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Phenotype-driven approaches identify disease-counteracting compounds
by analysing the phenotypic signatures that distinguish diseased from

healthy states. Here we introduce PDGrapher, a causally inspired graph
neural network model that predicts combinatorial perturbagens (sets

of therapeutic targets) capable of reversing disease phenotypes. Unlike
methods thatlearn how perturbations alter phenotypes, PDGrapher solves
theinverse problem and predicts the perturbagens needed to achieve a

desired response by embedding disease cell states into networks, learning a
latentrepresentation of these states, and identifying optimal combinatorial
perturbations. In experiments in nine cell lines with chemical perturbations,
PDGrapher identifies effective perturbagens in more testing samples than
competing methods. It also shows competitive performance on ten genetic
perturbation datasets. An advantage of PDGrapher is its direct prediction, in
contrast to the indirect and computationally intensive approach commonin

phenotype-driven models. It trains up to 25x faster than existing methods,
providing afast approach for identifying therapeutic perturbations and
advancing phenotype-driven drug discovery.

Target-driven drug discovery, which has been the dominant approach
since the 1990s, focuses on designing highly specific compounds to
actagainsttargets, such as proteins or enzymes, thatare implicatedin
disease, often through genetic evidence' . An example of target-driven
drugdiscoveryisthe development of small molecule kinase inhibitors
like imatinib. Imatinib stops the progression of chronic myeloid leukae-
miaby inhibiting BCR-ABL tyrosine kinase, amutated proteininvolved
inuncontrolled proliferation of leukocytesin patients with chronic mye-
loid leukemia®. Other notable examplesinclude monoclonal antibodies
such as trastuzumab, which specifically targets the HER2 receptor, a
protein overexpressed in certain types of breast cancer. Trastuzumab

inhibits cell proliferation while engaging the body’simmune system to
initiate ananti-cancer response’. These examplesillustrate the success
oftarget-driven drug discovery, yet the past decade has seen arevival
of phenotype-driven approaches. This shift has been fuelled by the
observation that many first-in-class drugs approved by the US Food and
Drug Administration (FDA) between 1999 and 2008 were discovered
without a drug target hypothesis®. Instead of the ‘one drug, one gene,
one disease’ model of target-driven approaches, phenotype-driven
drug discovery focuses on identifying compounds or, more broadly,
perturbagens—combinations of therapeutic targets—that reverse dis-
ease phenotypes as measured by assays without predefined targets'”.
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Ivacaftor illustrates how these approaches can intersect. Although
ivacaftor was developed through a target-driven strategy to modulate
the cystic fibrosis transmembrane conductance regulator proteinin
individuals with specific mutations, its development relied on pheno-
typic assays to confirm functional improvements, such as increased
chloride transport®°,

Phenotype-driven drug discovery has been bolstered by the
advent of chemical and genetic libraries such as the Connectivity Map
(CMap)" and the Library of Integrated Network-based Cellular Sig-
natures (LINCS)". CMap and LINCS contain gene expression profiles
of dozens of cell lines treated with thousands of genetic and chemi-
cal perturbagens. CMap introduced connectivity scores to quantify
similarities between compound responses and disease gene expression
signatures. Identifying compounds with gene expression signatures
either similar to those of known disease-treating drugs or that counter
disease signatures can help in selecting therapeutic leads" . These
strategies have successfully identified drugs with highin vitro efficacy'
across arange of diseases" .

Deep learning methods have been used for lead discovery by
predicting gene expression responses to perturbagens, including
perturbagens that were not yet experimentally tested”’. However,
these approachesrely on chemical and geneticlibraries, meaning that
they select perturbagens from predefined libraries and cannotidentify
perturbagens as new combinations of drug targets. Further, they are
perturbation response methods that predict changes in phenotypes
upon perturbations. Thus, they canidentify perturbagens by exhaus-
tively predicting responses to all perturbationsinthelibrary and then
searching for perturbagens with the desired response. Unlike existing
methods that learn responses to perturbations, phenotype-based
approaches need to solve the inverse problem, which is to infer per-
turbagens necessary to achieve a specific response—that is, directly
predicting perturbagens by learning which perturbations elicit a
desired response.

In causal discovery, the problem of identifying which elements
of asystem should be perturbed to achieve a desired state is referred
to as optimal intervention design* ¢, Using insights from causal dis-
covery and geometric deep learning, here we introduce PDGrapher,
an approach for the combinatorial prediction of therapeutic targets
that canshift gene expression fromaninitial diseased state toadesired
treated state. PDGrapher is formulated using a causal model in which
genes represent the nodes in a causal graph and structural causal
equations define their causal relationships. Given a genetic or chemi-
cal intervention dataset, PDGrapher pinpoints a set of genes that a
perturbagen should target to facilitate the transition of node states
from diseased to treated. PDGrapher uses protein-proteininteraction
(PPI) networks or gene regulatory networks (GRNs) as approximations
ofthe causal graph, operating under the assumption of no unobserved
confounders. PDGrapher tackles the optimal intervention design
using representation learning, using agraph neural network (GNN) to
represent structural equations.

PDGrapheristrained on adataset of disease-treated sample pairs
to predict therapeutic gene targets that can shift the gene expres-
sion phenotype from a diseased to a healthy or treated state. Once
trained, PDGrapher processes a new diseased sample and outputs a
perturbagen—a set of therapeutic targets—predicted to counteract
the disease effects in that specific sample. We evaluate PDGrapher
across 19 datasets, comprising genetic and chemical interventions
across 11 cancer types and two proxy causal graphs. We also consider
different evaluation set-ups, including settings where held-out folds
containnew samplesinthe same cell line with the training samples, and
settings where held-out folds contain new samples froma cancer type
that PDGrapher has never encountered during training. In held-out
folds that contain new samples, PDGrapher detects up to 13.37% and
1.09% more ground-truth therapeutic targetsin chemical and genetic
intervention datasets, respectively, than existing methods. We also

find that in chemical intervention datasets, candidate therapeutic
targets predicted by PDGrapher are on average up to 11.58% closer
to ground-truth therapeutic targets in the gene-gene interaction
network than what would be expected by chance. Even in held-out
folds containing new samples from a previously unseen cancer type,
PDGrapher maintains robust performance. Unlike methods that indi-
rectlyidentify perturbagens by predicting cell responses, PDGrapher
directly predicts perturbagens that can shift gene expression from
diseased to treated states. This feature of PDGrapher enables model
training up to 25x faster than indirect prediction methods, such as
scGen* and CellOT¥. As these approaches build a separate model for
each perturbation, they become increasingly ineffective when applied
to datasets with alarge number of perturbagens. For example, with its
default settings, CellOT needs 10 hto train for asingle perturbagenin
acellline from the LINCS dataset.

PDGrapher can aid in elucidating the mechanism of action of
chemical perturbagens (Supplementary Fig. 3), which we show in the
case of vorinostat, a histone deacetylase inhibitor used to treat cuta-
neous T cell ymphoma, and sorafenib, a multikinase inhibitor used
in the treatment of several types of cancer (Supplementary Note 1).
PDGrapher can also suggest potential anti-cancer therapeutic targets:
it highlighted kinase insert domain receptor (KDR) as a top predicted
target for non-small cell lung cancer (NSCLC; see ‘PDGrapher identifies
therapeutic targets validated through clinical and biological evidence’
inResults). Itidentified associated drugs—vandetanib, sorafenib, cate-
quentinib andrivoceranib—thatinhibit the kinase activity of the protein
encoded by KDR. These drugs block VEGF signalling, suppressing
endothelial cell proliferation, migration and blood vessel formation,
which tumours rely on for growth and metastasis*®*. By predicting
combinatorial therapeutic targets based on phenotypic transitions,
PDGrapher provides a scalable approach to phenotype-driven per-
turbation modelling.

Results

Overview of intervention datasets and causal graphs

We evaluate our method across atotal of 38 preprocessed datasets that
span 2 types of intervention (genetic and chemical), 11 cancer types
(lung, breast, prostate, colon, skin, cervical, head and neck, pancreatic,
stomach, brain and ovarian), and 2 types of proxy causal graph: PPI
networks and GRNs. Each dataset is uniquely defined by acombination
of intervention type, causal graph type, cancer type, and cell line, and
is denoted in the format: treatment type-graph type-cancer type-cell
line. The chemical-PPI datasets include cell lines A549 (lung); MCF?7,
MDAMB231and BT20 (breast); PC3 and VCAP (prostate); HT29 (colon);
A375 (skin); and HELA (cervix). The genetic-PPl datasets include A549
(lung), MCF7 (breast), PC3 (prostate), HT29 (colon), A375 (skin), ES2
(ovary), BICR6 (head and neck), YAPC (pancreas), AGS (stomach) and
U25IMG (brain). Similarly, the chemical-GRN and genetic-GRN data-
sets span the same combinations of cancer types and cell lines as their
PPI counterparts. This comprehensive collection of datasets enables
systematic benchmarking of our model across diverse perturbation
modalities, biological contexts and graphstructures. Genetic interven-
tions are single-gene knockout experiments by CRISPR-Cas9-mediated
geneknockouts, while chemicalinterventions are multiple-gene treat-
mentsinduced using chemical compounds. We use a PPl network from
BIOGRID that has10,716 nodes and 151,839 undirected edges. We addi-
tionally construct GRNs for each disease-treatment type pair using
GENIE3 (ref. 30) (Supplementary Note 3), with GRNs on average hav-
ing 10,000 nodes and 500,000 directed edges. The training data for
PDGrapher consist of two components: disease intervention dataand
treatment intervention data. Disease intervention datainclude paired
healthy and diseased gene expression profiles, along with associated
disease genes; however, these data are only available for celllines corre-
spondingtolung, breast and prostate cancers. In contrast, the treatment
intervention data comprise paired diseased and treated gene expression
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Fig.1| Overview of PDGrapher. a, Given a paired diseased and treated gene
expression sample and a proxy causal graph, PDGrapher’s perturbagen discovery
module,f,, predicts a candidate set of therapeutic targets to shift cell gene
expression from adiseased to a treated state. b, Given a disease sample’s gene
expression, a proxy causal graph and aset of perturbagens, PDGrapher’s
response prediction module, £, predicts the gene expression response of the
sample to each perturbagen.f, represents perturbagen’s effects in the graph as
edge mutilations. ¢, f, is optimized using two losses: a cross-entropy cycle loss to

predict aperturbagen U’ that aims to shift the diseased cell state closely
approximating the treated state, CE (x‘,ﬁ(xd,fp(x", x‘))) (withf; frozen),and a
cross-entropy supervision loss that directly supervises the prediction of U’,

CE (U’ So(xd, xt )) (see Methods for more details). d, Both £, and f, follow the
standard message-passing framework, where node representations are updated
by aggregating the information from neighbours in the graph. GEX, gene
expression.

samples, along with genetic or chemical perturbagens, and are avail-
ableacrossall datasets. Supplementary Tables 11and 12 summarize the
number of samples for each cell line and intervention datasets.

Overview of PDGrapher model

Given a diseased cell state (gene expression profile), the goal of PDG-
rapheristo predict the genes that, if targeted by a perturbagen, would
shiftthe cell to a treated state (Fig.1a). Unlike methods for learning the
response of cells to a given perturbation®***>, PDGrapher focuses
ontheinverse problem by learning which perturbation elicits adesired
response. PDGrapher predicts perturbagens that shift cellular states
under the assumption that an optimal perturbagen is one that alters
the gene expression profile of a cell to closely match a desired target
state. Our approach comprises two modules (Fig. 1a-c). First, a per-
turbagen discovery modulef, takes the initial and desired cell states
and outputs a candidate perturbagen as aset of therapeutictargets U’
(Fig.1a). Then, aresponse prediction module/, takes the initial state
andthe predicted perturbagen U’ and predicts the cell response upon
perturbing genes in U’ (Fig. 1b). Our response prediction and

perturbagen discovery modules are GNN models that operateona
proxy causal graph, where edge mutilations, or edge removals, repre-
sent the effects of interventions on the graph (Fig. 1c).

PDGrapher is trained using an objective function with two com-
ponents, one for eachmodule,f, andf,. The response prediction mod-
ulef, is trained using disease and treatment intervention data on cell
state transitions so that the predicted cell states are close to the known
perturbed cell states upon interventions. The perturbagen discovery
modulef, is trained only using the treatment intervention data; given
a diseased cell state, £, predicts the set of therapeutic targets U’ that
caused the corresponding treated cell state. The objective function
for the perturbagen discovery module consists of two elements: (1) a
cycle loss that optimizes the parameters of ,, such that the response
uponinterveningonthepredicted genesin U’,as measured by £, closely
approximates the actual treated cellular state; and (2) a supervision
lossonthetherapeutic targetset U’ that directly pushes PDGrapher to
predict the correct perturbagen. Both models are trained simultane-
ously using early stopping independently so that each model finishes
training upon convergence.
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Fig. 2| Overview of evaluation settings and data splits. a, Given a dataset with
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adirect prediction of candidate perturbagens that shift gene expression from
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prediction means that PDGrapher directly infers the perturbation necessary to
achieve aspecific response. In contrast to direct prediction of perturbagens,
existing methods predict perturbagens only indirectly through a two-stage
approach. For agiven diseased sample, the model learns the response to each
candidate perturbagen from an existing library and identifies the perturbagen
whose induced response most closely approximates the desired treated state.
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Existing methods learn the response of cells to a given perturbation®*1%2,

whereas PDGrapher focuses on the inverse problem by learning which
perturbagen elicits a given response, even in the most challenging cases

when the combinatorial composition of perturbagen was never seen before.
b,c, We evaluate PDGrapher’s performance across two settings: given a cell
line, randomly splitting samples between training and testing set (b), and by
splitting samples based on cell lines, where the model is trained on one cell line
and evaluated on a different, previously unseen cell line to assess PDGrapher’s
generalization performance (c).

When trained, PDGrapher predicts perturbagens—as sets of can-
didate target genes—to shift cells from diseased to treated. Given a
pair of diseased and treated samples, PDGrapher directly predicts
perturbagens by learning which perturbations elicit target responses.
In contrast, existing approaches are perturbation response meth-
ods that predict changes in phenotype that occur upon perturba-
tion; thus, they can only indirectly predict perturbagens (Fig. 2a).
Given a disease-treated sample pair, a response prediction module
(such as scGen”?, ChemCPA*, Biolord*, GEARS or CellOT?”) is used
to predict the response of the diseased sample to a library of per-
turbagens. The predicted perturbagen is the one that produces a
response that is the most similar to the treated sample. We evalu-
ate PDGrapher’s performance in two separate settings (Fig. 2b,c):
(1) arandom splitting setting, where the samples are split randomly
between training and test sets within a cell line (denoted as random
for convenience); and (2) a leave-cell-out setting, where PDGrapher
is trained in one cell line, and its performance is evaluated in a cell
line the model never encountered during training to test how well
the model generalizes to anew disease. Supplementary Tables1and 2

show the numbers of unseen perturbagens in chemical perturbation
datasets in the random and leave-cell-out splits, respectively; Sup-
plementary Tables 3 and 4 show the number of unseen perturbagens
in genetic perturbation datasets in the random and leave-cell-out
splits, respectively.

PDGrapher predicts perturbagens to reverse disease states

In the random splitting setting, we assess the ability of PDGrapher
for combinatorial prediction of therapeutic targets across chemical
PPI datasets (chemical-PPI-lung-A549, chemical-PPI-breast-MCF?7,
chemical-PPI-breast-MDAMB231, chemical-PPI-breast-BT20,
chemical-PPI-prostate-PC3, chemical-PPI-prostate-VCAP, chemical-
PPI-colon-HT29,chemical-PPI-skin-A375and chemical-PPI-cervix-HELA).
Specifically, we measure whether, given paired diseased-treated gene
expression samples, PDGrapher can predict the set of therapeutic
genes targeted by the chemical compound in the diseased sample
to generate the treated sample. Given paired diseased-treated gene
expression samples, PDGrapher ranks genes in the dataset according
to their likelihood of being therapeutic targets.
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Fig. 3 | PDGrapher efficiently predicts chemical perturbagens to shift cells
from diseased to treated states in held-out folds containing new samples.
a,b, PDGrapher shows improved performance across nine chemical perturbation
datasets with various diseases, yielding up to 13.37% more accurately predicted
samples in the testing sets compared with the second-best model (for example,
for chemical-PPI-breast-MDAMB231, 20.43% versus 7.05% (a)) and up to 0.13
higher nDCG than the second-best model (for chemical-PPI-breast-MDAMB231,
0.31versus 0.18 (b)).Inaand b, the bars show the average performance across
five cross-validation test splits for each of the nine chemical datasets. The
overlaid points represent performance values fromindividual data splits (n =5
per cellline). Each data split contains 20% of samples in the dataset, with each
sample corresponding to a perturbation-response instance. Where replicates
exist for agiven drug, they are treated as independent inputs during training
and evaluation. ¢, PDGrapher recovers ground-truth therapeutic targets at
higher rates (evaluated by recall 1-100) compared with competing methods
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for chemical-PPl datasets. d, Box plots show the distribution of average model
rankings across 9 celllines (n =9); each dot corresponds to the aggregated
ranking value across cross-validation splits and across all metrics for a distinct
cellline. A higher value indicates better performance. The central line inside the
box represents the median, while the top and bottom edges correspond to the
firstand third quartiles. The whiskers extend to the smallest and largest values
within 1.5 the interquartile range from the quartiles. Each dot represents a data
point for aspecific cell line. Pvalues from the statistical tests are provided in

the Source data. e, Shown is the difference of shortest-path distances between
ground-truth therapeutic genes and predicted genes by PDGrapher and a
random reference across nine cell lines. Predominantly negative values indicate
that PDGrapher predicts sets of therapeutic genes that are closer in the network
to ground-truth therapeutic genes compared with what would be expected by
chance (average shortest-path distances across cell lines for PDGrapher versus
reference =2.77 versus 3.11).

We quantify the ranking quality using normalized discounted
cumulative gain (nDCG), where the gain reflects the ranking accu-
racy of the model. An nDCG value close to one indicates highly
accurate predictions, with the top ranked gene targets closely match-
ing the ground-truth targets, whereas lower nDCG values indicate
poorer ranking performance. This metric provides a normalized
and scalable measure of ranking quality, enabling consistent com-
parison across different datasets and models. PDGrapher outper-
forms competing methods in all cell lines, achieving nDCG values

that are higher than the second-best competing method by 0.02
(chemical-PPI-lung-A549), 0.13 (chemical-PPIl-breast-MDAMB231), 0.03
(chemical-PPI-breast-BT20), 0.004 (chemical-PPI-breast-MCF7), 0.07
(chemical-PPI-prostate-VCAP), 0.005 (chemical-PPI-prostate-PC3),
0.03 (chemical-PPI-skin-A375), 0.06 (chemical-PPI-cervix-HELA) and
0.001(chemical-PPI-colon-HT29) (Fig.3b). Inaddition to evaluating the
entire predicted targetrank, itis even more practically crucial to assess
the accuracy of the top ranked predicted targets. As perturbagens
target multiple genes, we measure the fraction of samples in the test
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set for which we obtain a partially accurate prediction, where at least
one ofthe top Npredicted gene targets corresponds to an actual gene
target (denoted as the percentage of accurately predicted samples).
Here, N represents the number of known target genes of a perturba-
gen. PDGrapher consistently provides accurate predictions for more
samplesin the test set than competing methods. Specifically, it outper-
formsthe second-best competing method by predicting ground-truth
targets in an additional 7.73% (chemical-PPI-breast-MCF7), 9.32%
(chemical-PPI-lung-A549), 13.37% (chemical-PPI-breast-MDAMB231),
4.50% (chemical-PPI-breast-BT20), 7.88% (chemical-PPI-prostate-PC3),
11.53% (chemical-PPI-prostate-VCAP), 7.56% (chemical-PPI-colon-HT29),
9.55% (chemical-PPI-skin-A375) and 8.41% (chemical-PPI-cervix-HELA)
of samples (Fig. 3a). We also evaluate the performance of PDGra-
pher using recall@]1, recall@10 and recall@100, which calculate
the ratio of true target genes included in the top 1, top 10 and top
100 predicted gene targets, respectively. Although the absolute
recall values are modest due to the inherent difficulty of the task,
PDGrapher consistently outperforms all competing methods, show-
ing its relative strength and robustness. Specifically, PDGrapher
outperforms the second-best method in all the recall metrics with
the averaged margin being 3.31% (chemical-PPI-lung-MCF7), 3.28%
(chemical-PPI-lung-A549), 11.65% (chemical-PPI-breast-MDAMB231),
7.27% (chemical-PPI-breast-BT20), 2.50% (chemical-PPI-prostate-PC3),
9.53% (chemical-PPI-prostate-VCAP), 3.08% (chemical-PPI-colon-HT29),
2.87% (chemical-PPI-skin-A375) and 5.13% (chemical-PPI-cervix-HELA)
(Fig. 3c). We then consolidated the results using the rankings from
experiments across different cell lines and metrics for each method.
PDGrapher achieved the best overall rankings, with a median signifi-
cantly higher than all competing methods (Fig. 3d). P values of the
chemical perturbagen discovery tests are provided in the Source data.

PDGrapher not only provides accurate predictions for alarger pro-
portion of samples and consistently predicts ground-truth therapeutic
targets close tothe top of the ranked list but it also predicts gene targets
thatare closer in the network (measured by the shortest-path distance)
to ground-truth targets compared with what would be expected by
chance (Fig. 3e). In all cell lines, the ground-truth therapeutic targets
predicted by PDGrapher are significantly closer to the ground-truth
targets compared with what would be expected by chance (Supple-
mentary Table 6). For example, for chemical-PPI-lung-A549, the median
distance between the predicted and ground-truth therapeutic targets
is 3.0 for both PDGrapher and the random reference. However, the
distributions show a statistically significant difference, with a1-sided
Mann-Whitney U-test thatyields P < 0.001, an effect size (rank-biserial
correlation) of 0.3531 (95% confidence interval (Cl), [0.3515, 0.3549])
and a U-statistic 0f1.29 x 10", Similarly, for chemical-PPI-breast-MCF7,
the median distance is 3.0 for both groups, yet the distributions are
significantly different (P < 0.001, effect size = 0.2160 (95% CI,[0.2146,
0.2174]), U-statistic = 3.91 x 10") (Supplementary Table 6). This finding
suggests that PDGrapher predicts targets in a manner that reflects
PPI network structure®. According to the local network hypothesis,
which posits that genes in closer network proximity tend to be more
functionally similar, PDGrapher’s predictions are more functionally
related to ground-truth targets than would be expected by chance® ™.

PDGrapher also shows strong performance across genetic
datasets, specifically genetic-PPI-lung-A549, genetic-PPI-
breast-MCF7, genetic-PPl-prostate-PC3, genetic-PPI-skin-A375,
genetic-PPI-colon-HT29, genetic-PPl-ovary-ES2, genetic-PPI-head-
BICR6, genetic-PPl-pancreas-YAPC, genetic-PPI-stomach-AGS
and genetic-PPI-brain-U251MG (Extended Data Fig. 2). Briefly,
PDGrapher successfully detected ground-truth targets in 0.87%
(genetic-PPI-lung-A549), 0.50% (genetic-PPl-breast-MCF7), 0.24%
(genetic-PPI-prostate-PC3), 0.38% (genetic-PPI-skin-A375), 0.36%
(genetic-PPI-colon-HT29), 1.09% (genetic-PPl-ovary-ES2), 0.54%
(genetic-PPI-head-BICR6), 0.11% (genetic-PPl-pancreas-YAPC) and
0.92% (genetic-PPI-brain-U251MG) more samples compared with the

second-best competing method (Extended Data Fig. 2a). Its ability to
effectively predict targets at the top of the ranks is further supported
by the metrics recall@1 and recall@10 (Extended DataFig. 2c). PDGra-
pher achieves the second-best overall rankings (Extended Data Fig. 2d),
closely following scGEN, which obtained the highest nDCG values
(Extended Data Fig. 2b) but showed weaker performance when evalu-
ating only the top-ranked predicted targets (partially accurate predic-
tionand recall@1). Pvalues of the genetic perturbagen discovery tests
are provided in the Source data. PDGrapher and competing methods
performworse on genetic datathan on chemical data. Thismay be due
to knockoutinterventions generating weaker phenotypic signals than
small molecule interventions. While gene knockouts are essential for
understanding gene function, single-gene knockout studies can offer
limited insights into complex cellular processes due to compensatory
mechanisms®**°, Despite the modest performance in genetic inter-
vention datasets, PDGrapher outperforms competing methodsin the
combinatorial prediction of therapeutic targets.

PDGrapher achieves the best performanceinresponse prediction
for both chemical (Extended Data Fig. 1) and genetic perturbation
(Extended Data Fig. 2e-g). P values of the response prediction tests
are provided in the Source data. When using GRNs as proxy causal
graphs, PDGrapher has comparable performance with GRNs and PPI
networks across both genetic and chemical intervention datasets
(Supplementary Figs. 4 and 5). One difference is that GRNs were con-
structed individually for each cell line, which makes leave-cell-out
splitting setting prediction particularly challenging. Therefore, we
only conducted random splitting setting experiments for GRN datasets.
We also used PDGrapher to clarify the mode of action of the chemical
perturbagens vorinostat and sorafenib in chemical-PPI-lung-A549
(Supplementary Note 1).

PDGrapher generalizes to cell lines unseen during training

PDGrapher shows consistently strong performance on chemicaliinter-
ventiondatasetsintheleave-cell-outsetting (Fig.4).Inthissetting, we use
thetrained modelsinthe randomsplittingsetting foreachcelllineto pre-
dicttherapeutictargetsinthe remaining cell lines. PDGrapher success-
fully predicts perturbagens that describe the cellular dynamics and shift
gene expression phenotypes fromadiseased to atreated statein 7.16%
(chemical-PPI-breast-MCF?7), 6.50% (chemical-PPI-lung-A549), 5.00%
(chemical-PPl-breast-MDAMB231), 8.67% (chemical-PPI-prostate-PC3),
7.72% (chemical-PPI-prostate-VCAP), 7.31% (chemical-PPI-skin-A375),
7.08% (chemical-PPI-colon-HT29) and 7.13% (chemical-PPI-cervix-HELA)
additional testing samples compared with the second-best compet-
ing method (Fig. 4a). PDGrapher also outperforms the competing
methods in 8 of 9 cell lines by predicting nDCG values that are 0.02
(chemical-PPI-breast-MCF7), 0.01 (chemical-PPI-lung-A549), 0.01
(chemical-PPI-breast-MDAMB231), 0.03 (chemical-PPI-prostate-PC3),
0.02 (chemical-PPI-prostate-VCAP), 0.01 (chemical-PPI-skin-A375),
0.03 (chemical-PPI-colon-HT29) and 0.02 (chemical-PPI-cervix-HELA)
higher than those of the second-best competing method (Fig. 4b). Its
strong performanceis further supported by the recall metrics, particu-
larly recall@10 (Fig. 4c). Considering the overall performance across
different cell lines and metrics, PDGrapher achieves the highest rank,
withamedian surpassing competing methods (Fig. 4d). Combinations
oftherapeutictargets predicted by PDGrapher in chemical datasets are
closer to ground-truth targets than expected by chance (Fig. 4e and
Supplementary Table 7). For example, for chemical-PPI-lung-A549,
the median distance between predicted and ground-truth thera-
peutic targets is 3.0 for both PDGrapher and the random reference.
However, the distributions show a statistically significant difference,
with a1-sided Mann-Whitney U-test yielding P < 0.001, an effect size
(rank-biserial correlation) of 0.2191 (95% Cl, [0.2182, 0.2200]) and a
U-statistic of 2.46 x 10 Similarly, for chemical-PPI-breast-MCF7, the
median distance is 3.0 for both groups, yet the distributions are sig-
nificantly different (P < 0.001, effect size = 0.2457 (95% Cl, [0.2451,
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Fig. 4| PDGrapher generalizes to new (previously unseen) cell lines and learns
optimal chemical perturbagens in held-out folds that contain both new cell
lines and new samples. a,b, PDGrapher shows improved performance when
trained on nine chemical perturbation datasets spanning various diseases

and evaluated on the remaining eight cell lines. It achieves up to 8.67% more
accurately predicted samples in the testing sets compared with the second-best
baseline (for example, when trained on chemical-PPI-prostate-PC3,12.81% versus
4.13% (a)) and an nDCG value of up to 0.03 higher than the second-best baseline
(for example, when trained on chemical-PPI-colon-HT29, 0.19 versus 0.16 (b)).
Inaandb, the bars show the average performance across five cross-validation
test splits for each of the nine chemical datasets. The overlaid points represent
performance values from individual data splits (n = 5 per cell line). Each data
split contains 20% samples in the dataset, with each sample corresponding to
aperturbation-response instance. Where replicates exist for agiven drug, they
aretreated asindependent inputs during training and evaluation. ¢, PDGrapher
recovers ground-truth therapeutic targets at higher rates (evaluated by recall
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1-100) compared with competing methods for chemical-PPl datasets. d, Box
plots show the distribution of average model rankings across 9 cell lines (n = 9);
each dot corresponds to the aggregated ranking value across cross-validation
splits, train cell lines and across all metrics for a distinct cell line. A higher

value indicates better performance. The central line inside the box represents
the median, while the top and bottom edges correspond to the first and third
quartiles. The whiskers extend to the smallest and largest values within 1.5x the
interquartile range from the quartiles. Each dot represents a data point for a
specific cell line and metrics. Pvalues from the statistical tests are provided in
the Source data. e, Shown is the difference of shortest-path distances between
ground-truth therapeutic genes and predicted genes by PDGrapher and a
random reference across nine cell lines. Predominantly negative values indicate
that PDGrapher predicts sets of therapeutic genes that are closer in the network
to ground-truth therapeutic genes compared with what would be expected by
chance (average shortest-path distances across cell lines for PDGrapher versus
random reference =2.75 versus 3.11).

0.2464]), U-statistic = 6.07 x 10'%) (Supplementary Table 7). PDGrapher
also outperforms existing methods in genetic perturbagen prediction
acrosscell lines, as measured by the top targets on the predicted gene
ranks (Supplementary Fig.2a-d). PDGrapher also shows superior per-
formance in response prediction for both chemical (Supplementary
Fig.1) and genetic (Supplementary Fig. 2e-g) datasets. The Pvalues of
the leave-cell-out perturbagen discovery tests and response prediction
tests are provided in the Source data.

Approaches that train individual models for each perturbagen
(such as scGen and CellOT) generally achieve a better perturbagen
prediction performance than those that use a single model for all
perturbagens (Biolord, GEARS and ChemCPA). However, training indi-
vidual models becomes infeasible for large-scale datasets with many
perturbagens. For example, without parallelization, scGen would
require about 8 yearsto complete the leave-cell-out experiments on the
chemical and genetic perturbation data used in this study. PDGrapher
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Fig. 5| PDGrapher shows robust performance across training strategies,
PPInetworks and data availability settings. a, Performance of PDGrapher
inthe prediction of unseen approved drug targets to reverse disease effects
across all cell lines with healthy counterparts in chemical perturbation datasets.
Individual data points represent individual cell lines (n = 6). b, Performance

of sensitivity analyses evaluated by the percentage of accurately predicted
samples for cell lines MDAMB231 and MCF7 under chemical and genetic
perturbations, respectively. The PPl network used here is from STRING (string-
db.org) with a confidence score for each edge. The edges are filtered by the 0.1,
0.2,0.3,0.4 and 0.5 quantiles of the confidence scores as cut-offs, resulting

in 5 PPI networks with 625,818, 582,305, 516,683, 443,051 and 296,451 edges,
respectively. Data are presented as mean values across five cross-validation
datasplits per PPl confidence quantile. Shaded bands represent +1s.d. from

the mean (n = 5 computational replicates per quantile). Each point corresponds
to performance on a specific data split. ¢, Performance metrics of the ablation
study on PDGrapher’s objective function components: PDGrapher-Cycle trained
using only the cycle loss, PDGrapher-SuperCycle trained using the supervision
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and cycleloss, and PDGrapher-Super trained using only the supervision loss,
evaluated by percentage of accurately predicted samples. PDGrapher-Cycle
shows inferior performance, resulting in limited visibility in the bar plot.

d, Performance metrics of the second ablation study on PDGrapher’s input data:
PDGrapher—no disease intervention data using only treatment intervention data,
and PDGrapher using both disease and treatment intervention data. The disease
and treatment intervention data are organized as ‘healthy, mutation, disease’
and ‘diseased, drug, treated’, respectively.Incand d, bars show the average
performance across five cross-validation test splits for each of the nine chemical
datasets. The overlaid points represent performance values from individual
datasplits (n =5 per cellline). The dashed horizontal lines represent the average
performance across all cell lines. Each data split contains 20% samples in the
dataset, with each sample corresponding to a perturbation-response instance.
Where replicates exist for a given drug, they are treated asindependent inputs
during training and evaluation. Pvalues from the statistical tests are provided in
the Source data.

addresses this scalability challenge. Its training is up to 25x faster than
scGen and more than 100x faster than CellOT when using the default
setting 0of 100,000 epochs, substantially reducing computational costs.
This efficiency highlights akey advantage of PDGrapher. Thisimproved
efficiency is due to PDGrapher’s approach. Existing methods predict
phenotypicresponses to perturbations and identify perturbagensindi-
rectly by searching through predicted responses for all candidates. In
contrast, PDGrapher directly infers the perturbagen needed to achieve
aspecificresponse, learning which perturbations elicit a desired effect.

PDGrapher predicts therapeutic targets supported by clinical
and biological evidence

We examined PDGrapher’s ability to predict targets of anti-cancer drugs
that were not encountered by the model during training time using
chemical celllines with matched healthy data: chemical-PPI-lung-A549,
chemical-PPl-breast-MCF7, chemical-PPI-breast-MDAMB231, chemical-
PPI-breast-BT20, chemical-PPI-prostate-PC3 and chemical-PPI-
prostate-VCAP. PDGrapher was used to predict gene targets to shift
these diseased cell lines into their healthy states. Figure 5a shows the
recovery of targets of FDA-approved drugs for varying values of K
(where Krepresents the number of predicted target genes considered
in the predicted ranked list), indicating that PDGrapher can identify

targets of approved anti-cancer drugs not seen during training among
the top predictions.

We analysed lung cancer by comparing the targets predicted by
PDGrapher for lung cancer cell lines with the targets of candidate drugs
in clinical development, curated from the Open Targets Platform®.
This evaluation tested PDGrapher’s ability to predict combinatorial
chemical perturbagens. We compared the top ten targets predicted
by PDGrapher for the A549 lung cancer cell line to ten randomly
selected genes. The predicted targets had significantly higher Open
Targets scores and more supporting resources than therandomgenes
(Extended Data Fig. 7). Using an Open Targets evidence cut-off score
of 0.5,8 of 10 predicted targets had evidence supporting their associa-
tion with lung cancer, compared with only 2 of 10 in the random gene
set. Four drugs, tacedinaline (DrugBank:DB12291; clinical trial identi-
fier, NCTO0005093), selpercatinib (DrugBank:DB15685), pralsetinib
(DrugBank:DB15822) and dexmedetomidine (DrugBank:DB00633;
ref.42), targeting these predicted genes were notincluded inthe train-
ing set but have beenidentified as potential treatments for NSCLC.

We then evaluated PDGrapher’s predictions by examining
FDA-approved drugs that were not present in the training set of PDG-
rapher. Specifically, we assessed PDGrapher’s performance using the
chemical-PPI-lung-A549 dataset, focusing initially on pralsetinib, a
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targeted cancer therapy primarily used to treat NSCLC*. Pralsetinibisa
selective Ret proto-oncogene (RET) kinase inhibitor designed to block
the activity of RET proteins that have become aberrantly active due
to mutations or fusions. Pralsetinib is known to target 11 key proteins:
RET, DDRI1, NTRK3, fms-related receptor tyrosine kinase 3 (FLT3),JAK1,
JAK2, NTRK1, KDR, platelet derived growth factor receptor-f3 (PDG-
FRB), fibroblast growth factor receptor 1 (FGFR1) and FGFR2 (ref. 44).
RET, the gene encoding pralsetinib’s primary target, was ranked 11th
of 10,716 genes in the predicted list. Half of the genes encoding pral-
setinib’s targets (5 of 11) were ranked within the top 100 predicted
targets by PDGrapher, including KDR (ranked at 3), FLT3 (ranked at 10),
RET (ranked at11), PDGFRB (ranked at14) and FGFR2 (ranked at 81). This
substantial overlap highlights the potential of the candidate targets
identified by PDGrapher for pralsetinib-based lung cancer treatment,
given thatpralsetinibwasnotincluded in the training set of PDGrapher.

Next, we examined KDR as a therapeutic target for lung cancer.
KDR, also known as VEGFR2, has beenidentified as a critical therapeutic
target in A549 lung adenocarcinoma cells. These cells express KDR at
both mRNA and protein levels, facilitating autocrine signalling that
promotes tumour cell survival and proliferation, Activation of KDR
enhances tumour angiogenesis and growth by upregulating oncogenic
factorssuch as enhancer of zeste homologue 2 (EZH2), whichis associ-
ated withincreased cell proliferation and migration. Inhibiting KDR has
showed promising therapeutic effects, including reduced cell prolif-
erationand induced apoptosis. Forinstance, KDRinhibitors have been
shown to decrease the malignant potential of lung adenocarcinoma
cells by downregulating EZH2 expression and increasing sensitivity
to chemotherapy?®. These findings underscore the importance of
KDR as atherapeutic target in A549 lung adenocarcinoma cells, high-
lighting its role in tumour progression and the potential benefits of
itsinhibitionin cancer treatment strategies. Importantly, PDGrapher
has successfully identified KDR among the top 20 predicted targets
in chemical-PPI-lung-A549, validating its precision in detecting key
therapeutic targets for lung cancer.

Given that Open Targets offers more comprehensive evidence for
targets currently under development, we conducted asecond series of
casestudies using Open Targets data to evaluate PDGrapher’s capability
toidentify candidate therapeutic targets and drugs. This analysis aims
to identify targets for lung cancer. Figure 6a presents a bubble graph
that illustrates the union of the top 10 predicted targets to transition
cell states from diseased to healthy in the six cell lines of three types of
cancer that have available healthy controls. Inthe plot, the colour inten-
sity and size of the bubbles represent the number of evidence sources
and the association scores for each type of evidence. Most predicted
targets are supported by drugs, pathology and systemic biology, and
somatic mutation databases, which were considered strong evidence
sources. Two unique targets, DNA topoisomerase IlI-a (TOP2A) and
cyclin-dependentkinase 2 (CDK2), are predicted exclusively for the lung
cancer cellline (Extended Data Fig. 8). TOP2A is ranked as the top pre-
dicted target by PDGrapher. This gene encodes a crucial decatenating
enzyme that alters DNA topology by binding to two double-stranded
DNA molecules, introducing a double-strand break, passing the intact
strand through the break, and repairing the broken strand. This mecha-
nismis vital for DNA replication and repair processes. TOP2A could be
a potential therapeutic target for anti-metastatic therapy of NSCLC
because it promotes metastasis of NSCLC by stimulating the canonical
Whntsignalling pathway and inducing epithelial-mesenchymal transi-
tion*. Using the predicted target of TOP2A, PDGrapher then identified
three drugs, aldoxorubicin, vosaroxin and doxorubicin hydrochloride,
as candidate drugs. These drugs were not part of the training data-
set of PDGrapher and are in the early stages of clinical development:
aldoxorubicin and vosaroxin are in phase Il trials (ClinicalTrials.gov),
and doxorubicin hydrochloride isin phase I trials but has been shown
toimprove survival in patients with metastatic or surgically unresect-
able uterine or soft tissue leiomyosarcoma*®.

Given that PDGrapher canrank all genes based on PPI network or
GRN data, we assessed two questions: whether top-ranked genes have
stronger evidence from Open Targets compared with lower-ranked
genes, and what rank threshold should be used to identify reliably
predicted genes. Figure 6b shows the number of sources of evidence
and the global scores for the predicted target genes within the rank
ranges of 1-10, 11-20, 51-60, 101-110 and 1,001-1,010 for lung cancer
(chemical-PPI-lung-A549). The analysis revealed a clear trend: both the
number of supporting evidence sources and global scores decrease
withincreasing rank, validating the predictive accuracy of PDGrapher.
Most targets ranked within the top 100 have strong evidence from Open
Targets, indicating that arank threshold of100 could serve as a cut-off
for selecting candidate targets.

Training PDGrapher models

We conducted an ablation study to evaluate the components of
PDGrapher’s objective function using chemical datasets. We trained
PDGrapher under three configurations: with only the cycle loss
(PDGrapher-Cycle), only the supervision loss (PDGrapher-Super)
and withbothlosses combined (PDGrapher-SuperCycle). The experi-
ments were performed in the random splitting setting across all nine
PPIchemical datasets. We assessed performance using several metrics,
including the percentage of accurately predicted samples (Fig. 5¢),
nDCG (Supplementary Fig. 8a), recall values (Supplementary Fig. 8b)
and strength of evidence (Extended Data Fig. 9). The results showed
that PDGrapher-Super achieves the highest performance in predicting
correct perturbagens but performs the worstin reconstructing treated
samples. Incontrast, PDGrapher-Cycle performs poorly inidentifying
correct perturbagens but showsimproved performance in predicting
(reconstructing) held-out treated samples. PDGrapher-SuperCycle (the
configuration used throughout this study) strikes a balance between
these two objectives, achieving competitive performancein predicting
therapeutic genes while showing the best performancein reconstruct-
ing treated samples from diseased samples after intervening on the
predicted genes. This makes PDGrapher-SuperCycle the most effective
choice for balancing accuracy in perturbagen prediction with recon-
struction fidelity. The findings show that supervision loss is essential
for PDGrapher’s overall performance. The PDGrapher-Cycle model
consistently underperforms in all cell lines and metrics. Although
PDGrapher-Super often excels in ranking performance, including
cycleloss (in PDGrapher-SuperCycle) proves its value by moderately
improving top prediction metrics such as recall@]1 and recall@10.
In addition, when healthy cell line data are available, the top predic-
tions of PDGrapher-SuperCycle show stronger evidence compared
with those of PDGrapher-Super in more than half (four of six) of the
celllines (Extended DataFig. 9). We chose PDGrapher-SuperCycle for
this work because it provides accurate target gene predictions from
thetop-ranked genesinthe predicted list and basesits predictions on
the changes they would induce in diseased samples.

