H., Paolini, F. R. & Rossi, B. B. Evidence for x rays from sources outside the Solar System. Phys. Rev. Lett. 9, 439–443 (1962).

    Article  ADS  Google Scholar 

  120. Drake, J. J. in The Chandra X-ray Observatory (eds Wilkes, B. & Tucker, W.) Ch. 4 (IOP, 2019).

  121. Poppenhaeger, K. & Wolk, S. J. Indications for an influence of hot Jupiters on the rotation and activity of their host stars. Astron. Astrophys. 565, L1 (2014).

    Article  ADS  Google Scholar 

  122. Poppenhaeger, K., Schmitt, J. H. M. M. & Wolk, S. J. Transit observations of the hot Jupiter HD 189733b at X-ray wavelengths. Astrophys. J. 773, 62 (2013).

    Article  ADS  Google Scholar 

  123. Ilić, N. et al. The first evidence of tidally induced activity in a brown dwarf-M dwarf pair: a Chandra study of the NLTT 41135/41136 system. Mon. Not. R. Astron. Soc. 524, 5954–5970 (2023).

    Article  ADS  Google Scholar 

  124. France, K. et al. The high-energy radiation environment around a 10 Gyr M dwarf: habitable at last? Astron. J. 160, 237 (2020).

    Article  ADS  Google Scholar 

  125. Rukdee, S. et al. X-ray variability of the triplet star system LTT1445 and evaporation history of the planets around its A component. Astron. Astrophys. 687, A237 (2024).

    Article  Google Scholar 

  126. Zhu, E. & Preibisch, T. X-ray activity of nearby G-, K-, and M-type stars and implications for planet habitability around M stars. Astron. Astrophys. 694, A93 (2025).

    Article  ADS  Google Scholar 

  127. Getman, K. V. & Feigelson, E. D. X-ray superflares from pre-main-sequence stars: flare energetics and frequency. Astrophys. J. 916, 32 (2021).

    Article  ADS  Google Scholar 

  128. Binder, B. A. et al. X-ray emission of nearby low-mass and sunlike stars with directly imageable habitable zones. Astrophys. J. Suppl. Ser. 275, 1 (2024).

    Article  ADS  Google Scholar 

  129. Steiner, A. W., Lattimer, J. M. & Brown, E. F. The neutron star mass-radius relation and the equation of state of dense matter. Astrophys. J. Lett. 765, L5 (2013).

    Article  ADS  Google Scholar 

  130. Mezcua, M. et al. Intermediate-mass black holes in dwarf galaxies out to redshift ~2.4 in the Chandra COSMOS-Legacy survey. Mon. Not. R. Astron. Soc. 478, 2576–2591 (2018).

    Article  ADS  Google Scholar 

  131. Reynolds, C. S. et al. Astrophysical limits on very light axion-like particles from Chandra grating spectroscopy of NGC 1275. Astrophys. J. 890, 59 (2020).

    Article  ADS  Google Scholar 

  132. Bhardwaj, A. et al. First terrestrial soft X-ray auroral observation by the Chandra X-ray Observatory. J. Atmos. Sol. Terr. Phys. 69, 179–187 (2007).

    Article  ADS  Google Scholar 

  133. Bhardwaj, A. et al. The discovery of oxygen Kα X-ray emission from the rings of Saturn. Astrophys. J. Lett. 627, L73–L76 (2005).

    Article  ADS  Google Scholar 

  134. Mori, K. et al. An X-ray measurement of Titan’s atmospheric extent from its transit of the Crab Nebula. Astrophys. J. 607, 1065–1069 (2004).

    Article  ADS  Google Scholar 

  135. Snios, B. et al. Chandra Observations of comets C/2012 S1 (ISON) and C/2011 L4 (PanSTARRS). Astrophys. J. 818, 199 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

P.S. and Á.B. acknowledge support from NASA contract number NAS8-03060.

Author information

Authors and Affiliations

Authors

Contributions

P.S., Á.B. and D.P. devised the concept and structure of the Review.

Corresponding author

Correspondence to Patrick Slane.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Andrew Fabian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slane, P., Bogdán, Á. & Pooley, D. 25 years of groundbreaking discoveries with Chandra. Nat Astron (2025). https://doi.org/10.1038/s41550-025-02675-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-025-02675-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing