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Integrated in vivo combinatorial functional 
genomics and spatial transcriptomics of 
tumours to decode genotype-to-phenotype 
relationships
 

Marco Breinig    1,12  , Artem Lomakin2,11,12, Elyas Heidari2,3,12, Michael Ritter4,5, 
Gleb Rukhovich2, Lio Böse1, Luise Butthof1, Lena Wendler-Link1, 
Hendrik Wiethoff    1, Tanja Poth6, Felix Sahm    4,5, Peter Schirmacher1, 
Oliver Stegle3, Moritz Gerstung    2,7,8,9   & Darjus F. Tschaharganeh1,10 

Advancing spatially resolved in vivo functional genomes will link complex 
genetic alterations prevalent in cancer to critical disease phenotypes within 
tumour ecosystems. To this end, we developed PERTURB-CAST, a method to 
streamline the identification of perturbations at the tissue level. By adapting 
RNA-templated ligation probes, PERTURB-CAST leverages commercial 10X 
Visium spatial transcriptomics to integrate perturbation mapping with 
transcriptome-wide phenotyping in the same tissue section using a widely 
available single-readout platform. In addition, we present CHOCOLAT-G2P, 
a scalable framework designed to study higher-order combinatorial 
perturbations that mimic tumour heterogeneity. We apply it to investigate 
tissue-level phenotypic effects of combinatorial perturbations that induce 
autochthonous mosaic liver tumours.

Cancer, like many other complex diseases, is caused by a combination 
of multiple genetic alterations1,2. Transitioning from portraying these 
genetic changes to understanding their phenotypic consequences by 
comparing human samples is, however, constrained by environmental 
influences, genetic diversity between patients, pervasive epistasis and 
the complexity of multicellular tissue structure3–5. Consequently, it 
remains poorly understood how combinations of alterations repro-
gramme cells and their interactions with the tissue environment.

Genetic screens conducted in model systems have proven 
valuable for decoding genotype–phenotype relationships in 

controlled settings6,7 However, the presently available approaches 
for cancer-relevant in vivo functional genomics mostly investigate 
the effect of singular or pairwise alterations on proliferation and 
tumorigenesis without considering spatial niches in which cancer 
cells competitively develop and grow8–12. Although emerging studies 
are beginning to explore the impact of individual tumour alterations 
on their immunological microenvironments13–15, gaps remain in our 
understanding of how genetic changes jointly rewire tumour cells and 
their surrounding cellular ecosystems through epistasis. Overcom-
ing this challenge calls for experimental approaches and modelling 
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engages perturbation plasmids extended with 50-nucleotide (nt)  
barcodes amenable to RTL-probe capture (Fig. 1a(bottom)). Impor-
tantly, to ensure immediate compatibility with default commercial 
kits and circumvent modifications to the standard protocol, we rede-
ployed 10X Visium RTL probes capturing chemosensory receptor 
transcripts that are not expressed in mouse liver for barcode identifica-
tion. Specifically, we exploited 50-nt RTL-probe capture sequences of 
olfactory-, taste- and vomeronasal-receptor transcripts as molecular 
barcodes (Fig. 1b, Supplementary Fig. 1 and Methods). To achieve 
robustness, triplet barcode arrays were included in each perturba-
tion construct to enable detection by three individual RTL probes  
that are pre-existing components of 10X Visium spatial transcrip-
tomics kits (Fig. 1b, Extended Data Fig. 1, Supplementary Fig. 1  
and Methods).

RUBIX generates higher-order combinatorial perturbations
Related to the genetic complexity in human liver cancer, we found that 
approximately 30% of tumours simultaneously present seven estab-
lished cancer-driving alterations (including gain- and loss-of-function 
mutations as well as somatic copy number alterations such as ampli-
fications and heterozygous losses; Fig. 2a and Supplementary Fig. 2) 
that can reveal varying combinatorial patterns in individual tumour 
samples (Fig. 2b)1. For C-G2P proof-of-concept, we therefore modelled 
complex cancer genetics by not solely focusing on loss-of-function 
mutations and multiplex CRISPR knockouts that may induce chro-
mosomal rearrangements and cellular toxicity due to multiple 
double-stranded breaks8. We instead concentrated on combinations 
of alterations associated with liver cancer, including overexpression 
of oncogenic drivers (Myc, mutant Ctnnb1 (mtCtnnb1), Vegfa and 
NICD) and silencing of tumour suppressors (Trp53, Pten and Kmt2c) 
with short hairpin RNA (shRNA) alongside a frequently used Renilla  
luciferase (shRen)-targeting control construct13,22. We used RUBIX  
with a mix of eight barcoded perturbation plasmids for HTDV injec-
tion to generate a spectrum of combinatorial alterations relevant to  
liver cancer (Fig. 2b,c) and waited until tumours were palpable. Defined 
by combinations of these eight perturbations, we consequently antici-
pated testing 28 = 256 possible cancer-driving genotypes in a single 
experiment (Fig. 1a). In our pilot experiments, we distributed a total  
of 38 redeployed barcodes amenable to RTL-probe capture across  
eight perturbation plasmids (including variations in position and 
promotors) and further included complementary barcodes (for  
example, peptides)14,23 for orthogonal readouts (Extended Data Fig. 1 
and Methods).

PERTURB-CAST hijacks probe-based transcript capture for 
barcode mapping
C-G2P liver samples were collected ten weeks after HTDV injection 
and processed (FFPE; Extended Data Fig. 2a). For spatial transcriptom-
ics, six topographically separated regions of interest were selected 
based on histopathological assessment of haematoxylin and eosin 
(H&E)-stained sections (Fig. 3a and Extended Data Fig. 2a–e). Both 
10X Visium and 10X CytAssist were conducted for a total of 12 sam-
ples covering these six regions, including serial sections as technical 
replicates (Extended Data Fig. 2f–h). A total of 324 tumour nodules 
were identified across the six segregated sections (Fig. 3a). Notably, 
spatial transcriptomics helped distinguish overlapping nodules that 
seemed to be single lesions from the histopathological perspective 
(Supplementary Fig. 3).

Assessing the feasibility of PERTURB-CAST and our barcoding 
strategy, we observed that most barcode signals were readily detected 
in the C-G2P liver samples. Strikingly, barcode signals were spatially 
confined and closely tracking the areas of microscopic tumour nod-
ules, as revealed by H&E staining (Fig. 3b). In contrast, we observed 
that none of the 38 redeployed barcode sequences were detected in 
publicly available murine liver 10X Visium datasets24 (Fig. 3b(left)). 

strategies that leverage tissue-level analyses and can effectively scale 
to handle higher-order combinations3. For instance, testing all combi-
nations of four alterations in standard rodent models with four mice 
per group requires 64 animals. This need escalates rapidly: six per-
turbations would demand 256 and eight perturbations would require  
>1,000 animals.

Here, to meet this challenge, we introduce a scalable experimental 
framework designed to facilitate the functional exploration of complex 
genotype–phenotype associations at the tissue level, which we termed 
charting higher-order combinations leveraging analysis of tissue to 
investigate genotype-to-phenotype relationships (CHOCOLAT-G2P; 
hereafter referred to as C-G2P). C-G2P is based on a mouse model of 
autochthonous tumour development, where combinations of bar-
coded perturbation plasmids randomly integrate into cells within their 
native environment (Random Unique Barcode Integration Combina-
torics, RUBIX). RUBIX thus generates mosaics of genetically heteroge-
neous tumour clones in a single tissue. To streamline C-G2P spatially 
resolved in vivo functional genomics, we further developed Pertur-
bation Barcode Capture Spatial Transcriptomics (PERTURB-CAST), 
a method that seamlessly integrates perturbation mapping with the 
standardized and commercially available 10X Visium spatial transcrip-
tomics platform. We applied C-G2P to investigate phenotypic effects  
of eight combinatorial perturbations that induce liver tumours  
sampled from 256 possible genotypes.

Results
A framework to spatially map engineered tumour 
heterogeneity
Human tumours frequently present combinations of genetic altera-
tions. With the aim to link complex genetic alterations prevalent in 
cancer to critical disease phenotypes within tumour ecosystems, we 
developed C-G2P. C-G2P allows induction and mapping of combinato-
rial perturbations in murine tissue and simultaneous characterization 
of the resulting neoplastic phenotypes on the same sample using a 
single spatial transcriptomics readout platform. Therefore, C-G2P 
merges and advances available technologies, including multiplexed 
perturbation in vivo functional genomics, molecular barcoding and 
spatial omics5,7,9,14,16 (Fig. 1).

Previous in vivo approaches to spatially map perturbations  
relevant to cancer employed ex vivo-manipulated cells that were  
subsequently injected into animals14,15,17. For C-G2P, we aimed to 
leverage an in vivo setting that more closely resembles tumour het-
erogeneity and tumorigenesis by direct genetic modification of  
cells embedded in their native tissue environment7. We therefore modi-
fied an autochthonous murine mosaic liver cancer model18–20 to allow for 
the creation of coexisting genetically diverse tumours. This approach 
(RUBIX) relies on hydrodynamic-tail-vein (HDTV) injection of pooled 
molecular-barcoded plasmids and sleeping beauty transposon-based 
methods to stably integrate traceable higher-order combinations  
of genetic alterations in hepatocytes within their tissue context.  
Consequently, RUBIX offers the possibility to generate mosaics of 
genetically heterogeneous tumour clones in a single tissue (Fig. 1a(top) 
and Methods).

Presently available approaches to spatially map perturbations 
within tissue engage custom protocols and orthogonal readouts to  
also obtain transcriptomics-based phenotypic profiles, such as  
sequential antibody-based barcode detection and 10X Visium spa-
tial transcriptomics on an additional tissue sample14. We developed 
PERTURB-CAST to address the constraints of existing methods and 
streamline the identification of perturbations and comprehensive 
tissue-level phenotypic information. PERTURB-CAST leverages 
spatial transcriptomics based on targeted transcript capture via 
RNA-templated ligation (RTL) probes21 that are commercially avail-
able with 10X Visium for formalin-fixed paraffin-embedded (FFPE) 
samples. To detect the introduced perturbations, PERTURB-CAST 
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Fig. 1 | A framework to spatially map engineered tumour heterogeneity. 
a, The C-G2P framework. Mice are HDTV injected with a pool of barcoded 
perturbation plasmids leading to sleeping beauty (SB)-transposon-mediated 
stable integration into the genome of hepatocytes. Higher-order combinatorial 
perturbations drive mosaic liver tumour development in a conceptual 2n 
combination space for clonal selection (RUBIX). Direct barcode identification is 
achieved by linking perturbations to 50-nt barcode sequences that are captured 
and identified by RTL probes as embedded in the 10X Visium for FFPE platform 
(PERTURB-CAST). Endogenous transcripts are captured alongside barcodes, 

hence enabling simultaneous mapping of genotypes (as defined by the presence 
of perturbations) and phenotypes (as defined by transcriptional signatures) on 
the same tissue section. b, PERTURB-CAST barcode selection. Transcripts not 
expressed in murine liver are identified using public databases. Their respective 
50-nt RTL-probe capture sequences are used as barcodes detected by redeployed 
commercially available RTL probes provided with the 10X Visium for FFPE mouse 
kit (Methods). Barcodes derived from chemosensory receptor transcripts are 
embedded in perturbation plasmids as triplet arrays.
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Reassuringly, with few exceptions (for example, Olfr1033 and Olfr1358), 
chemosensory receptor transcripts that provided the repertoire for 
barcode redeployment (n = 1,216) were generally not detected by 10X 
Visium in murine livers (Extended Data Fig. 3a,b). Overall, 5/38 rede-
ployed barcodes had insufficient signal across all samples investigated 
(log(1p)-transformed average expression, <0.05 counts per 1 × 104; 
Extended Data Fig. 3). Notably, redeployed barcodes expressed using 
a Pol III promoter (hU6; Extended Data Fig. 3c) were detectable but we 
noticed a trend where detection became weaker as the barcode was 
positioned farther from the 5′ end (Extended Data Fig. 3c). Although 
detection strength of individual barcodes varied, barcode-triplets 
enabled us to spatially identify all eight perturbations (Fig. 3b and 
Extended Data Figs. 3,4).

Spatial perturbation mapping across tissue
Given the observed uncertainties related to individual barcode read-
outs, we used a variational Bayesian model, which accounts for multiple 
sources of variability (including, for example, local 10X Visium spot 
sensitivity) to assign perturbations to each nodule (Fig. 3c, Extended 
Data Fig. 5 and Methods). Notably, nodule-level predictions correlated 

across serial tissue sections and between 10X Visium and 10X CytAssist 
replicate experiments (Pearson’s correlation coefficient (r) = 0.63–0.78 
depending on perturbation; Extended Data Fig. 6), demonstrating the 
quantitative reproducibility of the approach.

Investigation of the expression levels of the genes targeted 
by each perturbation provides an orthogonal readout of inferred 
perturbation-plasmid integration. Accordingly, across lesions, a gen-
eralized linear model (GLM; Methods) confirmed the expected trends 
of overexpression or silencing based on the corresponding perturba-
tion, including increased expression of Notch1 and reduced expression 
of Pten (Fig. 3d) as well as Kmt2c and Trp53 (Extended Data Fig. 7a,b). 
Further validation of mtCtnnb1 expression was achieved by a similar 
analysis of glutamine synthetase (GS) immunohistochemistry (IHC), 
which indicates hepatic WNT–Ctnnb1 signalling activity25 (Fig. 3d). 
Last, the plasmids targeting Trp53 and Kmt2c contained green and 
red fluorescent protein barcodes, respectively, providing additional 
IHC-based validation (Extended Data Fig. 7c–e).

Thus, the probe-based barcode capture of PERTURB-CAST  
spatially maps combinatorial perturbations within hundreds of  
coexisting tumours generated by RUBIX and provides a foundation  
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Fig. 2 | Modelling tumour heterogeneity. a, Frequency of liver tumour samples 
with at least k potential driver mutations per sample in The Cancer Genome 
Atlas Program (TCGA) HCC dataset. Potential drivers were defined as either 
amplification or fusion of known COSMIC oncogenes, or homozygous deletion, 
nonsense mutation, splice site mutation or frameshift deletion/insertion in 
tumour-suppressor genes. b, Frequent alterations observed in human liver 
cancer (The Cancer Genome Atlas Program HCC dataset) are ‘geno-copied’ in a 
C-G2P mouse model (oncoprint based on https://www.cbioportal.org/study/
summary?id=lihc_tcga). ORF, open reading frame; RNAi, RNA interference.  
c, RUBIX mouse model generated in this study. Schematic overview of sleeping 

beauty transposon perturbation plasmids to ectopically overexpress genes of 
interest (oncogenic-driver perturbations) or shRNA to enable gene knockdown 
(tumour-suppressor perturbations). Functional elements are highlighted. BC, 
barcode in which three redeployed RTL-probe capture sequences (as indicated) 
are embedded; EF1, polymerase II promoter; IR, inverted/direct repeats of 
sleeping beauty transposon; pA: polyadenylation signal; sh, shRNA embedded 
in miRE context. Note that we used Visium mouse transcriptome probe set 
v1 to derive barcodes. Each 50-nt barcode is separated and flanked by spacer 
sequences of approximately 20 nt to avoid potential steric hindrance during 
hybridization. Further information in Methods.
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to comprehensively chart tumour genotypes (interactive maps at 
https://chocolat-g2p.dkfz.de/).

Comparative analyses in hundreds of coexisting cancer clones
Across the entirety of the 324 identified nodules, the Bayesian model 
calculates the probabilities for all 28 = 256 possible genotypes defined 
by the combinations of eight perturbations, thereby converting spatial 
barcode signals into genotypically defined clonal maps (Fig. 4a where 
individual perturbation probabilities for one nodule are highlighted 
as an example and Extended Data Fig. 8).

We observed that tumour clones established in our initial  
C-G2P experiments typically exhibited combinatorial alterations with 
quintets being the most prevalent (approximately 30%; Fig. 4b,c). 
The absence of nodules with low integration numbers and the overall 
tendency towards multiple perturbations corroborates expected and 
previously described genetic interactions of oncogenes and tumour 
suppressors, defined simply by pairwise cooperation inferred from 
individual experiments19,20. Furthermore, alterations of well-recognized 
oncogenes, for example, Myc (82% of all nodules) and mtCtnnb1 (80%) 
occurred most frequently, indicating strong clonal selection, whereas 
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Fig. 3 | PERTURB-CAST spatially resolves multiplexed genetic perturbations 
in hundreds of coexisting cancer clones. a, RUBIX establishes hundreds of 
coexisting tumours in the context of native tissue. Respective H&E-stained tissue 
samples for six topographically separated regions (approximately 6 × 6 mm) 
that were used for 10X Visium for FFPE-spatial transcriptomics analysis. A total 
of 324 nodules (colour-coded and numbered) were annotated. Colours were 
chosen arbitrarily. b, PERTUB-CAST allows perturbation-specific barcode 
identification. Average log(1p)-transformed expression of all 38 barcode-
associated transcripts used (left). Combined data for the reference control liver 
datasets from ref. 21 and the six main spatial transcriptomics samples (C-G2P). 
Spatially resolved expression of triplet barcodes (as indicated in Fig. 2c) for each 
of the eight perturbations (top right). Aggregated log(1p)-transformed and 
quantile-rescaled expression per 10X Visium spot. A representative sample is 
shown. Average log(1p)-transformed expression of individual barcodes in each 
triplet array for each perturbation averaged across the six spatial transcriptomics 
samples (bottom right). c, Conversion of PERTURB-CAST barcode signals to 
perturbation maps. Spatially resolved visualization of the inferred probabilities 

indicating the presence or absence of each of the eight perturbations associated 
with annotated tumour nodules (Methods). A representative sample is displayed. 
b,c, Both the quantitative barcode expression (b) and probabilities (c) of all 
samples can be explored through the interactive web browser https://chocolat-
g2p.dkfz.de/. d, Validation of inferred perturbation integration. A GLM model 
predicts the phenotype expression signals based on the estimated probabilities 
of perturbation presence using Bayesian modelling (Methods). Phenotypes 
are defined as direct target transcripts associated with perturbations such as 
shPten–Pten and NICD–Notch1. Expression data were log(1p)-transformed. GS, 
a well-established marker for active WNT signalling in murine livers, was used to 
infer mtCtnnb1-GS-positive phenotype via IHC on a corresponding serial section. 
Baseline depicts background phenotype marker expression. Data are presented as 
feature coefficients shown as mean and error bars depict 3σ confidence intervals 
(CIs). Data are derived from 324 nodules across six topographically separated 
regions used for 10X Visium from a single RUBIX experiment with two animals. 
Mapping GS IHC data are derived from three corresponding sections from a single 
RUBIX experiment with two animals. A representative sample section is displayed.
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VEGFA (53%) and shRen (46%) were less frequent, possibly reflecting 
low tumorigenic potential (Fig. 4d).

The frequency at which perturbations are observed across nodules 
is dependent on the rate of successful integrations and the neoplastic 
potential of the combinatorial perturbation. Assuming a fixed integra-
tion rate for each perturbation allows modelling of an expected distri-
bution of combinatorial events and assessment of whether specific 
observed combinations are enriched, suggesting higher tumorigenic 
potential (orange), or depleted and thus indicating disadvantageous 
effects (blue) independent of technical influences (Fig. 4b(bottom) and 
Methods). Notably, among genotypes with fewer combinations, the 
triplet comprising Myc, mtCtnnb1 and NICD emerged as frequent (n = 5, 
p(O > E) = 0.87; solid line and arrow in Fig. 4a and b(top), respectively), 

which suggests a strong association of this specific compound geno-
type with tumorigenesis. Interestingly, although septets seemed to be 
generally prevalent, the specific septet devoid of VEGFA (dashed line 
and arrow in Fig. 4a and b(top), respectively) demonstrated enrich-
ment (n = 13, p(O > E) = 0.90) comparable to the complete octet (n = 12, 
p(O > E) = 0.81), whereas septets lacking mtCtnnb1 or Myc, for example, 
were less enriched. This in turn suggested a diminished cancer-driving 
effect of VEGFA in the setting of the combinatorial alterations tested.

Cancer-driving co-dependencies and potential context 
dependencies
To pinpoint which perturbations contributed to the observed patterns 
of enriched and depleted genotypes, we conducted co-occurrence  
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Fig. 4 | C-G2P enables comparative genotype analyses and disentangles 
context-dependent genetic interactions. a, Genotype maps (right); 28 powerset 
embedding of spatially mapped perturbations encompassing 324 nodules across 
six topographically separated regions. Each of the 256 combinations is colour-
coded. Perturbation probabilities for a representative nodule are depicted (left; 
black text highlights present perturbations, while grey text highlights absent 
perturbations). Nodules sharing representative similar genotypes are encircled 
and indicated in b (solid lines, Myc + mtCtnnb1 + NICD; dashed lines, Myc + 
mtCtnnb1 + shKmt2c + NICD + shRen + shTrp53 + shPten). b, Clonal selection. 
Observed occurrences of genotypically defined tumour clones (median and 
95% CI) across 28 powerset embedding (top). Grey text indicates combinatorial 
complexity. The highlighted genotypes are encircled in a. Probability p(O > E) 
that observed occurrences (O) deviate from the expected baseline distribution 
(E) (Methods; bottom). Deviations of >0.5 indicate increased tumorigenic 
potential (orange), whereas values of <0.5 suggest potentially disadvantageous 
combinations (blue). c, Combinatorial order distribution. Observed distribution 
of the perturbation integration order (mean and 95% CI). A binomial distribution 
with p = 0.5 is included as a reference of a random unbiased integration rate 
(red line). d, Ranking of cancer-driving perturbations. Marginal frequencies of 

individual perturbations in descending order (mean and 95% CI). e, Pairwise co-
occurrence and mutual exclusivity patterns. An OR > 1 suggests co-occurrence, 
whereas OR < 1 indicates mutual exclusivity (Methods). Perturbations are 
ordered according to d. f, Identification of pairwise genetic interactions. 
Comparison of observed versus expected frequencies (median and 95% CI) for 
selected gene pairs, calculated using multiplicative models of gene interaction. 
We simulated the expected probabilities for the pairwise groups under the 
assumption of no interaction OR, which indicates the direction of the gene 
interaction effect (arrows), are reported along with the corresponding P values. 
OR values were estimated from 5,000 posterior samples. A softmax GLM with 
interaction fixed at one defined the null. P values reflect two-tailed deviations 
of observed double-positive proportions from the null based on 5,000 draws 
(Methods). Data are derived from 324 nodules across six topographically 
separated regions used for 10X Visium from a single RUBIX experiment with 
two animals. Bayesian modelling of perturbation probabilities was used to infer 
the occurrence of individual perturbation combinations per nodule. From the 
inferred Bayesian posterior, we sampled 5,000 points and computed the median 
and CI for the frequencies of individual perturbations as well as individual 
genotypes and calculated the OR (Methods). H0, null hypothesis.
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odds ratio (OR) analysis. This analysis measures second-order epi-
static interactions, which quantifies the deviations from purely addi-
tive effects in a commonly used multiplicative model6,26 (Fig. 4e,f and 
Methods). Our results revealed co-dependency patterns for Myc,  
mtCtnnb1 and NICD as well as shTrp53 and shPten, aligning with previ-
ous observations18–20. The combination of Myc and NICD exhibited the 
most pronounced effect (OR = 1.64; P = 0.067). In contrast, we observed 
a tendency towards mutual exclusivity between VEGFA and NICD 
(OR = 0.68; P = 0.036) and between VEGFA and mtCtnnb1 (OR = 0.67; 
P = 0.064; Fig. 4e,f).

Together, these observations indicate a context-dependent onco-
genic effect of VEGFA.