Recognizing the role of biological pathways in disease pheno-
types, PDGrapher-SuperCycle can identify alternative gene targets
with close network proximity that may produce similar phenotypic
outcomes. The organization of genes with similar functions, where
eachgene contributes to specific biochemical processes or signalling
cascades, allows perturbations in different genes to yield analogous
effects”. This function-based interconnectivity implies that target-
ing different genes with similar functions can achieve therapeutic
outcomes, as these genes collectively influence cellular phenotypic
states*®. Although PDGrapher-SuperCycle shows slightly lower per-
formance than PDGrapher-Super in pinpointing targets (Fig. 5c), it
excels inidentifying sets of gene targets capable of transitioning cell
states fromdiseased to treated conditions (Supplementary Fig. 8b and
Extended DataFig.9).

We conducted four analyses to test the sensitivity of PDGrapher to
the causal graph. The first analysis uses five PPl networks constructed
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prostate cancer, respectively. The details of the scoring system are provided in
Supplementary Note 2. b, Predicted target rank from PDGrapher in 5 ranges, 1-10,
11-20, 51-60,101-110, and 1,001-1,010 for lung cancer (chemical-PPI-lung-A549).
The colour intensity and size of the bubbles represent the number of evidence
sources and the global scores of targets from Open Targets, respectively.

with varying edge confidence cut-offs. The PPI network was obtained
from STRING (https://string-db.org/)*, which assigns a confidence
score to each edge. To create networks with different levels of confi-
dence, we filtered edges based on the quantiles 0.1, 0.2, 0.3, 0.4 and
0.5 of the confidence scores, resulting in 5 networks with decreas-
ing numbers of edges. For this analysis, we selected two cell lines:
chemical-PPI-breast-MDAMB231 and genetic-PPI-breast-MCF7. The
LINCS perturbation data for each cell line were processed using the
five PPl networks (Supplementary Note 3). We trained PDGrapher

with one, two and three GNN layers, selecting the best configuration
based on the performance of the validation set. As shown in Fig. 5b
and Extended DataFig. 3, PDGrapher performs robustly at all levels of
confidence in PPI networks. It maintains stable performance on both
chemical and genetic intervention datasets, even as anincreasing num-
ber of edges is removed from the PPl networks. The second to fourth
analyses are based on the synthetic graphs. We created two sparse PPI
networks using different edge removal strategies and one synthetic
gene expression dataset withincreasing levels of latent confounders.
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We applied two edge removal strategies to the PPl network: removing
increasing numbers of either bridge edges or random edges. Details
of the data generation process are provided in the Methods. Results
from the edge removal experiments indicate that although bridge
edges are structurally critical, their limited number in the PPl graph
reduces their overall impact on model predictions (Extended Data
Fig.5).In contrast, the removal of random edges, which include both
high-confidence and redundant connections, has amore pronounced
effect on performance, highlighting the model’s sensitivity to network
perturbations (Extended Data Fig. 6). The fourth dataset introduces
latent confoundersin the gene expression data. PDGrapher showed sta-
ble performancein perturbagen prediction, withonly aslight decrease
in performance as stronger confounders were introduced (Extended
DataFig.4).

We then evaluated whether PDGrapher can maintain robust per-
formance in the absence of disease intervention data. In our training
datasets, some cell lines lacked associated healthy control samples
fromdisease-relevant tissues and cell types. These cell lines contained
only treatmentintervention data (diseased cell state, perturbagen and
treated cell state) without disease intervention data (healthy cell state,
disease mutations or diseased cell state) for model training and infer-
ence. For cell lines with healthy controls, we trained the response pre-
diction module using bothintervention datasets. For cell lines without
healthy controls, we trained PDGrapher using only treatment interven-
tion data. To evaluate PDGrapher’s dependency on healthy control data,
we trained the model on cell lines with available disease intervention
dataunder two conditions: one using the disease intervention datafor
training and one excluding it. This evaluation was conducted on six
chemical perturbation datasets (chemical-PPI-lung-A549, chemical-
PPI-breast-MCF7, chemical-PPI-breast-MDAMB231, chemical-PPI-
breast-BT20, chemical-PPl-prostate-PC3 and chemical-PPI-
prostate-VCAP) and three genetic perturbation datasets (genetic-
PPI-lung-A549, genetic-PPI-breast-MCF7 and genetic-PPI-prostate-PC3).
Theresultsindicated that the two versions of PDGrapher perform con-
sistently across cell types and data types (chemical and genetic; Fig. 5d
and Supplementary Figs. 6 and 7). In half of the cell lines (four of nine),
the model trained without disease intervention data outperformed the
model trained with it. This shows that PDGrapher has aweak depend-
ency on healthy control data and can perform well even when such
dataare unavailable.

Discussion

We formulate phenotype-drivenlead discovery as acombinatorial pre-
diction problem for therapeutic targets. Given adiseased sample, the
goalistoidentify genes that agenetic or chemical perturbagen should
target toreverse disease effects and shift the sample towards atreated
state that matches the distribution of a healthy state. This requires
predicting a combination of gene targets, framing the task as combi-
natorial prediction. To address this, we introduce PDGrapher. Using
adiseased cell state represented by a gene expression signature and
a proxy causal graph of gene-gene interactions, PDGrapher predicts
candidate target genes to transition cells to the desired treated state.
PDGrapher includes two modules: a perturbagen discovery module
that proposes a set of therapeutic targets based on the diseased and
treated states, and a response prediction module that evaluates the
effect of applying the predicted perturbagento the diseased state. Both
modules are GNN models that operate on gene-gene networks, which
serve as approximations of noisy causal graphs. We use PPI networks
and GRNs as two representations of these noisy causal graphs. PDGra-
pher predicts perturbagens that shift gene expression from diseased to
treated states across 2 evaluation settings (random and leave-cell-out)
and 19 datasets involving genetic and chemical interventions. Unlike
alternative response prediction methods, which rely on indirect pre-
diction to identify perturbagens, PDGrapher selects candidate gene
targets to achieve the desired transformation’®>"°°-%2,

PDGrapher has the potential to improve therapeutic lead design
and expand the search space for perturbagens. It leverages large data-
sets of geneticand chemical interventions toidentify sets of candidate
targets that canshift cell line gene expression from diseased to treated
states. By selecting sets of therapeutic targets for interventioninstead
ofasingle perturbagen, PDGrapher enhances phenotype-driven lead
discovery. PDGrapher’s approach to identifying therapeutic targets
can enable personalized therapies by tailoring treatments to indi-
vidual gene expression profiles. Its ability to output multiple genes is
particularly relevant for diseases where dependencies among several
genes affect treatment efficacy and safety.

PDGrapher operates under the assumption that there are no
unobserved confounders, a stringent condition that is challenging
to validate empirically. Future work could focus on re-evaluating and
relaxing this assumption. Another limitation lies in the reliance on
PPI networks and GRNs as proxies for causal gene networks, as these
networks are inherently noisy and incomplete® . PDGrapher posits
that representation learning can overcome incomplete causal graph
approximations. A valuableresearch directionis to theoretically exam-
ine theimpact of such approximations, focusing on how they influence
the accuracy and reliability of predicted likelihoods. Such analyses
could uncover high-level causal variables with therapeutic effects from
low-level observations and contribute to reconciling structural causal-
ity and representation learning approaches, which generally lack any
causal understanding’. We performed two experiments to evaluate the
robustness of PDGrapher. First, we tested PDGrapher on a PPI network
withweighted edges, progressively removing low-confidence edgesto
assessits performance under increasing network sparsity. Second, we
applied PDGrapher to synthetic datasets with varying levels of missing
graph components and confounding factorsin gene expression data.
In both experiments, PDGrapher maintained stable performance.
PDGrapher also showed robust performance across PPInetworks with
different numbers of edges.

Phenotype-driven drug discovery using PDGrapher faces certain
limitations, one of whichisitsreliance ontranscriptomic data. Although
transcriptomicsis broadly applicable, including other datamodalities,
suchas cellmorphology screens, could produce more comprehensive
models. Cellmorphology screens, including cell painting, capture cel-
lular responses by staining organelles and cytoskeletal components,
generatingimage profiles that capture the effects of genetic or chemi-
cal perturbations®”*®. These screens allow identification of phenotypic
signatures that correlate with compound activity, mechanisms of
action and potential off-target effects. The recent release of the JUMP
Cell Painting dataset® exemplifies how high-content morphological
profiling can complement databases such as CMap and LINCS, creating
integrated datasets for phenotype-driven discovery. By integrating
multimodal data, including phenotypic layers from transcriptomic
andimage data, it becomes possible to uncover more comprehensive
patterns of compound effects®’. Such integration would broaden the
scope of PDGrapher, allowing it to capture wider mechanistic insights
and support more effective therapeutic discovery®®,

A limitation of our study is the use of NL20 as a control cell line
for A549 (refs. 63-65). Although NL20 is a normal human bronchial
epithelial cell lineand A549 is ahuman lung carcinoma cell line derived
from the alveolar region, the two cell lines differ in anatomical origin
and molecular characteristics. This mismatch could introduce biases
incomparative analyses due to variations in baseline gene expression
profiles and cellular behaviours. To mitigate this concern, we evaluate
PDGrapher’s performance across datasets with and without healthy
control data. PDGrapher performs consistently regardless of the inclu-
sion of healthy controls, indicating that its predictions are robust to
the absence of matched control cells. Ablation analyses showed that
incorporating cycle loss improved PDGrapher’s performance in top
target predictions for five of nine cell lines. On the basis of thisimprove-
ment, we included the cycle loss in all experiments. Cycle loss helps
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maintain the robustness and biological relevance of model predic-
tions. PDGrapher learns to predict drug targets that shift cells from
adiseased state to a healthy or treated state. It then uses the diseased
gene expression profile and the predicted targets to estimate the gene
expression after treatment. This bidirectional approach enforces the
fidelity of predicted targets as they must contain sufficient information
toreconstruct state B from state A. Cycle loss also serves as aregular-
izer that penalizes discrepancies between the original input and its
reconstruction®.

PDGrapherisa GNNapproach for combinatorial prediction of per-
turbations that transition diseased cells to treated states. By leveraging
causalreasoning and representation learning ongene networks, PDGra-
pheridentifies perturbagens necessary to achieve specific phenotypic
changes. This approach enables the direct prediction of therapeutic
targets that can reverse disease phenotypes, bypassing the need for
exhaustive response simulations across large perturbation libraries.
Its design and evaluation lay the groundwork for future advances in
phenotype-based modeling of therapeutic perturbations by improv-
ing the precision and scalability of perturbation prediction methods.

