Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Imaging the brain by traversing the skull with light and sound

Abstract

Optical and ultrasonic techniques for imaging the living brain have traditionally been limited to low-resolution interrogations or highly invasive craniotomy procedures. Localization-based techniques for super-resolution ultrasound and optical imaging, as well as hybrid optoacoustic techniques, are now enabling multiscale interrogations of the brain to exploit anatomical, functional and molecular contrasts non-invasively or minimally invasively. However, the skull bone remains a substantial obstacle to the transcranial application of light- and sound-based imaging techniques. Our knowledge of the skull’s acoustic properties inherited from transcranial ultrasound has been primarily limited to a narrowband and normal-incidence-angle detection regimen, which is inapplicable to more advanced ultrasound and optoacoustic brain imaging technology. In this Perspective, we examine the transcranial wave-propagation problem, as well as recent efforts to characterize and model skull-induced distortions and develop compensatory strategies. We then summarize recent preclinical and human applications of brain imaging and delve into the most pressing challenges facing this dynamic field at the crossroads of physics, engineering and medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomy of the skulls of small animals and humans, as well as physical phenomena involved in the transcranial propagation of light and ultrasound.
Fig. 2: Experimental characterization and modelling of the transcranial propagation of light and ultrasound.
Fig. 3: Transcranial brain imaging in rodent models.
Fig. 4: Imaging the human brain with light and sound.
Fig. 5: Transcranial localization angiography techniques.
Fig. 6: Skull-corrected transcranial imaging.

Similar content being viewed by others

References

  1. Sjöstedt, E. et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 367, eaay5947 (2020).

    Article  Google Scholar 

  2. Moussavi, S. et al. Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet 370, 851–858 (2007).

    Article  Google Scholar 

  3. Lépine, J.-P. & Briley, M. The increasing burden of depression. Neuropsychiatr. Dis. Treat. 7, 3–7 (2011).

    Google Scholar 

  4. Logothetis, N. K. What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008).

    Article  Google Scholar 

  5. Kalender, W. A. X-ray computed tomography. Phys. Med. Biol. 51, R29–R43 (2006).

    Article  Google Scholar 

  6. Rahmim, A. & Zaidi, H. PET versus SPECT: strengths, limitations and challenges. Nucl. Med. Commun. 29, 193–207 (2008).

    Article  Google Scholar 

  7. Eggebrecht, A. T. et al. Mapping distributed brain function and networks with diffuse optical tomography. Nat. Photonics 8, 448–454 (2014).

    Article  Google Scholar 

  8. Demené, C. et al. Transcranial ultrafast ultrasound localization microscopy of brain vasculature in patients. Nat. Biomed. Eng. 5, 219–228 (2021).

    Article  Google Scholar 

  9. Yao, J. & Wang, L. V. Photoacoustic brain imaging: from microscopic to macroscopic scales. Neurophotonics 1, 011003 (2014).

    Article  Google Scholar 

  10. Fry, F. J. & Barger, J. E. Acoustical properties of the human skull. J. Acoust. Soc. Am. 63, 1576–1590 (1978).

    Article  Google Scholar 

  11. Tanter, M., Thomas, J.-L. & Fink, M. Focusing and steering through absorbing and aberrating layers: application to ultrasonic propagation through the skull. J. Acoust. Soc. Am. 103, 2403–2410 (1998).

    Article  Google Scholar 

  12. Clement, G. T. & Hynynen, K. A non-invasive method for focusing ultrasound through the human skull. Phys. Med. Biol. 47, 1219–1236 (2002).

    Article  Google Scholar 

  13. Aubry, J.-F., Tanter, M., Pernot, M., Thomas, J.-L. & Fink, M. Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans. J. Acoust. Soc. Am. 113, 84–93 (2003).

    Article  Google Scholar 

  14. Kyriakou, A. et al. A review of numerical and experimental compensation techniques for skull-induced phase aberrations in transcranial focused ultrasound. Int. J. Hyperthermia 30, 36–46 (2014).

    Article  Google Scholar 

  15. Estrada, H., Rebling, J. & Razansky, D. Prediction and near-field observation of skull-guided acoustic waves. Phys. Med. Biol. 62, 4728–4740 (2017).

    Article  Google Scholar 

  16. Estrada, H. et al. Observation of guided acoustic waves in a human skull. Ultrasound Med. Biol. 44, 2388–2392 (2018).

    Article  Google Scholar 

  17. Mazzotti, M., Kohtanen, E., Erturk, A. & Ruzzene, M. Radiation characteristics of cranial leaky lamb waves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68, 2129–2140 (2021).

    Article  Google Scholar 

  18. Mazzotti, M., Kohtanen, E., Erturk, A. & Ruzzene, M. Optimizing transcranial ultrasound delivery at large incident angles by leveraging cranial leaky guided wave dispersion. Ultrasonics 128, 106882 (2023).

    Article  Google Scholar 

  19. Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010).

    Article  Google Scholar 

  20. Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).