Phenotypic landscapes of engineered tumour heterogeneity
To elucidate spatial phenotypes and enable subsequent genotype-to- 
phenotype analyses (Fig. 5), we leveraged tissue-wide transcriptional 
signatures and defined sets of transcripts that characterized prevalent 
cell states (Supplementary Figs. 4 and 5 and Methods). To finally map the 
complexity of tumour ecosystems, we visualized phenotype-associated 
transcriptional signatures within their spatial context (Fig. 5a and 
Supplementary Figs. 6–18). Furthermore, to highlight associations 
for nodule-intrinsic phenotypes as well as those related to the tumour 
microenvironment (TME), we used transcript-resolved heatmap  
presentations (Fig. 5b–d). Thereby, C-G2P allowed us to chart the hetero-
geneous phenotypic landscape of hundreds of coexisting genotypically 
defined tumours and their surrounding tissue environment (interactive 
maps at: https://chocolat-g2p.dkfz.de/).

Stratification of coexisting liver tumour subtypes
Our approach readily distinguished prominent subtypes of liver tumours 
(Fig. 5a(top)). First, we observed nodules with cholangiocyte-like 
transcriptional signatures (for example, Krt19+Cldn7+) indicative 
of cholangiocarcinoma (CCA)27,28 (Fig. 5a,b and Supplementary 
Fig. 6). Microscopy inspection indeed classified these tumour nodules  
as CCAs exhibiting a glandular growth pattern and stroma deposi-
tion as well as CK19-protein expression by IHC (Supplementary 
Fig. 7). Cholangiocarcinoma is the second-most common type of liver  
cancer following hepatocellular carcinoma (HCC) and both tumour 
types can develop from hepatocytes in the HDTV injection-based 
mouse model27,28. Interestingly, C-G2P pinpointed, among others, 
expression of solute carrier family 15 member 2 (Slc15a2) for which 
genomic variants have been linked to sorafenib-therapy response29 
as well as pancreatic glycoprotein 2 (Gp2) as being associated with 
CCA (Fig. 5b and Supplementary Fig. 6). The latter observation har-
monizes with earlier research suggesting that anti-GP2 IgA autoanti
bodies enable early CCA detection in subsets of human patients30, 
hence indicating that our C-G2P approach captures key elements of 
CCA biology that have so far not been observed in animal models.

Moreover, given the spatial resolution of C-G2P, we could immedi-
ately relate the prominent second and third cluster of tumour nodules 
to metabolic liver zonation. Spatial division of metabolic functions 
is not only central to liver-tissue organization under physiological 
conditions31,32 but has been proposed to enable molecular classification 
of human HCC33–35. In alignment with this zonation-based molecular 
classification, C-G2P enabled us to stratify nodules either as portal-like 
(for example, Sds+Sdsl+) or central-like (for example, Cyp2e1+Oat+)31,32, 
the latter being the most abundant tumour class observed (Fig. 5a,b 
and Supplementary Figs. 8 and 9). Interestingly, recent findings from 
zonation fate-mapping animal models suggest liver cancer prevention 
strategies that leverage central-zonation-dependent mechanisms, 
particularly targeting Gstm3, which we also identified as a central-like 
tumour marker (Fig. 5b)36.

Last, focusing on the tumours that could not readily be assigned to 
the aforementioned subtypes, we identified a fraction of nodules that 
revealed enrichment of hepcidin antimicrobial peptide (Hamp), Hamp2 

and uridine phosphorylase 2 (Upp2) expression (Hamp2+Upp2+; Fig. 5a 
and Supplementary Fig. 10). Hamp and its paralogue Hamp2 have both 
been associated with midlobular zonation32, a feature of liver structure 
important for regeneration37. Upp2, on the other hand, is involved  
in pyrimidine salvage, which fuels glycolysis and enables growth of 
cancer cells under nutrient-limited conditions38,39.

We further identified subgroups of nodules sharing cholangiocytic 
as well as portal-like features (Fig. 5b), an observation in agreement with 
a proposed hybrid periportal hepatocyte cell type40. Similarly, subsets 
of nodules from the major classes, with the exception of central-like 
nodules, shared striking enrichment of numerous histone-associated 
transcripts (Fig. 5b and Supplementary Fig. 11). Upregulation of genes 
encoding histone proteins is described as the most prominent gene 
regulatory programme at the G1–S phase transition in human pluri-
potent cells41.

Tumour–stroma and tumour–immune cell connections
Next, by focusing on cellular ecosystems of the liver TME (Fig. 5a(bottom) 
and Fig. 5d), we identified prominent fibroblast-associated transcrip-
tional signatures (for example, Col1a1+Col3a1+)42,43 at the tumour–
stroma border. We further observed regionally segregated expression 
patterns associated with haematopoietic/immune cell clusters (Fig. 5a). 
These included signatures likely to be associated with erythroblasts (for 
example, Hbb-bt+Slc4a1+)44,45, platelets (for example, Pf4+Itga2+)46, mast 
cells (for example, Cpa3+Cma+)47,48, B cells (Jchain+Igkc+)49 and neutro-
phil subpopulations (for example, Elane+Mpo+ and Ngp+Camp+)45,50,51. 
Signatures associated with Kupffer cells/macrophages (for example, 
Marco+Clec4f+ and Csf1r+C1qa+)3,24 were primarily detected within the 
non-tumour compartment (Supplementary Figs. 12–18).

Our approach immediately revealed connections between 
tumour-intrinsic cell states and the microenvironment, such as a 
notable link between CCA and fibroblast-like signatures (Fig. 5c). This 
observation aligns with human data indicating that cancer-associated 
fibroblasts are the major cellular component of CCA-associated desmo-
plastic stroma43. Our approach indeed grouped fibroblast-like signa-
tures alongside growth arrest-specific 6 (Gas6) and thrombospondin 1 
(Thbs1), both of which were previously identified as marker transcripts 
for a mechanoresponsive cancer-associated fibroblast subpopulation42 
(Fig. 5d and Supplementary Fig. 12). Our results further pointed towards 
additional associations such as a link between CCA and macrophages 
(for example, Csf1+C1q+) as well as a connection between enriched 
erythroblast (Hbb-b+Slc4a1+) occurrence and the histone-associated 
subgroup of nodules (Fig. 5c).

Complex genotype–phenotype relationships
Using spatial maps that combine phenotypic and genotypic data 
from the same tissue sections enables detailed investigation of  
phenotype–genotype relationships (Figs. 4a and 5a–d). We therefore 
assigned binary phenotype labels to nodules (Extended Data Fig. 9 
and Methods) and calculated the OR values to assess the connection 
of each perturbation to specific tumour-intrinsic and microenviron-
mental phenotypic groups (Fig. 6a). Remarkably, in the setting of  
the combinatorial perturbations tested, our findings indicated that 
CCA reveal a strong positive association with VEGFA, exceeding  
any other observed linkage, as well as a strong negative association 
with mtCtnnb1 (Fig. 6a). Furthermore, consistent with the central role 
of WNT signalling in liver zonation52, portal-like tumours revealed 
negative associations, whereas central-like nodules revealed positive 
associations with mtCtnnb1 (Fig. 6a). Notably, these genotype–pheno-
type observations align well with the aforementioned zonation-based 
classification of human HCCs and single-cell RNA-sequencing 
(scRNA-seq) data from human liver cancer, which revealed that the 
central-like HCC subtype is associated with Ctnnb1 mutations33–35, 
hence indicating that our C-G2P approach mirrors features of human 
HCC biology.
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Fig. 5 | C-G2P maps tumour ecosystems comprising hundreds of coexisting 
cancer clones. a, The tumour ecosystem. Spatial maps of tumour-intrinsic 
phenotypes (top) and TME phenotypes (bottom) across six topographically 
separated regions. Colour shade depicts aggregated log(1p)-transformed 
expression of phenotype-associated transcripts (colour-code as in b and d). 
Nodule borders are highlighted (grey). The aggregated values for all samples and 
underlying quantitative data of individual transcript expression can be explored 
through the interactive web browser interface (https://chocolat-g2p.dkfz.de/).  
b, Co-clustering of tumour-intrinsic phenotypes by associated transcripts. 

Tumour phenotypes are colour-coded. c, Associations between tumour-
intrinsic and TME phenotypes. Pearson’s correlation coefficient for each pair of 
tumour-intrinsic and TME phenotype-associated transcripts across all nodules. 
d, Co-clustering of TME phenotypes by associated transcripts. TME phenotypes 
are colour-coded. b,d, Clustering based on Spearman correlations. Phenotypes 
are subdivided using hierarchical clustering. Scaled (p10) estimated plasmid 
probabilities per nodule are indicated (b(bottom) and d(left) (Methods). Data are 
derived from 324 nodules across six topographically separated regions used for 
10X Visium from a single RUBIX experiment with two animals.
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Focussing on relationships between tumour genotypes and TME 
phenotypes, we observed strong positive associations for VEGFA with 
fibroblast signatures, alongside a negative association with mtCtnnb1 
(Fig. 6a), largely resembling the patterns observed for CCA and being 
in line with their prominent spatial association (Fig. 5c). A similarly 
positive association for VEGFA was observed for B cell-like signatures 
alongside negative association for Myc and mtCtnnb1, and positive 
associations for shTrp53 and shPten (Fig. 6a). Reflective of our find-
ings, immune cell infiltration, as evaluated by CD45-positive IHC, 
was reported in a compound Trp53 and Pten-knockout HDTV injec-
tion model of liver cancer20, whereas immune cell exclusion has been 
observed in a corresponding Myc–mtCtnnb1 model19.

To broaden our analysis beyond binary phenotypes, we leveraged 
spot-level continuous expression of phenotype-associated marker 
transcripts. We therefore calculated associations for each perturbation 
using the aforementioned GLM analyses (Fig. 6b and Extended Data 
Fig. 10a,b). Despite its limited sensitivity to identify associations for 
transcripts that reveal sparse spatial expression (Methods), this analy-
sis supported the identified associations for VEGFA and mtCtnnb1 for 
cholangiocyte-associated transcripts such as Krt19 and Cldn7 (Fig. 6b).

Similarly, GLM analyses substantiated the observed inverse mtCt-
nnb1 associations for portal-like markers (that is, negative association 
for Sds and Sdsl) versus central-like markers (that is, positive associa-
tions for Oat and Gulo; Extended Data Fig. 10a). Notably, GLM analyses 
uncovered additional transcript-specific contributions of perturba-
tions not readily apparent using the nodule phenotype-binarization 
approach (Fig. 6a). For example, we observed a marked relation of 
the cholangiocyte-associated transcripts Krt19 and Gp2 with shKmt2c 
perturbation (Fig. 6b and Extended Data Fig. 10a,b).