Methods

Preliminaries

A calligraphic letter x indicates a set, an italic uppercase letter X
denotes a graph, uppercase X denotes a matrix, lowercase x denotes
avector,andamonospaced letter X indicates a tuple. Uppercase letter
X indicatesarandomvariable, and lowercase letter x indicatesits cor-
responding value; bold uppercase X denotes aset of random variables,
and lowercase letter x indicates its corresponding values. We denote
P(X)as a probability distribution over a set of random variables X and
P(X = x)as the probability of X that is equal to the value of x under the
distribution P(X). For simplicity, P(X = x) is abbreviated as P(x). This
section uses terminology and concepts from the framework of casual
inference®’.

Problem formulation for combinatorial prediction of targets
Intuitively, given a diseased cell line sample, we would like to predict
the set of therapeutic genes that need to be targeted to reverse the
effects of disease, that is, the genes that need to be perturbed to shift
the cell gene expression state as close as possible to the healthy state.
Next, we formalize our problem formulation.Let M =< E, V, #, P(E) >be
astructural causal model (SCM; see the description of related works
inSupplementary Note 4) associated with causal graph G, where Eisa
set of exogenous variables affecting the system, v are the system vari-
ables, 7 are structural equations encoding causal relations between
variables and P(E) is a probability distribution over exogenous varia-
bles. Let 7 = {1, ...,T,,} be a dataset of paired healthy and diseased
samples (namely, disease intervention data), where each elementisa
triplet T =< v, U,v¢ >withv" € [0,1]"being normalized gene expression
values of a healthy cell line (variable states before perturbation), vy
being the disease-causing perturbed variable (gene) set in v, and
vd e [0,1]" being gene expression values of a diseased cell line (variable
states after perturbation). Our goal is to find, for each sample
T =< v",U,vd >, the variable set U'with the highest likelihood of shifting
variable states from diseased vito healthy v"state. Toincrease general-
ity, we refer to the desired variable states as treated (v*). Our goal can
then be expressed as:

argmax, P ¢ (V = vt |do(U")), (1)

where P¢ represents the probability on the graph G mutilated by
perturbationsinvariablesin U. Under the assumption of nounobserved
confounders, the above interventional probability can be expressed
asaconditional probability on the mutilated graph GV":

argmaerPGL, (V=v'|U"), )

which under the causal Markov conditioniis:

argmaxy [ P(Vi =vi|Pay,), (3)
i

where Pay, represents parents of variable v;according tograph GV (that
is, themutilated graph uponintervening on variablesin U’). Here state
of avariable V; € Pay, will be equal to an arbitrary value v if v; e U'.
Therefore, intervening on the variable set U' modifies the graph used
to obtain conditional probabilities and determine the state of
variablesin U'.

Problem formulation from arepresentation learning
perspective

Inthe previous section, we drew on the SCM framework tointroducea
generic formulation for the task of combinatorial prediction of thera-
peutic targets. Instead of approaching the problem from a purely
causalinference perspective, we draw uponrepresentation learning to
approximate the queries of interest to address the limiting real-world
setting of anoisy and incomplete causal graph. Formulating our prob-
lem using the SCM framework allows for explicit modelling of interven-
tions and formulation of interventional queries (see the description of
related works in Supplementary Note 4). Inspired by this principled
problem formulation, we next introduce the problem formulation
using arepresentation learning paradigm.

We let G = (v, &) denote a graph with || = nnodes and || edges,
which contains partial information on causal relationships between
nodes in v and some noisy relationships. We refer to this graph as a
proxy causal graph. Let 7 = {1y, ..., T\,} be a dataset with an individual
sample being a triplet T =< x", 1, x4 > with x" € [0, 1]" being the node
states (attributes) of a healthy cell sample (before perturbation), u
being the set of disease-causing perturbed nodesin v, and x! € [0, 1]
being the node states (attributes) of a diseased cell sample (after per-
turbation). We denote by G¥ = (v, c¥%) the graph resulting from the
mutilation of edgesin Gas aresult of perturbingnodes in t (one graph
per perturbagen; we avoid using superindices for simplicity). Here
again we refer to the desired variable states as treated (x"). Our goal is
thentolearnafunction:

f:G¥, xd,xt > argmaxu,PG"' (x = x"xd,u"). 4)

That, given the graph G, the diseased node states x*and treated node
states X', predicts the combinatorial set of nodes v’ that if perturbed
have the highest chance of shifting the node states to the treated state
x". We note here that PS“ represents probabilities over graph G¥ muti-
lated upon perturbations in nodes in u’. Under causal Markov condi-
tion, we can factorize P over graph G

f1G¥, xd,xt > argmax,, [ ] P(X; = X!Xz.4,), (5)
i

thatis, the probability of each node i depending only onits parents ».4;
ingraph G¥.

We assume (1) real-valued node states, (2) Gis fixed and given, and
(3) atomic and non-atomic perturbagens (intervening on individual
nodesorsetsof nodes). Given that the value of each node should depend
only on its parents in the graph G¥', a message-passing framework
appears especially suited to compute the factorized probabilities P.

In the SCM framework, the conditional probabilities in equation
(3) are computed recursively on the graph, each being an expectation
over exogenous variables E. Therefore, node states of the previous time
pointare not necessary. To translate this query into the representation
learning realm, we discard the existence of noise variables and directly
try tolearnafunction encoding the transition from aninitial statetoa
desired state. An exhaustive approach to solving equation (5)
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would betosearchthe space of all potential sets of therapeutic targets
u’'and score how effective eachisinachieving the desired treated state.
Thisis, how many cell response prediction approaches can be used for
perturbagen discovery?>***s, However, with moderately sized graphs,
this is highly computationally expensive, if not intractable. Instead,
we propose to search for potential perturbagens efficiently with a
perturbagen discovery module (f,) and a way to score each potential
perturbagen with aresponse prediction module ().

Relationship to conventional graph prediction tasks

Given that the prediction for each variable is dependent only on its
parentsinagraph, GNNs appear especially suited for this problem. We
canformulate the query of interest underagraph representationlearn-
ing paradigm as follows: given a graph G = (v,¢), paired sets of
node attributes X = {X;,X,, ..., X,,} and node labels ¥ = {Y;,Y,, ..., Y,.},
whereeach Y ={y,, ..., y,}, withy;€ [0, 1], we aim at training a neural
message-passing architecture that given node attributes X; predicts
the corresponding node labels Y,. There are, however, differences
between our problem formulation and the conventional graph predic-
tion tasks, namely, graph and node classification (summarizedin Sup-
plementary Table 13).

In node classification, a single graph G is paired with node attrib-
utes X, and the task is to predict the node labels Y. Our formulation
differs in that we have m paired sets of node attributes & and labels ¥
instead of asingle set, yet they are similar in that there is asingle graph
in which GNNs operate. In graph classification, a set of graphs
G ={Gy,...,Gp}is paired with aset of node attributes X = {X;, X5, ..., X,,,}
and the task is to predict a label for each graph Y = {y,, ..., ¥,.}. Here
graphshaveavaryingstructure, and both the topological information
and node attributes predict graph labels. In our formulation, a single
graphis combined witheach node attribute X;, and the goalis to predict
alabelfor each node, not for the whole graph.

PDGrapher model

PDGrapherisanapproach for combinatorial prediction of therapeutic
targets composed of two modules. First, a perturbagen discovery
modulef, searches the space of potential gene sets to predict asuitable
candidate u'. Next, aresponse prediction module £, checks the good-
ness of the predicted set i/, that is, how effective intervening on vari-
ablesin u’is to shift node states to the desired treated state x".

5o
@ x4, xt3 g

@ x4, 15X,

Model optimization

We optimize our response prediction module £, using cross-entropy
(CE) loss on known triplets of disease intervention < x", 2, x4 > and
treatmentintervention < x4, ', xt >:

Lp = CE(x4, £,(x", 1)) + CE(X', fi(xd, U"). 6)

We optimize our intervention discovery module f, using a cycle loss,
ensuringthattheresponsetothe predictedinterventionset i’ closely
matches the desired treated state (the first part of equation (7)). In
addition, we provide asupervisory signal for predicting «’in the form
of cross-entropy loss (the second part of equation (7)). So, the total loss
isdefined as:

£y, = CE (xS, fi(x4, £ (x4, X)) + CE (U, f,(x9, xY)) (withf, frozen). (7)

We trainf, andf, in parallel and implement early stopping separately
(see ‘Experimental set-up’ for more details). Trained modulef, is then

used to predict, for each diseased cell sample, which nodes should be
perturbed (i) to achieve a desired treated state (Fig. 1a).

Response prediction module

Ourresponse prediction modulef, should learntomap pre-perturbagen
node values to post-perturbagen node values through learning rela-
tionships between connected nodes (equivalent to learning struc-
turalequations in SCMs) and propagating the effects of perturbations
downstreamin the graph (analogous to the recursive nature of query
computationsin SCMs).

Given a disease intervention triplet < x", 1, x4 >, we propose a
neural model operating on a mutilated graph, G%, where the node
attributes are the concatenation ofx"and x;,, predicting diseased node
values x°. The first element is its gene expression value x!"and the
second is a perturbation flag, a binary label indicating whether a per-
turbationoccursatnodei.So, eachnodeihas atwo-dimensional attrib-
ute vector d; = [x"||x), . In practice, we embed each node feature
into a high-dimensional continuous space by assigning learnable
embeddings to each node based on the value of each input feature
dimension. Specifically, for eachnode, we use the binary perturbation
flag to assign a d-dimensional learnable embedding, which s different
between nodes but shared across samples for each node. To embed
thegene expressionvalue x"" € [0,1], wefirst calculate thresholds using
quantiles to assign the gene expression value into one of the Bbins. We
use the binindex to assign ad-dimensional learnable embedding, which
is different between nodes but shared across samples for each node.
To increase our model’s representation power, we concatenate a
d-dimensional positional embedding (a d-dimensional vector initial-
izedrandomly following a normal distribution). Concatenating these
three embeddings results in an input node representation of dimen-
sionality 3d.Foreachnode i € v,anembedding z;is computed using a
GNN operating onthe node’s neighbours’ attributes. The most general
formulation of a GNN layer is:

h =¢ (h;, D v, hj)) , ®)

JeNt

where h; represents the updated information of node i, and h; repre-
sents the information of node i in the previous layer, with embedded
d; being the input to the first layer. ¢ is a message function, @ a
permutation-invariant aggregate function, and ¢ is an update function.
We obtain an embedding z; for node i by stacking K GNN layers. The
node embedding z; € R is then passed to a multilayer feedforward
neural network to obtain an estimate of the values of the
post-perturbation nodes x°.