    Article  Google Scholar 

  21. Na, S. et al. Massively parallel functional photoacoustic computed tomography of the human brain. Nat. Biomed. Eng. 6, 584–592 (2022).

    Article  Google Scholar 

  22. Zhang, Y. et al. Transcranial photoacoustic computed tomography of human brain function. Preprint at https://doi.org/10.48550/arXiv.2206.00248 (2022).

  23. Ni, R. et al. Coregistered transcranial optoacoustic and magnetic resonance angiography of the human brain. Opt. Lett. 48, 648–651 (2023).

    Article  Google Scholar 

  24. Tiran, E. et al. Transcranial functional ultrasound imaging in freely moving awake mice and anesthetized young rats without contrast agent. Ultrasound Med. Biol. 43, 1679–1689 (2017).

    Article  Google Scholar 

  25. Imbault, M., Chauvet, D., Gennisson, J.-L., Capelle, L. & Tanter, M. Intraoperative functional ultrasound imaging of human brain activity. Sci. Rep. 7, 7304 (2017).

    Article  Google Scholar 

  26. Demene, C. et al. Functional ultrasound imaging of brain activity in human newborns. Sci. Transl. Med. 9, eaah6756 (2017).

    Article  Google Scholar 

  27. Errico, C. et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527, 499–502 (2015).

    Article  Google Scholar 

  28. Chen, Z., Zhou, Q., Robin, J. & Razansky, D. Widefield fluorescence localization microscopy for transcranial imaging of cortical perfusion with capillary resolution. Opt. Lett. 45, 3470–3473 (2020).

    Article  Google Scholar 

  29. Zhou, Q. et al. Diffuse optical localization imaging for noninvasive deep brain microangiography in the NIR-II window. Optica 8, 796–803 (2021).

    Article  Google Scholar 

  30. Dean-Ben, X. L. & Razansky, D. Localization optoacoustic tomography. Light Sci. Appl. 7, 18004 (2018).

    Article  Google Scholar 

  31. Zhang, P., Li, L., Lin, L., Shi, J. & Wang, L. V. In vivo superresolution photoacoustic computed tomography by localization of single dyed droplets. Light Sci. Appl. 8, 36 (2019).

    Article  Google Scholar 

  32. Deán-Ben, X. L. et al. Deep optoacoustic localization microangiography of ischemic stroke in mice. Nat. Commun. 14, 3584 (2023).

    Article  Google Scholar 

  33. Kim, J. et al. Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers. Light Sci. Appl. 8, 103 (2019).

    Article  Google Scholar 

  34. Hong, G. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photon 8, 723–730 (2014).

    Article  Google Scholar 

  35. Qian, Y. et al. A genetically encoded near-infrared fluorescent calcium ion indicator. Nat. Methods 16, 171–174 (2019).

    Article  Google Scholar 

  36. Shemetov, A. A. et al. A near-infrared genetically encoded calcium indicator for in vivo imaging. Nat. Biotechnol. 39, 368–377 (2021).

    Article  Google Scholar 

  37. Louveau, A. et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci. 21, 1380–1391 (2018).

    Article  Google Scholar 

  38. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article  Google Scholar 

  39. Møllgård, K. et al. A mesothelium divides the subarachnoid space into functional compartments. Science 379, 84–88 (2023).

    Article  Google Scholar 

  40. Nedergaard, M. & Goldman, S. A. Glymphatic failure as a final common pathway to dementia. Science 370, 50–56 (2020).

    Article  Google Scholar 

  41. Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 58, R37–R61 (2013).

    Article  Google Scholar 

  42. Brookes, M. & Revell, W. J. in Blood Supply of Bone: Scientific Aspects 64–74 (Springer, 1998)

  43. Waters, J. Sources of widefield fluorescence from the brain. eLife 9, e59841 (2020).

    Article  Google Scholar 

  44. Bashkatov, A. N., Genina, E. A., Kochubey, V. I. & Tuchin, V. V. Optical properties of human cranial bone in the spectral range from 800 to 2000 nm. In Proc. SPIE Vol. 6163, 616310 (SPIE, 2006).

  45. Li, W. et al. Tracking strain-specific morphogenesis and angiogenesis of murine calvaria with large-scale optoacoustic and ultrasound microscopy. J. Bone Miner. Res. 37, 1032–1043 (2022).

    Article  Google Scholar 

  46. Yücel, M. A., Selb, J. J., Huppert, T. J., Franceschini, M. A. & Boas, D. A. Functional near infrared spectroscopy: enabling routine functional brain imaging. Curr. Opin. Biomed. Eng. 4, 78–86 (2017).

    Article  Google Scholar 

  47. Chen, W.-L. et al. Functional near-infrared spectroscopy and its clinical application in the field of neuroscience: advances and future directions. Front. Neurosci. 14, 724 (2020).

    Article  Google Scholar 

  48. Culver, J. P., Ntziachristos, V., Holboke, M. J. & Yodh, A. G. Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis. Opt. Lett. 26, 701–703 (2001).