Given that multiple transcripts associated with predefined phe-
notype signatures shared similar ‘GLM-patterns’ (Extended Data 
Fig. 10a,b), we finally interrogated perturbation–phenotype asso-
ciations on a transcriptome-wide scale (Methods). Focusing on 1,283 
genes that showed associations with perturbations, we observed clus-
ters of transcripts that correspond to specific cell states (Extended 
Data Fig. 10c). For example, global-GLM analysis grouped together 
fibroblast-associated transcripts such as Col1a1, Col1a2, Gas6 and 
Thbs1 or transcripts related to the aforementioned histone-enriched 
phenotype. Similarly, GLM analysis aggregated Krt19, Epcam, Gp2 
and Krt7, all of which defined the cholangiocytic phenotype that was 
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Fig. 6 | C-G2P decodes relationships between complex genotypes and tumour-
intrinsic and microenvironmental phenotypes. a, Identification of genotype–
phenotype relationships. Comparison of the prevalence of perturbations 
between phenotypic groups and the remainder of the nodules (total n = 324) 
for tumour-intrinsic phenotypes (top) and TME (bottom) using ORs. OR > 1 
indicates enrichment of perturbations within the phenotypic group; OR < 1 
indicates depletion (Methods). The number of nodules with a given phenotype 
(n) is indicated. Note that groups are not mutually exclusive. The median and 
90% CI are reported. Significant relationships are indicated (exact P values are 
provided); two-tailed deviations from one, computed with 20,000 samples from 

the posterior (Methods); ***P < 0.001, **P < 0.01, *P < 0.05. b, Identification of 
genotype–phenotype relationships for genes associated with cholangiocytes. 
A GLM model predicts gene expression signals at each 10X Visium spot 
using estimated probabilities of perturbation presence (Methods). Feature 
coefficients, shown as the mean and 3σ CIs, indicate associations between gene 
expression and perturbations for representative transcripts. Bayesian modelling 
of perturbation probabilities was used to infer the occurrence of individual 
perturbations per nodule (Methods). Data are derived from 324 nodules across 
six topographically separated regions used for 10X Visium from a single RUBIX 
experiment with two animals.
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Fig. 7 | VEGFA and mtCTNNB1 confer epistasis control of CCA development 
within heterogeneous tumour ecosystems. a, Spatially resolved co-occurence 
of VEGFA and mutual exclusivity of mtCtnnb1 for the CCA tumour subtype as 
revealed by C-G2P. Magnified views of three representative nodules ((i)–(iii)) 
identified as CCA. Nodules identified as CCA (left; the area covered by the 
tumour nodule is indicated as 10X Visium spots in yellow) as well as the mtCtnnb1 
(middle; as in Fig. 3c) and VEGFA (as in Fig. 3c) perturbation probabilities 
are shown. Bayesian modelling of perturbation probabilities is used to infer 
the occurrence of individual perturbations per nodule (Methods). Data are 
derived from 324 nodules across six topographically separated regions used 
for 10X Visium from a single RUBIX experiment with two animals. Perturbation 
probabilities for all samples can be explored through the interactive web browser 

https://chocolat-g2p.dkfz.de/. b, Experimental design. Parallel RUBIX mouse 
models were performed using the leave-one-out experimental design. c, Time 
to tumour occurrence. Animals were palpated twice weekly to monitor tumour 
development. d, Histological quantification of liver tumour subtypes. H&E 
images were analysed, and tumour nodules were counted and classified as either 
HCC (top) or CCA (bottom); two independent liver-tissue sections per animal. 
The median ± s.d. alongside individual tumour counts are indicated. Group 
comparisons used a two-sided Kruskal–Wallis test with Dunn’s post-hoc test 
(Holm–Bonferroni correction). Exact adjusted P values are shown. e, Abundance 
of CCA. CK19 IHC was used as a cholangiocyte marker. Representative samples 
from a total of two separate sections per animal are depicted. b–e, n = 4 animals 
per group.
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linked to positive associations with VEGFA and negative associations 
with mtCtnnb1 (Extended Data Fig. 10c and Fig. 6a,b).

Epistatic regulation of CCA development
Our C-G2P experiments suggested that VEGFA and mtCTNNB1 mediate 
opposing epistasis effects relevant to CCA development within the 
genetically heterogenous tumour ecosystems analysed, as nodules of 
this tumour class were consistently negative for mtCTNNB1 and positive 
for VEGFA (Fig. 7a). To substantiate this finding, we took advantage of 
the flexibility of our RUBIX mouse model and adjusted combinatorial 
complexity of genetic perturbations to directly assess the individual 
contributions to tumour development and phenotype. Specifically, 
we employed a ‘leave-one-out’ strategy, where we compared animal 
cohorts that received a full mix of all eight perturbation plasmids to 
cohorts where either VEGFA or mtCTNNB1 was deliberately omitted 
(Fig. 7b). In mice that received all eight perturbation plasmids, all 
animals developed tumours within eight weeks and histopathology 
revealed multiple tumour nodules, a fraction of which identified as CCA 
(HCC, 42 ± 17.7 versus CCA, 5 ± 1.96 per section). Immunohistochem-
istry for CK19 confirmed the CCA classification (Fig. 7c–e), matching 
our earlier C-G2P results (Fig. 5). In the cohort missing VEGFA, tumours 
developed faster and all animals presented tumours within five weeks. 
The majority of nodules identified as HCC (HCC, 63 ± 13.6 versus CCA, 
1 ± 0.756 per section). Using IHC, we observed that tumour nodules were 
generally negative for CK19, confirming the absence of CCA, although 
CK19 was still detectable in normal bile ducts (Fig. 7c–e). In contrast, 
the absence of mtCTNNB1 delayed tumour development, extending 
the time for all animals to present tumours to 11 weeks. Observed 
tumours were predominantly CK19-positive CCAs (HCC, 1 ± 1.51 versus 
CCA, 12 ± 4.71 per section; Fig. 7c–e). Together, these results confirm 
predictions of C-G2P-based findings revealing that whereas VEGFA 
expression essentially contributes to CCA development in the setting 
of combinatorial alterations investigated, mtCTNNB1 elicits a domi-
nant epistasis-masking effect on this particular liver tumour subclass.

Discussion
Here we introduced PERTURB-CAST, an approach that seamlessly  
integrates perturbation mapping for in vivo functional genomics  
with spatial transcriptomics interrogation by redeploying RTL 
probes from commercial technology for molecular barcode identi
fication. Combined with RUBIX, which allows induction of hundreds 
of tumours, each with distinct combinations of alterations, in a sin-
gle tissue, our CHOCOLAT-G2P framework offers the capability to 
characterize tumour gene expression and cellular microenviron-
ments, and helps address the long-standing question of how multiple  
genetic changes interact to shape disease phenotypes within  
cellular ecosystems.

By applying C-G2P in an autochthonous mouse model of liver 
cancer, we explored a wide range of cancer-driving combinatorial 
genotypes sampled from nearly all of the 28 combinations of pertur-
bations present in hundreds of coexisting tumours. The integration 
of PERTURB-CAST for spatial transcriptomics enabled simultaneous 
mapping of the genotype of each nodule alongside tumour-intrinsic 
and microenvironment-related phenotypes on the same tissue sample. 
PERTURB-CAST eliminated the need for complementary readouts as 
well as the requirement for analyses on serial tissue samples, thereby 
preserving spatial relationships and providing the basis for detailed 
genotype–phenotype analyses.

Interrogating 324 liver tumour nodules from a single C-G2P  
experiment revealed mutual exclusivity between mtCtnnb1 and VEGFA, 
indicating epistatic fitness effects of these two alterations. C-G2P 
revealed that their exclusivity was further underscored by phenotypic 
divergence. Specifically, VEGFA induced a cholangiocytic histology 
and gene expression profile. VEGFA-perturbed nodules also exhibited 
a greater abundance of cancer-associated fibroblasts compared with 

nodules with mtCtnnb1, indicating that genetic alterations also shape, 
and possibly co-opt, their TME. In contrast, mtCtnnb1, which we identi-
fied as a crucial contributor to overall liver tumour occurrence, masked 
the emergence of the CCA subtype, thus exemplifying Bateson’s  
classical definition of epistasis26.

C-G2P can be applied and extended in a number of ways. First, it 
is straightforward to adjust combinatorial complexity and exchange 
the alterations to additional cancer drivers1 and other perturbations, 
potentially within a compressed screening framework16. C-G2P may 
also be conducted in different mouse strains or growth conditions to 
model interactions and selective forces between tumour genomes  
and host genetics, immunocompetence, environmental exposures  
and therapeutic interventions7,53. Second, we envision the applica-
bility of PERTURB-CAST and C-G2P beyond liver cancer. Currently  
available autochthonous animal disease models that similarly build  
on stable integration of perturbations include diverse tumour types 
such as lung, pancreas, stomach and soft tissue cancers7,54,55. Moreover, 
the perturbation plasmids we employed here (Extended Data Fig. 1  
and Methods) are expected to be compatible with scRNA-seq readouts 
and imaging-based screening platforms14,16,17,56–58 that could in the 
future enable complementary insights.

In summary, C-G2P provides a multiplexed approach for higher- 
order combinatorial cancer screens in an individual mouse. Its design—
built on PERTURB-CAST, which uses off-the-shelf spatial transcrip-
tomics protocols—facilitates comprehensive readouts of tumour 
genotypes and spatial phenotypes from the same tissue sample.

As C-G2P may be extended to other disease models, perturba-
tions and (spatial) omics technologies, we envisage a broad range of  
applications to decode the relationships between complex geno-
types and phenotypes59 within the holistic context of tissue and the  
entire organism.

There are some limitations of the study. First, RUBIX currently 
generates tumour heterogeneity by establishing random combinato-
rial alterations simultaneously. Although this scalable approach could 
aid to initially explore a vastly unknown epistatic interaction space, 
this contrasts tumour development in humans where, in most cases, 
cells sequentially acquire alterations1. To address this, experimental 
strategies that enable stepwise introduction of genetic alterations 
require further exploration. Inducible perturbation systems, pre-
viously used in the liver cancer mouse model employed here, may 
provide a potential solution. Alternatively, we envision that serial 
injections of differentially barcoded plasmid pools could capture 
spatially resolved in vivo functional genomics data across temporal 
alteration trajectories. Although the random simultaneous introduc-
tion of alterations and establishment of hundreds of coexisting tumour 
nodules could provide a valuable opportunity for studying interclonal 
interactions, the complexity of our current model may as such not 
fully recapitulate the ancestral lineage, clonal evolution and genetic 
epistasis seen in human tumours. To more systematically investigate 
genetic interactions, we speculate that the multiplexing capabili-
ties offered by MultiMir combinatorial RNA interference60 as well as 
CRISPR/Cas12a61 warrant further investigation. For multiplex CRISPR 
perturbations, it may however, be necessary to employ modifications 
that avoid double-stranded breaks, such as CRISPR interference, to 
minimize the risk of unwanted chromosomal rearrangements and 
other detrimental effects16.

Second, PERTURB-CAST hinges on the availability of robust 
RNA-detection probes, a requirement that is not always satisfied, as 
evidenced by the failure to detect 5/38 barcodes tested in this study. 
We anticipate that prospective massively parallel assays61 based on 
C-G2P could be leveraged to select reliable probes.

Third, the moderate resolution of the 10X Visium platform we 
employed does not allow for single-cell analyses. Additional com-
putational approaches and next-generation spatial transcriptomics 
platforms could address this shortcoming62–65. PERTURB-CAST could 
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indeed be integrated with complementary probe-based single-cell 
spatial omics technologies such as the recently introduced CosMx WTx 
assay, which uses two in situ hybridization probes per transcript with 
35–50 nt RNA-targeting domains66. Finally, PERTURB-CAST may offer 
immediate implementation into high-resolution 10X Visium HD, which 
operates on the same RTL-probe-based transcript capture technology67.

Methods
Animal experiments
Group size was determined on the basis of our experience in previous 
experiments68,69. For HDTV injections, eight-week-old female C57Bl/6 
animals were purchased from Envigo. The mice were injected (into 
the lateral tail vein in 5–7 s) with 5 μg DNA of each of a total of eight 
perturbation plasmids (40 µg total DNA) mixed with 20 µg CMV-SB13 
transposase (1:2 ratio) prepared in sterile 0.9% sodium chloride solu-
tion in a total volume corresponding to 10% of the body weight, as 
described before. Two animals were used. We labelled this approach 
RUBIX as the perturbation plasmids are equipped with molecular bar-
codes (Extended Data Fig. 1) and the plasmid mixtures injected allow 
for all possible combinations to become integrated in the genome of 
hepatocytes (Fig. 1a). All animals were monitored twice weekly and 
animal experiments were performed in compliance with all relevant 
ethical regulations determined in the animal permit. After tumours 
were palpable (10 weeks), the animals were euthanized and their  
livers were harvested (Extended Data Fig. 2). As a control group, two 
animals were injected with 40 µg pT3-EF1-shRen and 20 µg CMV-SB13 
transposase (1:2 ratio) prepared in sterile 0.9% sodium chloride.  
For fixation, livers were incubated in 4% paraformaldehyde for 48 h. 
The sample processing procedure is illustrated in Extended Data  
Fig. 4. For the leave-one-out experiments (Fig. 7), HDTV injections 
were performed essentially as described before. For omission of  
either VEGFA or mtCTNNB1 perturbation from the plasmid pools, the 
respective plasmids were replaced with a control plasmid. Housing 
conditions for the mice were: 12 h light–12 h dark cycle, an ambient 
temperature of 20–24 °C and relative humidity of 45–65%. All animal 
experiments were approved by the regional board Karlsruhe, Germany.