Perturbation discovery module
Our perturbagen prediction module £, should learn the nodes in the
graph that should be perturbed to shift the node states (attributes)
from diseased x‘ to the desired treated state x'. Given a triplet
<xd,u',x* >, we propose a neural model operating on graph G with
node features x* and x‘ that predicts a ranking for each node, where
the top Pranked nodes should be predicted as the nodes in u’. Each
nodeihasatwo-dimensional attribute vector: d; = [xfl |Ix;].Inpractice,
we represent these binary features in a continuous space using the
same approach as described for our response prediction modulef,.
For each node i € v, an embedding z;is computed using a GNN
operating on the node’s neighbours’ attributes. We obtain an embed-
dingz;for node iby stacking K GNN layers. The node embedding z; € R
isthen passed to a multilayer feedforward neural network to predicta
real-valued number for nodei.

Model implementation and training
Weimplement PDGrapher using PyTorch1.10.1(ref. 69) and the Torch
Geometric 2.0.4 Library’. The implemented architecture yields a
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neural network with the following hyperparameters: number of GNN
layers and number of prediction layers. We set the number of predic-
tion layers to two and performed a grid search over the number of
GNN layers (one to three layers). We train our model using a 5-fold
cross-validation strategy and report PDGrapher’s performance result-
ing from the best-performing hyperparameter setting.

Further details on statistical analysis

We next outline the evaluation set-up, baseline models and statistical
tests used to evaluate PDGrapher. We evaluate the performance of
PDGrapher against the following existing methods:

« Random reference: Given a sample T =< x9, U, x* >, the random
reference baseline returns N random genes as the prediction of
target genes in «’, where Nis the number of genesin u'.

» Cancer genes: Given asample T =< x4, 1/, x* >, the cancer genes
baseline returns the top N genes from an ordered list where the
first M genes are disease associated (cancer-driver genes). The
remaining genes are ranked randomly, and N is the number of
genes in U'. The processing of cancer genes is described in
‘Disease-genes information’ in Supplementary Note 3.

« Cancer drug targets: Given asample T =< x4, 1, xt >, the cancer
targets baseline returns the top N genes from an ordered list
where the first M genes are cancer drug targets and the remain-
ing genes are ranked randomly, and N is the number of genes in
u'. The processing of drug target information is described in
‘Drug-targets information’ and ‘Cancer drug and target informa-
tion’ in Supplementary Note 3.

 Perturbed genes: Given asample T =< x9, %', xt >, the perturbed
genes baseline returns the top N genes from an ordered list
where the first M genes are all perturbed genes in the training set
and the remaining genes are ranked randomly, and Nis the
number of genesin .

» scGen*: scGenis a widely used gold-standard latent variable
model for response prediction’ . Given a set of observed cell
types in control and perturbed states, scGen predicts the
response of a new cell type to the perturbagen seen in training.
To use scGen as a baseline, we first fit it to our LINCS gene
expression data for each dataset type to predict response to
perturbagens, training one model per perturbagen (chemical or
genetic). Then, given a sample of paired diseased-treated cell
line states, T =< x4, u’, x* >, we compute the response of the cell
line with gene expression x¢ to all perturbagens. The predicted
perturbagen is that whose predicted response is closest to x"in
R?score, which quantifies the proportion of variance in treated
state explained by the prediction. As scGen trains one model per
perturbagen, it needs an exhaustively long training time for
datasets with a large number of perturbagens, especially in the
leave-cell-out setting. Therefore, we set the maximum training
epochs to 100 and only conducted leave-cell-out tests for one
split of data for scGen.

+ Biolord®: Biolord can predict perturbagen response for both
chemical and genetic datasets. We followed the official tutorial
from the Biolord GitHub repository (https://github.com/
nitzanlab/biolord), using the reccommended parameters. To
prevent memory and quota errors, we implemented two filtering
steps: (1) instead of storing the entire response gene expression
(rGEX) matrix of all input (control) cells for each perturbagen,
we only store a vector of the averaged rGEX of the input cells per
perturbagen, which is necessary for calculating R? for evalua-
tion; and (2) during prediction, if the number of control cells
exceeds 10,000, we randomly downsample the control cells to
10,000. Similar to scGen, we predict the responses gene
expression x¢ for all perturbagens and use them to calculate R
to get the rank of predicted perturbagens.

+ ChemCPA?”: ChemCPA is specifically designed for chemical
perturbation. We followed the official tutorials on GitHub for
running this model (https://github.com/theislab/chemCPA),
with all parameters set following the authors’ recommenda-
tions. Data processing was also conducted using the provided
scripts. We constructed drug embedding using RDKit with
canonical SMILES sequences, as this is the default setting in the
model and the tutorial. As the original ChemCPA model lacks
functionality to obtain the predicted rGEX for each drug
(averaging over the dosages), we developed a custom script to
perform this task. These predictions, x¢’, were subsequently
used for calculating R to get the rank of predicted
perturbagens.

« GEARS®: GEARS is capable of predicting perturbagen responses
for genetic perturbation datasets, specifically for predicting the
rGEX to unseen perturbagens. However, it is limited to predict-
ing only those genes that are present in the gene network used
as prior knowledge for model training. In addition, GEARS can-
not process perturbagens with only one sample, so we filtered
the data accordingly. We followed the official tutorial from the
GEARS GitHub repository (https://github.com/snap-stanford/
GEARS), using the recommended parameters. After confirming
with the authors, we established that GEARS is suitable only for
within-cell-line prediction. Consequently, our experiments with
GEARS were conducted exclusively within this scenario.

« CellOT?: CellOT is capable of working with both chemical and
genetic datasets. We ran this model by following the official
tutorial from GitHub (https://github.com/bunnech/cellot),
ensuring that all parameters were set according to the provided
guidelines. Due to CellOT’s limitation in processing perturba-
gens with small sample sizes, we filtered the data to retain only
those perturbagens with more than five samples or cells. We
then used the predicted rGEX x¢ to calculate R*and the
predicted perturbagen ranks. Similar to scGen, CellOT trains
one model per perturbagen, which results in an exhaustively
long training time for datasets with alarge number of perturba-
gens. This issue becomes even more pronounced when doing
leave-cell-out evaluations. Therefore, for this method, we set the
maximum training epochs to 100 and only conduct one splitin
leave-cell-out tests.

Dataset splits and evaluation settings
We evaluate PDGrapher and competing methods on two different
settings.

Systematic random dataset splits. For each cell line, the dataset is
split randomly into train and test sets to measure our model perfor-
manceinanindependent and identically distributed setting.

Leave-cell-out dataset splits. To measure model performance on
unseen cell lines, we train our model with random splits on one cell
line and test on anew cell line. Specifically, for chemical perturbation
data, we train amodel for each random split per cell line and testit on
the entire dataset of the remaining eight cell lines. For genetic data, we
trainamodel for each random split per cell line and test it onthe entire
dataset of the remaining nine cell lines. For example, with nine cell lines
with chemical perturbation (A549, MDAMB231, BT20, VCAP, MCF7,
PC3,A375,HT29 and HELA), we conducted an experiment where each
splitofcellline A549 was used as the training set, and the trained model
was tested on the remaining eight cell lines (MDAMB231, BT20, VCAP,
MCF7,PC3,A375,HT29 and HELA). Similarly, for cell ine MDAMB231, we
trained the model on each split of itand tested the model on the other
eight cell lines (A549, BT20, VCAP, MCF7, PC3, A375, HT29 and HELA).
This process was repeated for all cell lines, providing acomprehensive
evaluation of PDGrapher and all competing methods.
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Evaluation set-up

For all dataset split settings, our model is trained using 5-fold
cross-validation, and metrics are reported as the average on the test
set. Within each fold, we further split the training set into training and
validation sets (8:2) to perform early stopping. We train the model on
the training set until the validation loss has not decreased at least 10~
for 15 continuous epochs.

Evaluation metrics

Wereportaverage sample-wise R?score and average perturbagen-wise
R? score to measure performance in the prediction of x*. The
sample-wise R?score is computed as the square of the Pearson correla-
tion between the predicted sample ¢ € RVand real sample xt € R". The
perturbagen-wise R? score is adopted from scGen. It is computed as
the square of the Pearson correlation of alinear least-squares regres-
sion between a set of predicted treated samples Xt € R¥*S and a set of
real treated samples Xt € RV<S for the same perturbagen. Here, S indi-
catesthesize of the sets. Higher values indicate better performancein
predicting the treated sample x‘ given the diseased sample x and
predicted perturbagen. Thisis used for evaluating the performance of
response prediction. For evaluating perturbagen discovery, when the
competing methods cannot predict perturbagen ranks for chemical
perturbation data, we first calculate the rank of drugs based on the R?
score. We thenbuild atarget gene rank from the drug rank by substitut-
ing the drugs with their target genes acquired from DrugBank”
(accessed in November 2022; see details in Supplementary Note 3). A
single drug can have multiple target genes, whichwe place in the rank
inrandomorder. As some methods cannot predict unseen drugs, their
predicted target gene lists are often short, introducing bias in evalua-
tion. To address this, we shuffle the missing target genes and attach
them to the predicted ranks to create a complete rank. For genetic
perturbation data, we directly obtain the target gene rank from the
results and then attach the shuffled missing genes to the rank.

To evaluate the performance of our model in ranking predicted
therapeutic targets, we use the nDCG, awidely used metric ininforma-
tionretrieval adapted for our setting. The raw DCG score is computed
by summing the relevance of each correct target based onits rank in
the predicted list, with relevance weighted by a logarithmic discount
factor to prioritize higher-ranked interventions. The gain function is
defined as 1 -ranking/N, ensuring that the score reflects the quality
of the ranking relative to the total number of nodes in the system. To
ensure comparability across datasets or experiments with different
numbers of correctinterventions, DCGisnormalized by the ideal DCG,
which represents the maximum possible score for a perfect ranking.
This results in nDCG values in the range [0, 1], where higher values
indicate better ranking performance and alignment with the ground
truth. This metric is particularly suited for our task as it emphasizes
the accuracy of top-ranked interventions while accounting for the
diminishing importance of lower-ranked predictions.

In addition, we report the proportion of test samples for which
the predicted therapeutic targets set has at least one overlapping gene
withthe ground-truth therapeutictargets set (denoted as the percent-
age of accurately predicted samples). We also calculated the ratio of
correct therapeutic targets that appeared in the top 1, top 10 and top
100 predicted therapeutic targets in the predicted rank, denoted as
recall@l, recall@10 and recall@100, respectively.

To assess the overall performance across all experiments and
metrics, we calculated an aggregated metric, averaging all metric
values for each method.

Statistical tests

Inthe benchmarking experiments, we performed a one-tailed pairwise
t-test to evaluate whether PDGrapher significantly outperforms the
competing methods. For other experiments, such as ablation studies,
we used atwo-tailed t-test to determine whether there is a significant

difference in performance between the two models. A significance
threshold of 0.05 was used for all tests. P values of perturbagen dis-
covery andresponse prediction tests are presented in the Source data.