    Article  Google Scholar 

  49. Rayleigh, L. On waves propagated along the plane surface of an elastic solid. Proc. Lond. Math. Soc. 17, 4–11 (1885).

    Article  Google Scholar 

  50. Lamb, H. On waves in an elastic plate. Proc. R. Soc. A 93, 114–128 (1917).

    Google Scholar 

  51. Jing, B., Strassle Rojas, S. & Lindsey, B. D. Effect of skull porosity on ultrasound transmission and wave mode conversion at large incidence angles. Med. Phys. 50, 3092–3102 (2023).

    Article  Google Scholar 

  52. Webb, T. D. et al. Acoustic attenuation: multifrequency measurement and relationship to CT and MR imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68, 1532–1545 (2021).

    Article  Google Scholar 

  53. Estrada, H., Rebling, J., Turner, J. & Razansky, D. Broadband acoustic properties of a murine skull. Phys. Med. Biol. 61, 1932–1946 (2016).

    Article  Google Scholar 

  54. Pinton, G. et al. Attenuation, scattering, and absorption of ultrasound in the skull bone. Med. Phys. 39, 299–307 (2012).

    Article  Google Scholar 

  55. Estrada, H. et al. Virtual craniotomy for high-resolution optoacoustic brain microscopy. Sci. Rep. 8, 1459 (2018).

    Article  Google Scholar 

  56. Elias, W. J. et al. A randomized trial of focused ultrasound thalamotomy for essential tremor. N. Engl. J. Med. 375, 730–739 (2016).

    Article  Google Scholar 

  57. Aubry, J.-F., Tanter, M., Thomas, J.-L. & Fink, M. in Acoustical Imaging (eds Halliwell, M. & Wells, P. N. T.) 101–108 (Springer, 2000).

  58. Clement, G. T., White, P. J. & Hynynen, K. Enhanced ultrasound transmission through the human skull using shear mode conversion. J. Acoust. Soc. Am. 115, 1356–1364 (2004).

    Article  Google Scholar 

  59. Sammartino, F., Beam, D. W., Snell, J. & Krishna, V. Kranion, an open-source environment for planning transcranial focused ultrasound surgery: technical note. J. Neurosurg. 132, 1249–1255 (2019).

    Article  Google Scholar 

  60. Pajek, D. & Hynynen, K. The design of a focused ultrasound transducer array for the treatment of stroke: a simulation study. Phys. Med. Biol. 57, 4951–4968 (2012).

    Article  Google Scholar 

  61. Leung, S. A., Webb, T. D., Bitton, R. R., Ghanouni, P. & Butts Pauly, K. A rapid beam simulation framework for transcranial focused ultrasound. Sci. Rep. 9, 7965 (2019).

    Article  Google Scholar 

  62. Schoen, S. & Arvanitis, C. D. Heterogeneous angular spectrum method for trans-skull imaging and focusing. IEEE Trans. Med. Imaging 39, 1605–1614 (2020).

    Article  Google Scholar 

  63. Yoon, K., Lee, W., Croce, P., Cammalleri, A. & Yoo, S.-S. Multi-resolution simulation of focused ultrasound propagation through ovine skull from a single-element transducer. Phys. Med. Biol. 63, 105001 (2018).

    Article  Google Scholar 

  64. Clement, G. T. & Hynynen, K. Correlation of ultrasound phase with physical skull properties. Ultrasound Med. Biol. 28, 617–624 (2002).

    Article  Google Scholar 

  65. Aubry, J.-F. et al. Benchmark problems for transcranial ultrasound simulation: intercomparison of compressional wave models. J. Acoust. Soc. Am. 152, 1003–1019 (2022).

    Article  Google Scholar 

  66. Pichardo, S. et al. A viscoelastic model for the prediction of transcranial ultrasound propagation: application for the estimation of shear acoustic properties in the human skull. Phys. Med. Biol. 62, 6938–6962 (2017).

    Article  Google Scholar 

  67. Treeby, B. E. & Cox, B. T. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. J. Acoust. Soc. Am. 127, 2741–2748 (2010).

    Article  Google Scholar 

  68. Webb, T. D. et al. Measurements of the relationship between CT Hounsfield units and acoustic velocity and how it changes with photon energy and reconstruction method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65, 1111–1124 (2018).

    Article  Google Scholar 

  69. McCann, C. M. et al. Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy. NeuroImage 45, 360–369 (2009).

    Article  Google Scholar 

  70. Wang, T. et al. Three-photon imaging of mouse brain structure and function through the intact skull. Nat. Methods 15, 789–792 (2018).

    Article  Google Scholar 

  71. Kalchenko, V., Israeli, D., Kuznetsov, Y. & Harmelin, A. Transcranial optical vascular imaging (TOVI) of cortical hemodynamics in mouse brain. Sci. Rep. 4, 5839 (2014).

    Article  Google Scholar 

  72. Chen, C. et al. High-resolution two-photon transcranial imaging of brain using direct wavefront sensing. Photon Res. 9, 1144–1156 (2021).