10X Visium for FFPE spatial transcriptomics
Spatial transcriptomics were performed using the manual 10X Visium 
workflow for samples embedded in paraffin blocks or the 10X Visium 
CytAssist workflow for samples already placed on glass slides and 
stained with H&E (Extended Data Fig. 2). Both workflows were carried 
out according to the manufacturer’s protocol (CytAssist, CG000495, 
RevC; manual Visium, CG000407, RevD). Briefly, slices of approxi-
mately 5 µm were cut from FFPE blocks using a microtome and floated 
onto a water bath at 42 °C until all wrinkles were resolved. For the man-
ual Visium workflow the slice was then placed inside the capture frame 
of the spatial transcriptomics slide (M.R.). Slices used for the CytAssist 
workflow were placed on frosted glass slides. Deparaffinization and 
staining of the slides was similar between both workflows. After drying 
the slide, paraffin was removed through incubation at 60 °C for 2 h and 
a subsequent incubation in xylol. Rehydration was done by sequential 
washes with decreasing ethanol concentrations. After rehydration, 
the tissue was stained with H&E and imaged using a Leica Aperio AT2 
microscope at ×40 magnification. Following imaging, the slides were 
destained by incubation in 0.1 N HCl and formalin crosslinks were 
removed by incubation with TE buffer pH 9.0 for 1 h at 70 °C (manual 
workflow) or decrosslinking buffer for 1 h at 95 °C (CytAssist workflow.) 
The tissue was then permeabilized and incubated with RTL probes 
at 50 °C for approximately 20 h. Free probes were washed away and 
the bound probes were ligated, followed by washing steps to remove 
unligated probes. For the manual workflow, the probes were released 
by treating the slices with RNase and a permeabilization enzyme. For 
the CytAssist workflow, the slices were stained with a diluted eosin 
solution and placed in the CytAssist together with the Visium spatial 

transcriptomics slides and incubated for 30 min at 37 °C with RNase and 
permeabilization enzyme. For both protocols, the spatial barcode was 
added to the probes by extending them and the probes were released 
using a 0.08 M potassium hydroxide solution. For the CytAssist work-
flow, a pre-amplification PCR consisting of eight cycles was performed. 
After clean-up with 1.2× SPRIselect beads, 25% of the product was used 
as input for the index PCR. For both protocols, a quantitative PCR was 
used to select the number of cycles for the index PCR. To reduce PCR 
duplicates and avoid overamplification, cycle number at a Cq value of 
10% was used for the index PCR. The PCR product was purified using 
0.85× SPRIselect beads.

For samples already stained and mounted on a slide, the slides 
were first imaged and then incubated in xylol to remove the coverslip. 
Sample rehydration was done by sequential washes with decreasing 
ethanol concentrations. The slides were destained and decrosslink-
ing was performed by incubating with a decrosslinking buffer at 95 °C 
for 1 h. After decrosslinking, the samples were incubated with probes 
for 20 h at 50 °C. Excess probes were washed away and the probes 
were ligated. Thereafter, the unligated probes were washed away. The 
samples were stained again with eosin and placed in the 10X CytAssist 
together with the spatial transcriptomics slides. A mixture of RNase 
and permeabilization enzyme was added to the spatial transcriptomics 
slides and the 10X CytAssist was started. After incubation, the spatial 
transcriptomics slides were removed and the enzymes were washed 
off. The spatial barcodes were attached to the probes with an exten-
sion enzyme. Probes were released using 0.08 M potassium hydroxide 
solution. The probes were then amplified through eight PCR cycles; 25%  
of the purified PCR products were used as input for the index PCR. The 
cycle number of the index PCR was determined using the cycle number 
at a Cq value of 10%.

For all samples, the final sample concentration was determined 
using Agilent Tapestation 4150 with D1000 HS tapes. Sequencing for 
both protocols was performed on an Illumina NovaSeq6000 system. 
Four samples were pooled on one SP flow cell with 100 cycles to aim 
for a read count of 250 × 106 reads per sample. The FASTQ files and 
the alignment were done using spaceranger 2.0.1. A total of 12 spatial 
transcriptomics datasets were generated (Extended Data Fig. 2). Note 
that the utility of sample ML-II_B_2Cyt is constrained by tissue detach-
ment of the sample during the processing for 10X Visium CytAssist.

The 10X Visium for FFPE protocol engages RTL probes that capture 
a 50-nt sequence specific to endogenous transcripts (note that we  
used Visium mouse transcriptome probe set v1). We leveraged this 
strategy to likewise capture molecular barcodes via RTL probes (Fig. 1). 
We hence labelled this approach PERTURB-CAST.

Economized molecular barcode selection
To enable PERTURB-CAST, we aimed to avoid additional expenses and 
protocol modifications by redeploying RTL probes from commercially 
available 10X Visium reagents (originally designed to detect endo
genous transcripts) as barcode identification reagents, provided that 
the selected transcripts are not expressed in mouse liver. We named this 
strategy redeploy probes for barcode capture (REDPRO-BC; Fig. 1 and 
Supplementary Fig. 1). To this end, we initially analysed a publicly avail-
able bulk RNA-seq dataset including a total of 128 murine liver samples 
(GSE137385)70 to identify transcripts that were generally not detected 
(fragments per kilobase of transcript per million mapped reads = 0 over 
all samples). Note that this approach can be error-prone due to the ini-
tial source data. Consequently, we went on to validate non-expression 
of selected transcripts (olfactory, vomeronasal and taste receptors) 
in additional datasets (including bulk RNA-seq from GSE148379)19, 
information provided in MGI GXD71 as well as 10X Visium data24. The 
endogenous transcripts associated with the REDPRO-BCs used in this 
study are illustrated in Extended Data Fig. 3 and the respective nucleo-
tide sequences for 10X Visium RTL-probe capture barcodes (reverse 
complement to RTL-probe sequence provided by 10X Genomics) are 
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listed under the section ‘Molecular cloning’. Note that we used Visium 
mouse transcriptome probe set v1. Visium mouse transcriptome probe 
set v2 is not compatible with the barcodes employed in this study.

Molecular cloning
The transposon plasmids used in this study including overexpres-
sion constructs for NICD, mutant human CTNNB1 (T41A) and human 
MYC and potent shRNA constructs targeting Trp53, Pten, Kmt2c 
and Renilla luciferase were previously described and validated in 
animal experiments19,68,72. For spatial transcriptomics, note that 
NICD overexpression can be investigated via Notch1 expression 
given that the 10X Visium RTL probe identifies the exogenous tran-
script introduced. However, endogenous Notch1 is similarly identi-
fied. VEGFA overexpression plasmid was cloned by insertion of a 
codon-optimized gene fragment (gBlock, IDT) based on Vegfa NCBI 
reference sequence NP_033531.3 by replacing hMYC from a previously 
validated expression plasmid68 using NEBuilder HiFi-DNA assembly 
according to the manufacturer’s protocol (NEB). All plasmids were 
individually modified to express molecular barcodes. Specifically, 
fluorescent protein-based peptide barcodes (mKate2, mOrange2 
and mWasabi) were ordered as codon-optimized gene fragments 
(gBlock, IDT) and cloned into previously validated shRNA expres-
sion plasmids to replace GFP68 using NEBuilder HiFi-DNA assembly 
according to the manufacturer’s protocol. Small-peptide barcodes 
(for example, AU1, AU5 and so on), as described previously14, were 
ordered as oligonucleotides (Sigma), annealed and cloned using 
NEBuilder HiFi-DNA assembly according to the manufacturer’s pro-
tocol. Long RNA barcodes (stretches of at least 650 nt derived from 
the combination of multiple oligonucleotide–miner probe sequences 
designed against Arabidopsis thaliana Chr1 (ref. 73) were ordered as 
gene fragments (gBlock, IDT) and cloned using NEBuilder HiFi-DNA 
assembly according to the manufacturer’s protocol. REDPRO-BC 
triplet arrays were ordered as gene fragments (gBlock, IDT) and 
cloned using NEBuilder HiFi-DNA assembly according to the man-
ufacturer’s protocol. Briefly, each REDPRO-BC triplet array incor-
porates one 50 nt sequence derived from olfactory receptors, one 
50 nt sequence derived from taste receptors and one 50 nt sequence 
derived from vomeronasal receptors (based on 10X Genomics  
RTL-probe sequences against murine transcripts; note that we used 
Visium mouse transcriptome probe set v1; sequences below), sepa-
rated and flanked by spacer sequences of approximately 20 nt to avoid 
potential steric hindrance during hybridization. The spacer sequences 
used were derived from T7 and T3 promoters (described in ref. 56) 
and/or AsCas12a-DR sequences (described in ref. 61), and/or the 10X 
Capture sequences cs1 and cs2 (described in ref. 57), and as such 
provide additional functionality, which was not tested in this study. 
Single 50-nt REDPRO-BCs were ordered as oligonucleotides (Sigma), 
annealed and cloned using NEBuilder HiFi-DNA assembly according to 
the manufacturer’s protocol. Note that the REDPRO-BC length should 
enable straightforward en masse cloning engaging commercially 
available oligonucleotide pools (such as in ref. 61), which was not 
tested in this study. Peptide barcodes were integrated in frame with 
the respective coding regions. RNA barcodes were integrated in the 
3′ untranslated region of coding regions expressed under the control 
of a polymerase II promoter (EF1), unless otherwise specified. Subsets 
of perturbation plasmids were equipped with REDPRO-BC arrays 
either 5′ and 3′ of the shRNA expression cassette (mir-E-based) to 
account for mir-E processing74, or with additional REDPRO-BC arrays 
driven by a polymerase III promoter (hU6) in reverse orientation to the 
EF1-driven transcript. Extended Data Figs. 1 and 3 provide simplified 
illustrations of the plasmid design and barcode position. Respective 
FASTA sequences of plasmids are available on request. Plasmids were 
validated by restriction digest and Sanger sequencing (Microsynth).

Selected REDPRO-BC barcode sequences based on Visium mouse 
transcriptome probe set v1 were as follows.

Myc. Olfr103, TGGGAGTGAGAGACATACAAGAACCACAGCCCTTTCTCT 
TTGCTATTTTC; Tas2r102, AACACAAGTGTGAATACCATGAGCAATG 
ACCTTGCAATGTGGACCGAGCT; Vmn1r1, TAAAAGGCAGTGTCAGTA 
CCTTCACAACACCAGCATTTCCCGCAAAGCAT; Olfr1018, CAGTTCCAT 
GGTTATCAATGTTCTCACCTTGAGTTTGCCCTACTGTGGAC; Tas2r118, 
TTATTGGCACTGTGTTTGATAAGAAATCTTGGTTCTGGGTCTG 
CGAAGCT; Vmn1r174, ACTTCAACCAGAGGCCAGAGCAGCAAACAC 
AATTCTCATGCTGATGATCA; Olfr1, TGGCCAGCATCTTTCTTGTCCTT 
CCATTTGCACTCATTACCATGTCCTAT.

mtCtnnb1. Olfr1000, GGCACAGTAGGTATGTTCACTGGTCTGATAAT 
TCTGGGGTCCTATGTATG; Tas2r103, TGTCACTAATCACAGGGTTCTT 
GGTATCATTATTGGACCCAGCTTTATTG; Vmn1r178, GTCTCTTCATGA 
GTCATTTCAGTAAAGTTTTTGCTGCAGGATTCCCCACT; Olfr1019,  
TGCTTGGTCCTAATGCTGGGCTCTTACTTCGCTGGCCTAGTGAGT 
TTAGT; Tas2r119, GATATCCAGGTTGGTGCCATGGCTGATCCTG 
GCATCTGTGGTCTATGTAA; Vmn1r175, AGTACAAACATGTGCTCCAC 
CTGCTTTCTGAGCACTTATCAGCTTGTCAC.