Ablation studies

In the ablation study, we evaluated PDGrapher by optimizing it with
only the supervision loss (PDGrapher-Super) and with only the cycle
loss (PDGrapher-Cycle) across all chemical datasets. We then compared
the perturbagen prediction performance of these submodels with that
of PDGrapher (PDGrapher-SuperCycle). To train PDGrapher-Super and
PDGrapher-Cycle, for each cellline, we set the number of layers to that
which was found optimal for the validation set in the random splitting
setting for PDGrapher-SuperCycle.

Sensitivity studies

Totest the sensitivity of PDGrapher on PPl networks, we used data from
STRING (string-db.org), which provides a confidence score for each
edge. The method for acquiring and preprocessing the PPI networks
from STRING is detailed in Supplementary Note 3. For the sensitivity
tests, we selected two cell lines: the chemical dataset MDAMB231 and
the genetic dataset MCF7. For each cell line, we processed the data
using the five PPl networks described in Supplementary Note 3. We
optimized PDGrapher using 5-fold cross-validation as described in
‘Evaluation set-up’ and optimized the number of GNN layers using the
validation setin each split.

Synthetic datasets
We generated three synthetic datasets:

1. Dataset with missing components removing bridge edges:
this dataset is generated by progressively removing bridge
edges from the existing PPI network. Bridge edges are those
whose removal disconnects parts of the network. We vary
the fraction of bridge edges removed in increments (from
zero to one) and, for each fraction, we create a new edge list
representing the modified network (Supplementary Table 5).
This process ensures that different levels of network sparsity
are introduced, affecting the overall structure and connectiv-
ity. We pair these networks with gene expression data from
chemical-PPI-breast-MDAMB231.

2. Dataset with missing components removing random edges:
this dataset is generated by progressively removing random
edges from the existing PPI network. We vary the fraction of
bridge edges removed in increments ([0, 0.1, ... 0.6]) and,
for each fraction, we create a new edge list representing the
modified network. The number of remaining directed edges in
the network upon random edge removal are 273,319, 242,912,
212,525,182,177,151,811 and 121,472.

3. Dataset with latent confounder noise: our starting point is the
chemical-PPI-breast-MDAMB231 dataset. The synthetic data-
sets were constructed with varying levels of confounding bias
introduced into the gene expression data. To simulate latent
confounder effects, Gaussian noise with distinct means and
variances was progressively added to random subsets of genes.
Genes were grouped into 50 predefined subsets, each repre-
senting a latent confounder group. For each group, a Gaussian
distribution was defined, with the mean drawn randomly from
auniform distribution in the range [0.5, 0.5] and the standard
deviation [0.1, 0.5]. A fraction ([0.2, 0.4, 0.6, 0.8, 1]) of these
subsets was randomly selected for perturbation and, for each
gene in these subsets, its expression value was incremented by
avalue sampled from the respective Gaussian distribution. The
perturbed gene expression values were then clamped between
zero and one to ensure validity. This strategy ensures that dif-
ferent latent biases are introduced globally to gene
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expression patterns while maintaining controlled variability.
We pair the noisy version of the gene expression data with the
global unperturbed PPl network.

Network proximity between predicted and true perturbagens
Let » be the set of predicted therapeutic targets, ® be the set of
ground-truth therapeutic targets, and spd(p, r) be the shortest-path
distance between nodes in 2» and ®. We measure the closest distance
between  and % as:

1
dP,R) = @7 >3 spd(p,n). )

reR pe?P

As part of our performance analyses, we measure the network
proximity of PDGrapher and competing methods. We compared the
distributions of network proximity values using a Mann-Whitney
U-test, along with a rank-biserial correlation to measure effect size.
To assess the uncertainty of effect sizes, we performed bootstrapping
with1,000 resamples to estimate 95% Cls.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Processed datasets, including cell line gene expression datasets, PPI
networks, drug targets and disease-associated genes, are available via
the project website at https://zitniklab.hms.harvard.edu/projects/
PDGrapherordirectly at https://zenodo.org/records/15375990 (ref. 76)
and https://zenodo.org/records/15390483 (ref. 77). The PPl data were
obtained from https://downloads.thebiogrid.org/File/BioGRID/
Release-Archive/BIOGRID-3.5.186/BIOGRID-MV-Physical-3.5.186.tab3.
zip, https://www.science.org/doi/suppl/10.1126/science.1257601/suppl_
file/datasets_s1-s4.zip and http://www.interactome-atlas.org/data/
HuRILtsv. Raw gene expression datasets were obtained from https://clue.
io/releases/data-dashboard. Disease-associated genes were obtained
from COSMIC at https://cancer.sanger.ac.uk/cell_lines/archive-downloa
d#:~:text=Complete. Source data are provided with this paper.

Code availability
Python implementation of PDGrapher is available at https://github.
com/mims-harvard/PDGrapher (ref. 78).
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Extended DataFig. 1| The performance of response prediction within nine differentially expressed genes per cell line. Dotted lines represent the average
celllines under chemical perturbation. The R*values are calculated between performance across cell lines, dots indicate individual data points, and bars
the predicted and actual gene expression for the top 20 (a), 40 (b), and 80 (c) represent the average R?across five data splits.
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within ten celllines. (a) PDGrapher provides accurate predictions for up to
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perturbagen prediction within each cell line, evaluated by the averaged rank
over multiple cell lines and metrics. The central line inside the box represents the
median, while the top and bottom edges correspond to the first (Q1) and third
(Q3) quartiles. The whiskers extend to the smallest and largest values within

1.5 times the interquartile range (IQR) from the quartiles. (e-g) Shown is the R? of
the response prediction module of PDGrapher compared to competing baselines
for the top 20 (e), 40 (), and 80 (g) differentially expressed (DE) genes.
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Extended Data Fig. 3 | Sensitivity analysis of the PPl used for training
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filtered by the 0.1,0.2,0.3, 0.4, and 0.5 quantiles of the confidence scores as
cutoffs, resulting in five PPI networks with 625,818, 582,305, 516,683, 443,051, and
296,451 edges, respectively. The results of the percentage of accurately predicted
samples are shown in Figure 5b.
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Extended Data Fig. 4| PDGrapher has stable performance on the synthetic
datasets with various intensities of confounders added on the gene
expression. Performance of simulation analyses evaluated by percentage of
accurately predicted samples (a) and nDCG (b) for the synthetic datasets with
varying levels (0 to 1) of confounding bias introduced into the gene expression
data. Gaussian noise, with distinct means and variances, was added progressively
torandom subsets of genes, simulating latent confounder effects in the treated
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gene expression data. The intensity of the confounding bias increases as more
gene groups (representing network communities) are affected. This approach
creates global, controlled variability in the gene expression data, paired
withanunperturbed PPl network, allowing for the evaluation of algorithmic
performance across different degrees of confounder noise. See Online Methods
for more details on data generation.
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Extended Data Fig. 5| PDGrapher has stable performance on the synthetic
datasets with various fractions of bridge edges removed. Performance of
simulation analyses evaluated by percentage of accurately predicted samples
(a) and nDCG (b) for the synthetic datasets with a [0, 0.1, ..., 1] fraction of
bridge edges removed in the simulated PPI. Bridge edges are those with
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high connectivity in the network, which, if removed, increase the number of
disconnected communities. The number of connected componentsinthe
network upon bridge edge removaliis [90,179, 268, 358,447,536, 626, 715,804,
894]. See more information in Supplementary Table S5.
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Extended Data Fig. 6| PDGrapher’s performance is influenced by network
incompleteness. Performance in ablation studies evaluated by percentage of
accurately predicted samples (a) and nDCG (b) for the synthetic datasets with
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a[0,0.,... 0.6]fraction of random edges removed in the PPI. The number of
remaining edges in the network upon random edge removal are [273,319; 242,912;
212,525;182,177;151,811;121,472]. See the Method section for more details.
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PDGrapher versus 10 randomly selected genes. The central line inside the box
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text=Complete%20mutation%20data and https://cancer.sanger.ac.uk/cosmic/curation. Drug targets were extracted from DrugBank at https://
go.drugbank.com/releases/5-1-9 and a list of cancer drugs was obtained from NCI at https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies/
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Sample size No formal statistical method was used to predetermine sample size. Instead, we included all samples from the LINCS dataset that passed a set
of stringent filtering criteria designed to
ensure biological relevance and data quality (see the information below). As a result, the sample size reflects the maximum number of high-
quality, biologically relevant perturbations
available for each model. Tables S9-510 detail the cell line selection process, gene filtering criteria, and rationale for inclusion/exclusion.
Sample sizes can be found in Tables S11-12

Data exclusions | 1. Cell line filtering: Cell lines were filtered to keep those with sufficient perturbational coverage and the inclusion of healthy cell line
counterparts. Figures S9 and S10 contain a description of the cell line selection criteria together with a list of cell lines with the largest
number of perturbed samples and a reason for inclusion/exclusion.

2. Healthy counterpart selection is described in Tables S11 and S12 in the supplementary material.

3. Disease-associated genes: We extracted disease-associated genes from COSMIC (Accessed in September 2022) in addition to expertcurated
genes available at https://cancer.sanger.ac.uk/cosmic/curation. Genes were represented using the HUGO Gene Nomenclature

Committee ID. For each cell line in our dataset that has disease intervention data, we extracted cancer-causing mutations as the list of genes
with "Verified" Mutation verification status in COSMIC and present in the list of genes curated by experts. Mapping the resulting genes to our
list of genes in the PPI resulted in disease-associated genes. We excluded cell lines for which there were no disease-associated genes in
COSMIC.

4. Gene matching: Treated samples were excluded if the targeted genes were not included in the protein-protein interaction (PPI) network.
Genes in the gene expression dataset {LINCS) were matched to proteins in the PPl using the HUGO Gene Nomenclature Committee ID, which
identified 10,716 overlapping genes.

5. Data level selection: Only level 3 gene expression data, which is quantile-normalized and can be compared across plates, was used.

6. Treatment and measurement specifics: Chemical interventions were included at all dose levels and time points.

Replication We used to 5-fold cross-validation to assess the stability of the model across different subsets of the data

Randomization  The datasets were split randomly into training and test sets to measure model performance. Additionally, a leave-cell-line-out setting was
used for some tests to assess performance on unseen cell lines

Blinding Blinding was not applicable because the study exclusively involved computational analysis of publicly available, pre-existing datasets (e.g.,
LINCS, COSMIC) where no new data collection or subjective labeling was performed. All labels (e.g., cell line identity, perturbation type, gene
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expression readouts) were defined prior to analysis and were not influenced by the investigators, eliminating potential for observer or
experimenter bias.
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