    Article  Google Scholar 

  73. Heo, C. et al. A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology. Sci. Rep. 6, 27818 (2016).

    Article  Google Scholar 

  74. Mestre, H. et al. Cerebrospinal fluid influx drives acute ischemic tissue swelling. Science 367, eaax7171 (2020).

    Article  Google Scholar 

  75. Brioschi, S. et al. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science 373, eabf9277 (2021).

    Article  Google Scholar 

  76. Zhao, Y.-J. et al. Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution. Light Sci. Appl. 7, 17153 (2018).

    Article  Google Scholar 

  77. Kalchenko, V. et al. A robust method for adjustment of laser speckle contrast imaging during transcranial mouse brain visualization. Photonics 6, 80 (2019).

    Article  Google Scholar 

  78. Barson, D. et al. Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuits. Nat. Methods 17, 107–113 (2020).

    Article  Google Scholar 

  79. Chen, Z. et al. High-speed large-field multifocal illumination fluorescence microscopy. Laser Photonics Rev. 14, 1900070 (2020).

    Article  Google Scholar 

  80. Ni, R. et al. Detection of cerebral tauopathy in P301L mice using high-resolution large-field multifocal illumination fluorescence microscopy. Biomed. Opt. Express 11, 4989–5002 (2020).

    Article  Google Scholar 

  81. Xu, J., Song, S., Wei, W. & Wang, R. K. Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source. Biomed. Opt. Express 8, 420–435 (2017).

    Article  Google Scholar 

  82. Mu, J. et al. The chemistry of organic contrast agents in the NIR-II window. Angew. Chem. Int. Ed. 61, e202114722 (2022).

    Article  Google Scholar 

  83. Hong, G., Antaris, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).

    Article  Google Scholar 

  84. Sieu, L.-A. et al. EEG and functional ultrasound imaging in mobile rats. Nat. Methods 12, 831–834 (2015).

    Article  Google Scholar 

  85. Lebas, H. et al. Imaging cerebral arteries tortuosity and velocities by transcranial Doppler ultrasound is a reliable assessment of brain aneurysm in mouse models. Stroke Vasc. Interv. Neurol. 3, e000476 (2023).

    Google Scholar 

  86. Bertolo, A. et al. Whole-brain 3D activation and functional connectivity mapping in mice using transcranial functional ultrasound imaging. J. Vis. Exp. 168, e62267 (2021).

    Google Scholar 

  87. Rabut, C. et al. 4D functional ultrasound imaging of whole-brain activity in rodents. Nat. Methods 16, 994–997 (2019).

    Article  Google Scholar 

  88. Chavignon, A. et al. D transcranial ultrasound localization microscopy in the rat brain with a multiplexed matrix probe. IEEE Trans. Biomed. Eng. 69, 2132–2142 (2022).

    Article  Google Scholar 

  89. Weber, J., Beard, P. C. & Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 13, 639–650 (2016).

    Article  Google Scholar 

  90. Gottschalk, S. et al. Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain. Nat. Biomed. Eng. 3, 392–401 (2019).

    Article  Google Scholar 

  91. Mc Larney, B., Hutter, M. A., Degtyaruk, O., Dean-Ben, X. L. & Razansky, D. Monitoring of stimulus evoked murine somatosensory cortex hemodynamic activity with volumetric multi-spectral optoacoustic tomography. Front. Neurosci. 14, 536 (2020).

    Article  Google Scholar 

  92. Razansky, D., Klohs, J. & Ni, R. Multi-scale optoacoustic molecular imaging of brain diseases. Eur. J. Nucl. Med. Mol. Imaging 48, 4152–4170 (2021).

    Article  Google Scholar 

  93. Liu, X. et al. Targeted photoacoustic imaging of brain tumor mediated by neutrophils engineered with lipid-based molecular probe. ACS Mater. Lett. 3, 1284–1290 (2021).

    Article  Google Scholar 

  94. Ni, R., Vaas, M., Ren, W. & Klohs, J. Noninvasive detection of acute cerebral hypoxia and subsequent matrix-metalloproteinase activity in a mouse model of cerebral ischemia using multispectral-optoacoustic-tomography. Neurophotonics 5, 015005 (2018).

    Article  Google Scholar 

  95. Wang, B., Xiao, J. & Jiang, H. Simultaneous real-time 3D photoacoustic tomography and EEG for neurovascular coupling study in an animal model of epilepsy. J. Neural Eng. 11, 046013 (2014).

    Article  Google Scholar 

  96. Yang, X., Chen, Y.-H., Xia, F. & Sawan, M. Photoacoustic imaging for monitoring of stroke diseases: a review. Photoacoustics 23, 100287 (2021).

    Article  Google Scholar 

  97. Estrada, H. et al. High-resolution fluorescence-guided transcranial ultrasound mapping in the live mouse brain. Sci. Adv. 7, eabi5464 (2021).

    Article  Google Scholar 

  98. Maslov, K., Zhang, H. F., Hu, S. & Wang, L. V. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt. Lett. 33, 929–931 (2008).