NICD. Olfr1006, AGGGAACATGTTGCTGGTTGTTTTAATCCGAATTG 
ATTCTAGACTGCATA; Tas2r105, GACCTCGGAGATGTACTGGGAGAA 
AAGGCAATTCACTATTAACTACGTTT; Vmn1r139, AAGCATTGGCAA 
GTCACAGGCAAAGAGTGACACAGAGACGTTCCTCAATT.

VEGFA. Olfr1002, AGGCCTTATAAGCACTGTGGTCCATACTACT 
TCTGCATTTATTCTTCCAT; Tas2r104, TAACGTGGCTAGCTTCCTTTCCG 
CTAGCTGTGAAGGTCATTAAAGATGTT; Vmn1r12, ACTACATTGTCA 
GGAGCTTGATTTTAACTGTGACAACTTCCAGGGATATG.

shPTEN. Olfr1013, GTACACATTGACTTTGATGGGAAATAGCTCCCTCA 
TTATGTTAATCTGCA; Tas2r110, ACTAGTGAATATCATGGACTGGAC 
CAAGAGAAGAAGCATTTCATCAGCGG; Vmn1r170, TGATTCTCCTG 
AACAGACACCACCACAGACTGCAGCATATTCAATCCACA; Olfr1015, 
TGTCTATGTGAAAATCCTTTCCAGTATGGTGGGCTTCACTGTCCTCT 
CAA; Tas2r114, TGTAATTTGTCTGTTAATCCCAGAAAGCAACTTGTTAT 
TCATGTTTGGTT; Vmn1r172, GGAAGTAAATGCCCAGAGAGTCTTCA 
AAGGAAGACAGTCATAGCTGTTTT.

shREN. Olfr1008, CCAGGCTCTGCTATTCACCAGTAAAATTTTCACA 
TTAACTTTCTGTGGCT; Tas2r106, AAGGCACTGAAGCAATTAAAAT 
GCCATAAGAAAGACAAGGACGTCAGAGT; Vmn1r157, CAGATCCTC 
TTGCTTTGCCATTTTGAGGTTGGGACCGTGGCCAATGTCTT.

shTRP53. Olfr1009, CCAGAGACTCTGCATACAGCTGGTGATCG 
GACCCTATGCTGTTGGCTTTT; Tas2r107, GCTCTCTAAGATCGGTT 
TCATTCTCATTGGCTTGGCGATTTCCAGAATTG; Vmn1r167, GTTT 
CAGTATAGGCATGCGCATCTTATCATTTGCCCATGATGGAGTG 
TTC; Olfr1014, TTGCTGTGTATGCATTAACTGTGTTAGGAAACAGCA 
CCCTCATTGTGTTG; Tas2r113, GATCAATCATTGTAACTTTTGGC 
TTACTGCAAACTTGAGCATCCTTTATT; Vmn1r171, AACAGCACTGC 
CCTCATGATCACTATTCCGTTGACCAATGAAGTTGTCTC; Olfr107, TT 
ACTGCTTTCTTGCTCAGACACTCACCTCAGTGAGGGCCTGATGA 
TGGC.

shKMT2C. Olfr1012, ATCTACTCTCGGCCAAGTTCCAGTTATTCCT 
TGGAAAGGGATAAAATGGT; Tas2r109, TTCTAGAATTTTCCTGCTC 
TGGTTCATGCTAGTAGGTTTTCCAATTAGCT; Vmn1r169, GGTACCT 
GGGGTAGGGTGATGCTCCATGGAAGAGCCCCCAAATTTGTGAG.

Histopathology
After fixation, representative specimens of the liver were routinely 
dehydrated, embedded in paraffin and cut into 4-μm-thick sections. 
The tissue sections were stained with H&E according to standard  
protocols. Slides were scanned using a SCN400 slide scanner (Leica 
Biosystems) at ×20 magnification.
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Nodule annotation was initially performed by experienced pathol-
ogists (D.F.T. and H.W.) based on H&E-stained sections using the quPath 
software and the 10X Loupe Browser software. Nodule annotation 
was further refined based on specific transcript expression (example  
provided in Supplementary Fig. 3) using the 10X Loupe Browser soft-
ware (H.W. and M.B.).

IHC
After heat-induced antigen retrieval at pH 6 or pH 9, FFPE tissue  
sections were incubated overnight with the primary antibody and 
blocked with hydrogen peroxide if necessary. Depending on the pri-
mary antibody, an anti-mouse or anti-rabbit secondary antibody conju-
gated to horseradish peroxidase (HRP) and alkaline phosphatase (AP), 
respectively, was applied (PolyviewPlus, ENZO Life Sciences GmbH). 
The signal was visualized using either 3,3′-diaminobenzidine (Dako 
liquid DAB+ substrate, Agilent Technologies, Inc.) or AP (Permanent 
AP red, Zytomed Systems) as a chromogen. Details are given in Table 1.

Slides were scanned using a SCN400 slide scanner (Leica Biosys-
tems) at ×20 magnification. The individual histochemical GFP, RFP 
and GS staining was evaluated using the quPath software as: high, very 
intense uniform staining; moderate, moderate intensity or intense 
non-uniform staining; and low, low intensity and non-uniform staining. 
Mapping of barcode signals to respective IHC data was performed by 
manual assessment of marker staining on IHC images using the quPath 
software (H.W. and M.B.). Next, corresponding tumour nodules were 
selected, categorized and stratified using the 10X Loupe Browser soft-
ware (H.W. and M.B.). Note that this approach can be error-prone due 
to shifts in the z-plane based on serial sectioning for each IHC sample 
and samples used for 10X Visium.

Computational data analysis
We used Python (v3.9.12) and the packages anndata (v0.11), scanpy 
(v1.9.8), squidpy (v1.4.1), sagenet (v1.1.0), Cell2module (GitHub version, 
retrieved in February 2024), pandas (v2.0.3), Torch (v2.1.1), Numpy 
(v1.24.3), Matplotlib (v3.7.2), Pyro (v1.8.6), SciPy (v1.11.3) and alpha_
shape (GitHub clone c171a7d). We used R (v4.3.0) and the packages 
SingleCellExperiment (v1.24.0), ZellKonverter (v1.12.1), scater (v1.30.1), 
ComplexHeatmap (v2.16.0), glasso (v1.11), FSA (0.9.6), dplyr(1.1.4), 
ggplot2 (v3.5.1), igraph (v2.0.1.1) and scran (v1.28.2).

Genotyping
Barcode expression pre-preprocessing. Before analysing the 10X 
Visium data, we applied a filtering criterion of unique molecular iden-
tifier counts of >5,000. For the CytAssist platform, we excluded the 
outermost layer of spots due to unexpectedly high unique molecular 
identifier counts. In addition to manually identifying cancerous nodule 

regions, we annotated ‘normal tissue’ regions to acquire representation 
of areas without any cancerous cells. The selection of normal regions 
was based on a minimum distance of 250–700 µm from the nearest 
tumour, depending on the tissue section, to minimize contamina-
tion from adjacent tumour regions. Tumour nodules were defined as 
described in the ‘Histopathology’ section.

Bayesian modelling of perturbation probabilities from barcode 
counts. In our model, the observed expression count matrix Ds,b 
(spots s by barcode genes b) is assumed to follow a negative binomial 
distribution. This matrix has a mean λs,b and overdispersion ϕb. The 
overdispersion parameter ϕ is sampled from a Gamma distribution 
(shape = 1,000; rate = 0.03) skewed towards higher values to encourage 
the likelihood to approximate a Poisson distribution in the absence of 
overdispersion evidence.

The mean expression for each spot is calculated as:

λs,g = μs∑rAs,r∑gGr,gBg,bκb + ξb

where μs represents the sensitivity of each spot, As,r maps spots to clonal 
nodules r, Gr,g estimates the expected number of integrated copies of 
plasmid g, Bg,b links plasmids to their corresponding barcodes and κb 
is the barcode expression rate; ξb is a barcode-specific additive noise 
term. The per-nodule plasmid integration number (Gr,g) is modelled as 
an expected count of integration events, described by Fr,g,o. Here Fr,g,o 
captures the probability of no integration and higher indices reflect 
the integration of increasing numbers of copies. This is modelled using 
a Dirichlet distribution with a uniform concentration parameter and 
an order o = 6. This assumes the maximum of six copies of the same 
plasmid per clone, balancing the need to capture dosage-dependent 
variation with the practicality of limiting the number of parameters to 
be learnt. For normal tissue regions, the probability of perturbation 
presence was fixed to 1 × 10−3 to indicate near absence, but not zero, 
to prevent numerical instabilities.

Both κg and ξg are sampled from a weakly regularized exponential 
distribution with a rate of one. Spot sensitivity μs is modelled by a 
gamma distribution (shape = 3; rate = 0.3) that is weakly centred around 
one. This parameter accounts for both the sensitivity variability across 
10X Visium spots and the dilution effects on the barcode signal due to 
varying tumour purity.

Perturbation probability model inference. We infer our Bayesian 
model using a variational posterior approximation. Specifically, we 
employ a log-normal guide distribution to approximate the parameters 
that have exponential and gamma distributed priors. In addition, we use 
a Dirichlet approximation for the posterior of Fr,g,o. The model and its 

Table 1 | Details of antibodies used in IHC

Antibody Host Company Catalogue 
number

Antigen retrieval Dilution Detection reagent Chromogen Blocking

CK19 Rabbit Abcam ab133496 Dako target retrieval solution 10× 
concentrate, pH 9 (catalogue number 
S2367)

1:100 PolyviewPlus AP 
anti-rabbit

Permanent 
AP red

/

HNF4α Rabbit Abcam ab181604 Dako target retrieval solution 10× 
concentrate, citrate pH 6, (catalogue 
number S2369)

1:400 PolyviewPlus AP 
anti-rabbit

Permanent 
AP red

/

GS Mouse BioScience BD610517 Dako target retrieval solution 10× 
concentrate, citrate pH 6 (catalogue 
number S2369)

1:1,000 PolyviewPlus HRP 
anti-mouse

DAB H2O2

tRFP Rabbit Evrogen AB 233 Dako target retrieval solution 10× 
concentrate, citrate pH 6 (catalogue 
number S2369)

1:500 PolyviewPlus AP 
anti-rabbit

Permanent 
AP red

/

GFP Rabbit Cell Signalling 2956 Dako target retrieval solution 10× 
concentrate, pH 6 (catalogue number 
S1699)

1:100 PolyviewPlus HRP 
anti-rabbit

DAB H2O2
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inference framework are implemented in Pyro (v1.8.6)75. The variational 
approximation is conducted via the stochastic variational inference 
method76, employing the Adam optimizer set at a learning rate of 0.01 
and using three samples for Kullback–Leibler divergence estimation. 
We perform inference over 10,000 gradient steps, monitoring the 
evidence lower bound to assess convergence.

Occurrence of individual perturbation combinations. Considering 
the probabilistic nature of our estimates for Fr,g,o, we utilized samples 
from the estimated posterior to analyse tumour populations. Due to 
uncertain integration copy number estimates, we focused on presence/
absence categories. These probabilities were computed as 1 − Fr,g,o, and 
representative genotypes were sampled with Bernoulli distribution 
for each region and perturbation. We aggregated the data across 324 
nodules into 256 possible genotype states, which allows us to compute 
medians and CIs for marginal integration numbers (indicating the 
count of different plasmids integrated) and individual perturbation 
for frequencies as well as frequencies of individual genotypes.

Although it may be tempting to interpret high frequencies of 
genotype occurrence as advantageous for tumour proliferation, such 
raw frequencies could be confounded by technical factors such as 
initial plasmid concentration and integration rate. To address this, we 
constructed a null hypothesis (H0) over the 256 individual genotype 
numbers. This hypothesis holds the marginal expected number of inte-
grations and perturbation frequencies constant across the population, 
attributing variations solely to technical effects, and assumes that the 
genotypes are independently distributed.

In practice, we adjust the observed perturbation frequencies to 
account for technical biases by normalizing these frequencies—dividing 
the average observed perturbation frequency for each perturbation 
by the sum of all plasmid frequencies and multiplying by the expected 
number of integrations. We then simulate the distribution of genotypes 
by drawing Bernoulli samples using these rescaled probabilities for 
each perturbation. This process is repeated for the number of nodules 
(324) and the results are aggregated back into the 256 genotype states to 
create a sampling strategy that reflects the desired properties. By com-
paring deviations between 5,000 samples drawn from both the inferred 
posterior (observed) and the simulated H0 (expected), we can identify 
genotypes with significant tumorigenic effects (observed > expected) 
or disadvantageous effects (observed < expected).

Co-occurrence ORs and model of second-order interaction effect. 
With posterior estimates of the genotypes within the tumour population,  
we can test for interaction effects between individual perturbations. 
Wrange of variables accountinge categorize the frequencies of pertur-
bations A and B into four groups: p00(A−B−), p01(A− and B+), p10 (A+B−) 
and p11(A+B+). The system can be described using a softmax linear 
model expressed as:

pi, j = exp(θ00 + iθ10 + jθ01 + ijθ11)/∑ij exp(θ00 + iθ10 + jθ01 + ijθ11)

Here, θ00 and θ01 represent the effects of individual perturbations 
and θ11 is the interaction effect. By setting θ00 to zero to eliminate soft-
max non-identifiability and using Z as the normalization constant 
Σi, j eθi, j, we derive the following relationships:

p10/p00 = [eθ10 /Z ]/[1/Z ] = eθ10

similarly,

p01/p00 = eθ01

and

p11/p00 = eθ10+θ01+θ11

Thus, computing the pairwise odds ratios (OR) effectively deter-
mines the interaction effect θ11:

OR = p11p00/p10p01 = p11p00/[p10/p01][p01/p00]

= eθ10+θ01+θ11 /eθ10 eθ01 = eθ11

For each gene pair, we estimated the ORs and assessed their sig-
nificance by drawing 2,000 samples from the posterior probability 
of perturbation presence for each nodule. By fitting a softmax linear 
model directly to the data and setting the interaction effect θ11 to zero 
(OR = 1), we simulated the expected probabilities for the pairwise 
groups under the assumption of no interaction.

Genotype-to-phenotype GLM
To explore the relationships between inferred perturbation probabili-
ties and phenotypic features—specifically, IHC staining status and gene 
expression—we employed a GLM model. Here the inferred perturbation 
probabilities serve as the explanatory variables X.

For the IHC staining analysis conducted at the nodule level, 
we used binary annotations (positive/negative) and modelled the  
outcomes with a Bernoulli distribution. The staining status for each 
nodule, Yr,m,k (r, region; m, gene; k, sample) is modelled as:

Yr,m,k ∼ Bernoulli(σ(∑gXr,gwg,m) + zk)

where σ(x) =1 / 1 + e−x is the sigmoid link function. The weight matrix 
wg,m, akin to L1 regularization, is sampled from a Laplace distribution 
centred at zero with a scale parameter b. We set the scale to one for 
the intercept and 0.1 for the perturbation weights to impose stronger 
regularization on the perturbations. The batch effect zk for each sample 
k is also sampled from a Laplace distribution (0, 1). The explanatory vari-
able Xr,g is directly sampled from 1 − Fr,g,0, estimated by the perturbation 
probability model (non-learnable in the GLM).

Gene expression is modelled similarly, with few key differences. 
As gene expression is recorded as a non-zero integer at the spot level 
s, we use a Poisson distribution:

Ys,m,k ∼ Poisson(μs exp(∑gXs,gwg,m + zk))

In addition to the parameters used in the IHC model, spot sensiti
vity μs is factored in, sampled from the posterior of the perturbation 
probability model. Xs,g is calculated as ∑rAs,r(1 − Fr,g,0) . The weight 
matrix wg,m for perturbation-related weights is sampled from a Laplace 
distribution centred at zero with a strongly regularizing scale 
b = 1 × 10−3.

GLM inference
We infer our Bayesian model using a mean field variational poste-
rior approximation. The model and its inference framework are 
implemented in Pyro (v1.8.6)75. The variational approximation is 
conducted via the stochastic variational inferederive the following 
relationships:nce method76,77, employing the Adam optimizer set at 
a learning rate of 0.01 and using three samples for Kullback–Leibler 
divergence estimation. At each gradient descent step, the parameters 
X and μ are sampled from their respective posterior distributions, 
as estimated by the perturbation probability model. This approach 
integrates the uncertainties associated with their estimation directly 
into the GLM framework. We perform inference over 2,000 gradient 
steps, monitoring the evidence lower bound to assess convergence.

Statistical analysis of the leave-one-out experiment
The leave-one-out experiment (Fig. 7) evaluates whether the removal  
of the previously identified epistatically interacting perturbation, 
VEGFA or mtCTNNB1, from the eight-plasmid mix affects the formation  
of HCC or CCA. Three setups were tested: (1) all eight perturbations,  
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(2) all perturbations minus VEGFA and (3) all perturbations minus 
mtCTNNB1. For each setup, four mice were used. Tumours were identi-
fied and counted on two independent liver sections per mouse, with 
H&E histopathology and CK19 staining employed to differentiate 
between HCC and CCA subtypes. To assess group differences using a 
commonly applied approach, we performed a two-sided Kruskal–Wallis 
test, followed by Dunn’s post-hoc test with Holm–Bonferroni correc-
tion for multiple testing. We further used an alternative approach to 
model tumour burden across experimental groups while accounting 
for biological variability and applied a Bayesian hierarchical Poisson 
regression.

This statistical model aims to estimate the occurrence rate of HCC 
or CCA types across different experimental conditions, accounting for 
group-level and animal-specific variability. Tumour counts, yi, observed 
for each slide i are modelled as Poisson-distributed outcomes. The 
rate parameter μi for each observation depends on the experimen-
tal condition and animal-specific effects. Group-level experiment  
effects (βg) are drawn from a normal distribution βg ~ N(0, σβ), 
where variability controlled by the hyperprior σβ ~ HalfCauchy(1.0). 
Animal-specific random effects (αa) account for individual variability 
and are sampled from N(0, σa), with σα ~ HalfCauchy(0.05). The latter is 
assumed to be less strong than the group-level effect, which is reflected 
in a more regularised hyperprior. The model specifies the expected 
log-counts as log(μi) = βg + αa, where g and a index the group and animal 
associated with observation i. The tumour counts are then sampled 
from a Poisson distribution, yi ~ Poisson(μi).

The posterior parameter distribution was estimated using 
3,000 Markov chain Monte Carlo samples. The significance of dif-
ferences between experimental effects was assessed by comparing 
the group-level parameters (βg) across groups. P values were com-
puted as the proportion of posterior samples where the differences 
in βg exceeded or fell below zero, depending on the direction of the 
expected effect. Model-derived estimates corroborated the findings 
of the non-parametric Kruskal–Wallis analysis.

Reading Visium space ranger output into data objects. We utilized 
the anndata package (v0.11) in Python and the SingleCellExperiment 
package (v1.24.0) in R to generate and manage 10X Visium data objects. 
To facilitate communication between R and Python, we employed 
ZellKonverter (v1.12.1). For data processing, we employed Scanpy 
(v1.9.8), squidpy (v1.4.1) and scater (v1.30.1) in Python and R76,78,79. We 
refined our analysis by subsetting all objects to include only features 
shared across all 11 slides, resulting in a total of 19,464 genes.

Publicly available databases of cell-type markers. We used 
scLiverDB, PanglaoDB and MSigDB to collect an initial set of marker 
genes for prevalent cell types and gene sets in normal and tumour liver 
tissues of mouse and human80–82. This yielded a list of a total 2,323 genes.

Data normalization and preprocessing. After applying filtering crite-
ria to exclude genes with raw counts of <10 or >1 × 106 for any individual 
slide, as well as barcode genes, the count matrices were normalized to 
each spot to ensure a total count of 1 × 104. Subsequently, the normal-
ized values were log-transformed (log(x + 1)). This preprocessing was 
executed in Python using Scanpy (v1.9.8). Utilizing Scanpy (v1.9.8) with 
the Seurat flavour, we identified 15,000 highly variable genes for each 
of the 11 Visium and Visium CytAssist slides. The intersection of these 
sets resulted in 9,205 genes. Subsequently, in the final refinement step, 
we narrowed the gene set down to 80 core markers, resulting in 7,361 
genes. This final gene set was employed for all subsequent phenotype 
analyses and visualizations.

Gene coexpression networks. Using the spot level-normalized expres-
sion values after filtering out uninformative genes, we conducted 
Gaussian graphical modelling83 to infer a sparse gene coexpression 

network. We utilized the R package glasso (v1.11) for this purpose. 
The regularization parameter was optimized through a grid-search 
approach and set to 0.3. Following the construction of the initial Gauss-
ian graphical modelling, we refined the network by filtering edges to 
retain only those with a Pearson’s pairwise correlation coefficient of at 
least 0.25. The isolated genes were, in turn, dropped from the graph. 
We used the R package igraph (v2.0.1.1) to visualize the graphs.

Nodule-level expression aggregation. We computed two types of 
aggregates for normalized expression values within each nodule: 
mean-based and quantile-based. For the mean-based aggregates, we 
calculated the average normalized expression of each gene across 
all spots within each nodule. For the quantile-based aggregates, 
we determined q95 of expression values across all spots per nodule.  
We used these aggregates in the subsequent nodule-level analyses.

Binarization of nodule phenotypes. After quantile normalization, 
we computed the average of the scaled expression values for the core 
markers per phenotype, we then thresholded the values by 0.5, where all 
nodules with an aggregate value of >0.5 are considered to have the cor-
responding phenotype signature and otherwise not. The mean-based 
aggregates for each gene are quantile-normalized further by

x − q25/q99 − q25

where q25 and q99 represent the 25th and 99th quantile values of the 
aggregate gene expression for the corresponding gene across all  
nodules and all slides. We then binarized the values >0.5 as one (on) 
and otherwise zero (off).

Binarization of nodule TME signatures. We binarized the TME  
signatures following the same procedure as for nodule phenotypes 
but using the initial quantile-based aggregates instead.

Phenotype and TME heatmaps. We generated heatmaps of scaled 
gene expression using the processed expression values at the nodule 
level, employing ComplexHeatmap (v2.16.0)84. Clustering of both 
rows and columns was performed based on Spearman’s correlations. 
In addition, hierarchical clustering was applied to subdivide genes 
into clusters. The colour bar associated with genes indicates their 
corresponding phenotypes, with emphasis on the core markers. An 
attached annotation heatmap illustrates scaled (p10) estimated plasmid 
probabilities per nodule.

Spatial integration and nodule unification. To integrate all slides into 
a unified embedding space and classify spots based on their pheno
typic signatures in an unbiased manner, we employed an ensemble 
spatially-aware classifier implemented in SageNet (v1.1.0)85. Data from 
all slides were trained and fed into this classifier. Subsequently, we 
clustered the spots within the embedded space using Scanpy’s wrapper 
of Leiden clustering (with a resolution of one)86. We then performed 
voting classification to classify nodules to the most-dominant class 
across the spots belonging to the corresponding nodules. We call these 
classes the ‘unified nodule annotations’. Finally, we extracted spatially 
informative genes from the SageNet model.

Inter-nodule differential gene expression. To delve deeper into 
inter-nodule transcriptional differences, we conducted differential gene 
expression analysis using the FindMarkers method from the R package 
scran (v1.28.2). This method allowed us to perform a light-weight dif-
ferential gene expression analysis on the unified nodule annotations.