    Article  Google Scholar 

  99. Ning, B. et al. Ultrasound-aided multi-parametric photoacoustic microscopy of the mouse brain. Sci. Rep. 5, 18775 (2015).

    Article  Google Scholar 

  100. Yao, J. et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods 12, 407–410 (2015).

    Article  Google Scholar 

  101. Obrig, H. NIRS in clinical neurology—a ‘promising’ tool? NeuroImage 85, 535–546 (2014).

    Article  Google Scholar 

  102. Lee, C. W., Cooper, R. J. & Austin, T. Diffuse optical tomography to investigate the newborn brain. Pediatr. Res. 82, 376–386 (2017).

    Article  Google Scholar 

  103. Huo, C. et al. A review on functional near-infrared spectroscopy and application in stroke rehabilitation. Med. Nov. Technol. Devices 11, 100064 (2021).

    Article  Google Scholar 

  104. Kirsch, J. D., Mathur, M., Johnson, M. H., Gowthaman, G. & Scoutt, L. M. Advances in transcranial Doppler US: imaging ahead. Radiographics 33, E1–E14 (2013).

    Article  Google Scholar 

  105. Marinoni, M., Ginanneschi, A., Forleo, P. & Amaducci, L. Technical limits in transcranial Doppler recording: inadquate acoustic windows. Ultrasound Med. Biol. 23, 1275–1277 (1997).

    Article  Google Scholar 

  106. Bercoff, J. et al. Ultrafast compound Doppler imaging: providing full blood flow characterization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 134–147 (2011).

    Article  Google Scholar 

  107. Baranger, J. et al. Bedside functional monitoring of the dynamic brain connectivity in human neonates. Nat. Commun. 12, 1080 (2021).

    Article  Google Scholar 

  108. Zhou, S. et al. Transcranial volumetric imaging using a conformal ultrasound patch. Nature 629, 810–818 (2024).

    Article  Google Scholar 

  109. Rabut, C. et al. Functional ultrasound imaging of human brain activity through an acoustically transparent cranial window. Sci. Transl. Med. 16, eadj3143 (2024).

    Article  Google Scholar 

  110. Deán-Ben, X. L., Gottschalk, S., Mc Larney, B., Shoham, S. & Razansky, D. Advanced optoacoustic methods for multiscale imaging of in vivo dynamics. Chem. Soc. Rev. 46, 2158–2198 (2017).

    Article  Google Scholar 

  111. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  Google Scholar 

  112. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006).

    Article  Google Scholar 

  113. Demené, C. et al. Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases Doppler and fUltrasound sensitivity. IEEE Trans. Med. Imaging 34, 2271–2285 (2015).

    Article  Google Scholar 

  114. Baranger, J. et al. Adaptive spatiotemporal SVD clutter filtering for ultrafast Doppler imaging using similarity of spatial singular vectors. IEEE Trans. Med. Imaging 37, 1574–1586 (2018).

    Article  Google Scholar 

  115. Christensen-Jeffries, K., Browning, R. J., Tang, M.-X., Dunsby, C. & Eckersley, R. J. In vivo acoustic super-resolution and super-resolved velocity mapping using microbubbles. IEEE Trans. Med. Imaging 34, 433–440 (2015).

    Article  Google Scholar 

  116. Demeulenaere, O. et al. In vivo whole brain microvascular imaging in mice using transcranial 3D ultrasound localization microscopy. eBioMedicine 79, 103995 (2022).

    Article  Google Scholar 

  117. Zhou, Q. et al. Cortex-wide transcranial localization microscopy with fluorescently labeled red blood cells. Nat. Commun. 15, 3526 (2024).

    Article  Google Scholar 

  118. Zhou, Q. et al. Depth-resolved localization microangiography in the NIR-II window. Adv. Sci. 10, 2204782 (2023).

    Article  Google Scholar 

  119. Zhou, Q. et al. Three-dimensional wide-field fluorescence microscopy for transcranial mapping of cortical microcirculation. Nat. Commun. 13, 7969 (2022).

    Article  Google Scholar 

  120. Nozdriukhin, D. et al. Rapid volumetric optoacoustic tracking of individual microparticles in vivo enabled by a NIR-absorbing gold–carbon shell. ACS Appl. Mater. Interfaces 13, 48423 (2021).

    Article  Google Scholar 

  121. Nozdriukhin, D. et al. Nanoporous submicron gold particles enable nanoparticle-based localization optoacoustic tomography (nanoLOT). Small 20, e2404904 (2024).

    Article  Google Scholar 

  122. Ji, N. Adaptive optical fluorescence microscopy. Nat. Methods 14, 374–380 (2017).

    Article  Google Scholar 

  123. Kwon, Y. et al. Computational conjugate adaptive optics microscopy for longitudinal through-skull imaging of cortical myelin. Nat. Commun. 14, 105 (2023).

    Article  Google Scholar 

  124. Flax, S. W. & O’Donnell, M. Phase-aberration correction using signals from point reflectors and diffuse scatterers: basic principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 758–767 (1988).

    Article  Google Scholar 

  125. Ng, G. C., Worrell, S. S., Freiburger, P. D. & Trahey, G. E. A comparative evaluation of several algorithms for phase aberration correction. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 41, 631–643 (1994).

    Article  Google Scholar 

  126. Mallart, R. & Fink, M. Adaptive focusing in scattering media through sound‐speed inhomogeneities: the van Cittert Zernike approach and focusing criterion. J. Acoust. Soc. Am. 96, 3721–3732 (1994).

    Article  Google Scholar 

  127. Nock, L., Trahey, G. E. & Smith, S. W. Phase aberration correction in medical ultrasound using speckle brightness as a quality factor. J. Acoust. Soc. Am. 85, 1819–1833 (1989).

    Article  Google Scholar 

  128. Bendjador, H., Deffieux, T. & Tanter, M. The SVD Beamformer: physical principles and application to ultrafast adaptive ultrasound. IEEE Trans. Med. Imaging 39, 3100–3112 (2020).

    Article  Google Scholar 

  129. Lambert, W., Cobus, L. A., Couade, M., Fink, M. & Aubry, A. Reflection matrix approach for quantitative imaging of scattering media. Phys. Rev. X 10, 021048 (2020).

    Google Scholar 

  130. Bureau, F. et al. Three-dimensional ultrasound matrix imaging. Nat. Commun. 14, 6793 (2023).

    Article  Google Scholar 

  131. Osmanski, B.-F., Montaldo, G., Tanter, M. & Fink, M. Aberration correction by time reversal of moving speckle noise. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1575–1583 (2012).

    Article  Google Scholar 

  132. Ivancevich, N. M. et al. Real-time 3-D contrast-enhanced transcranial ultrasound and aberration correction. Ultrasound Med. Biol. 34, 1387–1395 (2008).

    Article  Google Scholar 

  133. Lindsey, B. D., Nicoletto, H. A., Bennett, E. R., Laskowitz, D. T. & Smith, S. W. 3-D transcranial ultrasound imaging with bilateral phase aberration correction of multiple isoplanatic patches: a pilot human study with microbubble contrast enhancement. Ultrasound Med. Biol. 40, 90–101 (2014).

    Article  Google Scholar 

  134. Robin, J. et al. In vivo adaptive focusing for clinical contrast-enhanced transcranial ultrasound imaging in human. Phys. Med. Biol. 68, 025019 (2023).

    Article  Google Scholar 

  135. Liu, D.-L. & Waag, R. C. A comparison of ultrasonic wavefront distortion and compensation in one-dimensional and two-dimensional apertures. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 726–733 (1995).

    Article  Google Scholar 

  136. Holbek, S. et al. Common carotid artery flow measured by 3-D ultrasonic vector flow imaging and validated with magnetic resonance imaging. Ultrasound Med. Biol. 43, 2213–2220 (2017).

    Article  Google Scholar 

  137. Govinahallisathyanarayana, S., Ning, B., Cao, R., Hu, S. & Hossack, J. A. Dictionary learning-based reverberation removal enables depth-resolved photoacoustic microscopy of cortical microvasculature in the mouse brain. Sci. Rep. 8, 985 (2018).

    Article  Google Scholar 

  138. Huang, C. et al. Aberration correction for transcranial photoacoustic tomography of primates employing adjunct image data. J. Biomed. Opt. 17, 066016 (2012).

    Article  Google Scholar 

  139. Treeby, B. E. & Cox, B. T. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 15, 021314 (2010).

    Article  Google Scholar 

  140. Bancel, T. et al. Comparison between ray-tracing and full-wave simulation for transcranial ultrasound focusing on a clinical system using the transfer matrix formalism. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 68, 2554–2565 (2021).

    Article  Google Scholar 

  141. Mitsuhashi, K. et al. A forward-adjoint operator pair based on the elastic wave equation for use in transcranial photoacoustic computed tomography. SIAM J. Imaging Sci. 10, 2022–2048 (2017).

    Article  Google Scholar 

  142. Na, S. et al. Transcranial photoacoustic computed tomography based on a layered back-projection method. Photoacoustics 20, 100213 (2020).

    Article  Google Scholar 

  143. Poudel, J. & Anastasio, M. A. Joint reconstruction of initial pressure distribution and spatial distribution of acoustic properties of elastic media with application to transcranial photoacoustic tomography. Inverse Probl. 36, 124007 (2020).

    Article  Google Scholar 

  144. Robertson, J., Martin, E., Cox, B. & Treeby, B. E. Sensitivity of simulated transcranial ultrasound fields to acoustic medium property maps. Phys. Med. Biol. 62, 2559–2580 (2017).

    Article  Google Scholar 

  145. Di Ianni, T. & Airan, R. D. Deep-fUS: a deep learning platform for functional ultrasound imaging of the brain using sparse data. IEEE Trans. Med. Imaging 41, 1813–1825 (2022).