Cell type-informed factor analysis. We concatenated all raw anndata 
objects and subsetted them to the set of ‘core markers’ and associated 
genes (as listed in Fig. 5) as well as 500 highly variable genes across slides.  
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We then used cell2module (github.com/vitkl/cell2module) to perform 
non-negative matrix factorization. The cell2module model treats 
raw RNA count data D as negative-binomial (NB) distributed, given 
transcription rate μc,g and a range of variables accounting for techni-
cal effects:

Dc,g ∼ NB(μ = μc,g,αa,g)

and

μc,g = (∑fwc, f,gf,g + se,g)yc

where μc,g denotes expected RNA count g in each cell c, αa,g denotes the 
per gene g stochastic/unexplained overdispersion for each covariate α, 
wc,f denotes cell loadings of each factor f for each cell c, gf,g denotes gene 
loadings of each factor f for each cell c, se,g denotes additive background 
for each gene g and for each experiment c to account for contaminat-
ing RNA and yc denotes normalization for each spot c to account for 
RNA-detection sensitivity, sequencing depth. We recovered 40 fac-
tors representing groups of coexpressing cell-type signatures using 
the default cell2module parameters. After training, we inferred the 
posterior of the gene loadings per factor. Subsequently, we extracted 
genes with the top five posterior median values and compared them 
with predefined marker gene lists per cell type. Finally, we mapped each 
factor to the cell type with the highest number of overlapping genes.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
We used publicly available datasets from scLiverDB (https://guolab.
wchscu.cn/liverdb#!/), PanglaoDB (https://panglaodb.se/), MSigDB 
(https://www.gsea-msigdb.org/gsea/msigdb), GEO (https://www.ncbi.
nlm.nih.gov/geo/), MGI (https://www.informatics.jax.org/) and the 
LiverCellAtlas (https://www.livercellatlas.org/). We deposited data 
related to this manuscript to https://zenodo.org/records/10986436 
(ref. 87). In addition, we have launched a web browser for interactive 
data analyses (https://chocolat-g2p.dkfz.de/). Source data are provided 
with this paper.

Code availability
Scripts and custom code for data analysis related to this manuscript 
are available at https://github.com/gerstung-lab/CHOCOLAT-G2P/ 
(ref. 88).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Overview of perturbation plasmid design and molecular 
barcoding. Schematic overview of Sleeping Beauty transposon perturbation 
plasmids to ectopically overexpress genes-of-interest (oncogenic-driver 
perturbations) or shRNA to enable gene knockdown (tumor-suppressor 
perturbations). Functional elements are highlighted. IR: Inverted/direct repeats 
of sleeping beauty transposon; GFP: green fluorescent protein, mK2: mKate2 red 
fluorescent protein, EF1: Polymerase II promoter; U6: Polymerase III promoter; 
pA: polyadenylation signal; sh: short hairpin RNA embedded in mir-E context; 
BC: a barcode in which 3 redeployed RTL-probe capture sequences (as indicated) 

are embedded. Note that we used Visium Mouse Transcriptome Probe Set v1 to 
derive barcodes. Each 50 nt barcode is separated and flanked by ca. 20 nt spacer 
sequences to avoid potential steric hindrance during hybridization. Spacer 
sequences used were derived from T7 and T3 promoters and/or AsCas12a-DR 
sequences and/or 10X Capture sequences cs1 and cs2 (not shown). Functionality 
of spacer sequences was not tested in this study. Note that plasmids were 
equipped with multiple orthogonal barcodes at varying positions. See Methods 
for further information.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Sample processing and ROI selection for spatial 
transcriptomics. a, RUBIX with a pool-of-8 plasmid mix results in rapid liver 
tumour development. Injection of a shRNA targeting Renilla (shRen; matching 
total plasmid concentration for pool-of-8 mix) served as control, n = 2 each 
group. Representative H&E-stained samples revealing multiple tumour nodules 
from the two individual animals are shown. Absence of tumours in the control 
group (shRen only) indicates that random integration of transposon plasmids 
itself is unlikely to contribute to tumorigenesis. b, Tissue preprocessing. 
Following liver tumour development, livers were extracted, divided and 
processed to FFPE as well as fresh frozen specimens. FFPE samples were initially 
sectioned to enable sample selection. c, C-G2P liver samples. Overview of three 
representative FFPE samples used in this study. A total of 513 tumour nodules 
(red outline) were identified based on histopathological examination (based on 
H&E). d, Overview of ROIs selected for 10X Visium. 6 segregated regions were 

selected across 3 FFPE samples. Squares indicate approximate position of ROIs 
selected for ST. Orange: first 10X Visium run, light orange: first 10X Visium run, 
replicate ROI; blue: second 10X Visium run; black: 10X Visium CytAssist run.  
Note overlap between ROIs, where serial sections are used for 10X Visium.  
e, 10X Visium workflow. Samples for ST are derived directly from FFPE blocks and 
mounted on 10X Visium slides. f, 10X Visium CytAssist workflow. Samples for ST 
are derived from sections already mounted on glass slides and transferred to 10X 
Visium slides using the 10X CytAssist instrument. g, Overview of all samples used 
for ST. 12 samples from a single RUBIX experiment with two animals were used 
for 10X Visium in this study. Respective H&E stainings are depicted. Note that the 
utility of sample ML-II_B_2Cyt is constrained by tissue detachment of the sample 
during the processing for 10X Visium CytAssist and was not included for further 
analyses (asterisk). QC summary stats for each sample related to Visium runs 
performed are provided.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Specific detection of redeployable barcodes by available 
10X RTL probes. a, Expression of all potentially redeployable barcodes derived 
from sensory receptor transcripts in murine liver. Transcripts associated with 
three groups of sensory receptors - Tasr (red; n = 26), Vmnr (yellow; n = 194), 
Olfr (blue; n = 956). Redeployed barcodes (black) are well separated from 
endogenous sensory receptor transcripts (total n = 1,216). Data for all 11 C-G2P 
samples generated in this study from a single RUBIX experiment with two animals 
is depicted. Reference control liver datasets (NAFLD, StSt) are from17. b, Sensory 
receptor-associated transcripts expressed in murine liver. Sensory receptor-
associated transcripts that reveal average expression between <0.01 and >0.008 

in murine liver are depicted. Expression values are aggregated across all 11 C-G2P 
samples shown in a. c, Expression of all 38 redeployed barcodes used in this 
study. Grouped according to associated perturbation (see Extended Data Fig. 1, 
Methods). Expression is averaged across 6 primary C-G2P samples. Note that 5/38 
revealed insufficient signal (average expression < 0.05). In all panels, expression 
values are log1p-transformed. Barcodes expressed from a Pol III (hU6) promotor 
are highlighted. Barcodes expressed in 5′ mirE position for shRNA constructs 
are highlighted. Simplified plasmids maps are depicted to illustrate barcode 
positioning.
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Extended Data Fig. 4 | Spatially resolved triplet barcode expression enables 
identification of all 8 perturbations used. Spatially resolved expression of 
triplet barcodes for each of the 8 perturbations across all 11 samples in this 
study from a single RUBIX experiment with two animals. Gene expression is 

log1p-transformed and quantile-rescaled, as in Fig. 3c. The quantitative barcode 
expression for all samples can be explored through the interactive web browser 
(https://chocolat-g2p.dkfz.de/).
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Extended Data Fig. 5 | Spatially resolved perturbation mapping. Spatially 
resolved visualization of the inferred probabilities indicating the presence or 
absence of each of the 8 perturbations associated with annotated tumour nodules 

for all 11 samples used in this study from a single RUBIX experiment with two 
animals (Methods), as in Fig. 3d. Perturbation probabilities for all samples can be 
explored through the interactive web browser (https://chocolat-g2p.dkfz.de/).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Quantitative reproducibility of spatial perturbation 
mapping. a, Quantitative reproducibility. Scatterplots of inferred perturbation 
probabilities for nodules on the primary section to those on the corresponding 
replica sections, with Pearson’s correlation values displayed. In total, 136 nodule 
pairs were analysed. b, Matching nodules across samples. Spatial maps of the 
inferred probabilities (as in Fig. 3c) indicating the presence or absence of each of 

the 8 perturbations associated with annotated tumour nodules for all samples 
that have matching ROIs from a single RUBIX experiment with two animals. 
Matching nodules were manually annotated (Methods). Addition of “_Cyt” in 
sample name indicates use of 10X CytAssist. Number of matching nodules is 
indicated.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Validation of inferred perturbation integration. 
a–c, Perturbation–phenotype association. Spatially resolved visualization 
of the inferred probabilities indicating the presence or absence of each of 
the 8 perturbations associated with annotated tumour nodules (Methods). 
a, A representative sample is displayed. A generalized linear model (GLM) 
predicts phenotype expression signals based on the estimated probabilities of 
perturbation presence (Methods). b, Phenotypes are defined as direct target 
transcripts associated with perturbations such as shKmt2c-Kmt2c and shTrp53-
Trp53. Expression data are log1p-transformed. Note that shTrp53 is linked to a 
GFP peptide barcode and shKmt2c is linked to a RFP barcode (Extended Data 
Fig. 1). c, Hence we infer shTrp53-GFP-positive phenotype and shKmt2c-RFP-
positive phenotype. Representative IHCs for a corresponding ROI on a serial 
section. Baseline depicts background phenotype marker expression. Data 
are presented as feature coefficients shown as mean and error-bars depict 3σ 
confidence intervals. As in Fig. 3c, and d. d, H&E and IHC for GFP, RFP, GS. Three 

representative FFPE samples from a single RUBIX experiment with two animals 
were sectioned and stained for H&E (see Extended Data Fig. 2). GFP and RFP 
IHC staining was performed on two individual serial sections. GS IHC staining 
was performed on serial sections. GFP and RFP were embedded in perturbation 
plasmids as orthogonal barcodes (see Methods and Extended Data Fig. 1). GS is  
a well-known marker for liver WNT/mtCtnnb1-signalling activity (see Fig. 3d).  
e, GFP and RFP detection for the same hepatocellular tumour nodules to spatially 
map peptide barcode combinations associated with introduced perturbations. 
Left: H&E. Zoom-in: GFP and RFP respectively. Note that one tumour nodule 
is positive for RFP alone whereas the other tumour nodule is positive for both 
GFP as well as RFP peptide barcodes. A representative example is shown. Data 
is derived from 324 nodules across 6 topographically separated regions used 
for 10X Visium from a single RUBIX experiment with two animals. Mapping GFP 
and RFP IHC data is derived from 3 corresponding sections from a single RUBIX 
experiment with two animals.
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Extended Data Fig. 8 | C-G2P enables spatial genotype mapping. a, Converting 
barcode signals to genotype maps. 28 powerset embedding of spatially mapped 
perturbations for all 11 samples used in this study from a single RUBIX experiment 
with two animals, encompassing 622 nodules. Each of the 256 genotypes are 

colour-coded. As in Fig. 4a. b, Spatially resolved nodule annotation. For all 
11 samples used in this study. As in Fig. 3a. c, Tumour genotypes. Scaled (p10) 
estimated plasmid probabilities per nodule. As in Fig. 5.
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Extended Data Fig. 9 | Overview of genotypes and phenotype-binarization for all nodules across 11 samples. As in Fig. 5. Top panel: Scaled plasmid probabilities  
and per-nodule phenotype binarization as used in Fig. 6 (Methods). n = 622 total nodules from 11 samples used in this study from a single RUBIX experiment with  
two animals.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Genotype–phenotype relations as evidenced by 
GLM. a, Tumour-intrinsic genotype–phenotype relations. A generalized 
linear model (GLM) predicts gene expression signals at each 10X Visium spot, 
using estimated probabilities of perturbation presence (Methods). Data are 
presented as feature coefficients shown as mean and error bars depict 3σ 
confidence intervals. Feature coefficients indicate associations between gene 
expression and perturbations for representative transcripts of four tumour-
intrinsic phenotypes. b, TME-related genotype–phenotype relations. As in a for 

representative transcripts of two exemplary TME phenotypes. c, GLM-inferred 
genotype–phenotype associations. Top: heatmap of 1,283 genes with at least 
one significant (3σ) feature weight, ordered by 1D UMAP embedding. Bottom: 
Detailed views of four representative clusters linked to marker genes of known 
phenotypic groups. Data is derived from 324 nodules across 6 topographically 
separated regions used for 10X Visium from a single RUBIX experiment with  
two animals.
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