    Article  Google Scholar 

  146. Stanziola, A., Arridge, S. R., Cox, B. T. & Treeby, B. E. A Helmholtz equation solver using unsupervised learning: application to transcranial ultrasound. J. Comput. Phys. 441, 110430 (2021).

    Article  Google Scholar 

  147. Bergel, A. et al. Adaptive modulation of brain hemodynamics across stereotyped running episodes. Nat. Commun. 11, 6193 (2020).

    Article  Google Scholar 

  148. Sans-Dublanc, A. et al. Optogenetic fUSI for brain-wide mapping of neural activity mediating collicular-dependent behaviors. Neuron 109, 1888–1905.e10 (2021).

    Article  Google Scholar 

  149. Gao, Y., Xu, W., Chen, Y., Xie, W. & Cheng, Q. Deep learning-based photoacoustic imaging of vascular network through thick porous media. IEEE Trans. Med. Imaging 41, 2191–2204 (2022).

    Article  Google Scholar 

  150. Estrada, H. et al. Intravital optoacoustic and ultrasound bio-microscopy reveal radiation-inhibited skull angiogenesis. Bone 133, 115251 (2020).

    Article  Google Scholar 

  151. Olefir, I., Merčep, E., Burton, N. C., Ovsepian, S. V. & Ntziachristos, V. Hybrid multispectral optoacoustic and ultrasound tomography for morphological and physiological brain imaging. J. Biomed. Opt. 21, 086005 (2016).

    Article  Google Scholar 

  152. Mercep, E., Ben, X. L. D. & Razansky, D. Combined pulse-echo ultrasound and multispectral optoacoustic tomography with a multi-segment detector array. IEEE Trans. Med. Imaging 36, 2129–2137 (2017).

    Article  Google Scholar 

  153. Tang, Y. et al. Non-invasive deep-brain imaging with 3D integrated photoacoustic tomography and ultrasound localization microscopy (3D-PAULM). IEEE Trans. Med. Imaging 44, 994–1004 (2025).

    Article  Google Scholar 

  154. Meng, Y., Hynynen, K. & Lipsman, N. Applications of focused ultrasound in the brain: from thermoablation to drug delivery. Nat. Rev. Neurol. 17, 7–22 (2021).

    Article  Google Scholar 

  155. Schwartz, M. L. et al. Skull bone marrow injury caused by MR-guided focused ultrasound for cerebral functional procedures. J. Neurosurg. 130, 758–762 (2018).

    Article  Google Scholar 

  156. Landa, F. J. O., Penacoba, S. R., de Espinosa, F. M., Razansky, D. & Deán-Ben, X. L. Four-dimensional optoacoustic monitoring of tissue heating with medium intensity focused ultrasound. Ultrasonics 94, 117–123 (2019).

    Article  Google Scholar 

  157. Arvanitis, C. D. & McDannold, N. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies. Med. Phys. 40, 112901 (2013).

    Article  Google Scholar 

  158. Chen, K.-T. et al. Neuronavigation-guided focused ultrasound for transcranial blood-brain barrier opening and immunostimulation in brain tumors. Sci. Adv. 7, eabd0772 (2021).

    Article  Google Scholar 

  159. Kim, E., Anguluan, E. & Kim, J. G. Monitoring cerebral hemodynamic change during transcranial ultrasound stimulation using optical intrinsic signal imaging. Sci. Rep. 7, 13148 (2017).

    Article  Google Scholar 

  160. Lake, E. M. R. et al. Simultaneous cortex-wide fluorescence Ca2+ imaging and whole-brain fMRI. Nat. Methods 17, 1262–1271 (2020).

    Article  Google Scholar 

  161. Robin, J. et al. Hemodynamic response to sensory stimulation in mice: comparison between functional ultrasound and optoacoustic imaging. NeuroImage 237, 118111 (2021).

    Article  Google Scholar 

  162. Chen, Z. Simultaneous functional magnetic resonance and optoacoustic imaging of brain-wide sensory responses in mice. Adv. Sci. 10, 2205191 (2023).

    Article  Google Scholar 

  163. Chen, Z. Multi-modal noninvasive functional neurophotonic imaging of murine brain-wide sensory stimulation. Adv. Sci. 9, 2105588 (2022).

    Article  Google Scholar 

  164. Chen, Z. et al. Multimodal optoacoustic imaging: methods and contrast materials. Chem. Soc. Rev. 53, 6068–6099 (2024).

    Article  Google Scholar 

  165. Gezginer, I. et al. Concurrent optoacoustic tomography and magnetic resonance imaging of resting-state functional connectivity in the mouse brain. Nat. Commun. 15, 10791 (2024).

    Article  Google Scholar 

  166. Deffieux, T., Demené, C. & Tanter, M. Functional ultrasound imaging: a new imaging modality for neuroscience. Neuroscience 474, 110–121 (2021).

    Article  Google Scholar 

  167. Hingot, V. et al. Early ultrafast ultrasound imaging of cerebral perfusion correlates with ischemic stroke outcomes and responses to treatment in mice. Theranostics 10, 7480–7491 (2020).

    Article  Google Scholar 

  168. Chavignon, A., Hingot, V., Orset, C., Vivien, D. & Couture, O. 3D transcranial ultrasound localization microscopy for discrimination between ischemic and hemorrhagic stroke in early phase. Sci. Rep. 12, 14607 (2022).

    Article  Google Scholar 

  169. Lowerison, M. R. et al. Aging-related cerebral microvascular changes visualized using ultrasound localization microscopy in the living mouse. Sci. Rep. 12, 619 (2022).

    Article  Google Scholar 

  170. Yu, J., Dong, H., Ta, D., Xie, R. & Xu, K. Super-resolution ultrasound microvascular angiography for spinal cord penumbra imaging. Ultrasound Med. Biol. 49, 2140–2151 (2023).

    Article  Google Scholar 

  171. Wang, Y. et al. Longitudinal awake imaging of deep mouse brain microvasculature with super-resolution ultrasound localization microscopy. eLife 13, RP95168 (2024).

    Google Scholar 

  172. Davis, H. E., McCorkell, L., Vogel, J. M. & Topol, E. J. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 21, 133–146 (2023).

    Article  Google Scholar 

  173. Kim, J. et al. Programmable real-time clinical photoacoustic and ultrasound imaging system. Sci. Rep. 6, 35137 (2016).

    Article  Google Scholar 

  174. Shen, C., Xu, J., Fang, N. X. & Jing, Y. Anisotropic complementary acoustic metamaterial for canceling out aberrating layers. Phys. Rev. X 4, 41033 (2014).

    Google Scholar 

  175. Wang, J., Allein, F., Boechler, N., Friend, J. & Vazquez-Mena, O. Design and fabrication of negative-refractive-index metamaterial unit cells for near-megahertz enhanced acoustic transmission in biomedical ultrasound applications. Phys. Rev. Appl. 15, 24025 (2021).

    Article  Google Scholar 

  176. Jiménez-Gambin, S., Jiménez, N., Benlloch, J. M. & Camarena, F. Holograms to focus arbitrary ultrasonic fields through the skull. Phys. Rev. Appl. 12, 14016 (2019).

    Article  Google Scholar 

  177. Maimbourg, G., Houdouin, A., Deffieux, T., Tanter, M. & Aubry, J.-F. 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers. Phys. Med. Biol. 63, 25026 (2018).

    Article  Google Scholar 

  178. Subochev, P., Orlova, A., Shirmanova, M., Postnikova, A. & Turchin, I. Simultaneous photoacoustic and optically mediated ultrasound microscopy: an in vivo study. Biomed. Opt. Express 6, 631–638 (2015).

    Article  Google Scholar 

  179. Woitzik, J., Peña-Tapia, P. G., Schneider, U. C., Vajkoczy, P. & Thomé, C. Cortical perfusion measurement by indocyanine-green videoangiography in patients undergoing hemicraniectomy for malignant stroke. Stroke 37, 1549–1551 (2006).

    Article  Google Scholar 

  180. Stoffels, I. et al. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Sci. Transl. Med. 7, 317ra199 (2015).

    Article  Google Scholar 

  181. Guasch, L., Calderón Agudo, O., Tang, M.-X., Nachev, P. & Warner, M. Full-waveform inversion imaging of the human brain. npj Digit. Med. 3, 28 (2020).

    Article  Google Scholar 

  182. Taskin, U. et al. Ultrasound imaging of the brain using full-waveform inversion. In Proc. 2020 IEEE International Ultrasonics Symposium 1–4 (IEEE, 2020).

  183. Renaudin, N. et al. Functional ultrasound localization microscopy reveals brain-wide neurovascular activity on a microscopic scale. Nat. Methods 19, 1004–1012 (2022).

    Article  Google Scholar 

  184. Borden, M. A., Dayton, P. A., Slagle, C. & Walmer, R. W. in Molecular Imaging 2nd edn (eds Ross, B. D. & Gambhir, S. S.) 639–653 (Academic Press, 2021).

Download references

Acknowledgements

We acknowledge support from the Swiss National Science Foundation (grant 310030_192757), Innosuisse—the Swiss Innovation Agency (grant 51767.1 IP-LS), the Personalized Health and Related Technologies grant of the ETH Domain (PHRT-582) and the US National Institutes of Health (grant RF1-NS126102).

Author information

Authors and Affiliations

Authors

Contributions

H.E. and D.R. initiated and coordinated the project. D.R. and M.T. conceptualized the manuscript. H.E. designed the figures. All authors performed the literature research, wrote and edited the manuscript.

Corresponding authors

Correspondence to Mickaël Tanter or Daniel Razansky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Pengfei Song and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estrada, H., Deffieux, T., Robin, J. et al. Imaging the brain by traversing the skull with light and sound. Nat. Biomed. Eng (2025). https://doi.org/10.1038/s41551-025-01433-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-025-01433-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing