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Combinatorial prediction of therapeutic 
perturbations using causally inspired  
neural networks
 

Guadalupe Gonzalez1,2,3,14, Xiang Lin4,14, Isuru Herath    5,6,7, Kirill Veselkov1,8, 
Michael Bronstein9,10 & Marinka Zitnik    4,11,12,13 

Phenotype-driven approaches identify disease-counteracting compounds 
by analysing the phenotypic signatures that distinguish diseased from 
healthy states. Here we introduce PDGrapher, a causally inspired graph 
neural network model that predicts combinatorial perturbagens (sets 
of therapeutic targets) capable of reversing disease phenotypes. Unlike 
methods that learn how perturbations alter phenotypes, PDGrapher solves 
the inverse problem and predicts the perturbagens needed to achieve a 
desired response by embedding disease cell states into networks, learning a 
latent representation of these states, and identifying optimal combinatorial 
perturbations. In experiments in nine cell lines with chemical perturbations, 
PDGrapher identifies effective perturbagens in more testing samples than 
competing methods. It also shows competitive performance on ten genetic 
perturbation datasets. An advantage of PDGrapher is its direct prediction, in 
contrast to the indirect and computationally intensive approach common in 
phenotype-driven models. It trains up to 25× faster than existing methods, 
providing a fast approach for identifying therapeutic perturbations and 
advancing phenotype-driven drug discovery.

Target-driven drug discovery, which has been the dominant approach 
since the 1990s, focuses on designing highly specific compounds to 
act against targets, such as proteins or enzymes, that are implicated in 
disease, often through genetic evidence1–3. An example of target-driven 
drug discovery is the development of small molecule kinase inhibitors 
like imatinib. Imatinib stops the progression of chronic myeloid leukae-
mia by inhibiting BCR-ABL tyrosine kinase, a mutated protein involved 
in uncontrolled proliferation of leukocytes in patients with chronic mye-
loid leukemia4. Other notable examples include monoclonal antibodies 
such as trastuzumab, which specifically targets the HER2 receptor, a 
protein overexpressed in certain types of breast cancer. Trastuzumab 

inhibits cell proliferation while engaging the body’s immune system to 
initiate an anti-cancer response5. These examples illustrate the success 
of target-driven drug discovery, yet the past decade has seen a revival 
of phenotype-driven approaches. This shift has been fuelled by the 
observation that many first-in-class drugs approved by the US Food and 
Drug Administration (FDA) between 1999 and 2008 were discovered 
without a drug target hypothesis6. Instead of the ‘one drug, one gene, 
one disease’ model of target-driven approaches, phenotype-driven 
drug discovery focuses on identifying compounds or, more broadly, 
perturbagens—combinations of therapeutic targets—that reverse dis-
ease phenotypes as measured by assays without predefined targets1,7. 
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find that in chemical intervention datasets, candidate therapeutic 
targets predicted by PDGrapher are on average up to 11.58% closer 
to ground-truth therapeutic targets in the gene–gene interaction 
network than what would be expected by chance. Even in held-out 
folds containing new samples from a previously unseen cancer type, 
PDGrapher maintains robust performance. Unlike methods that indi-
rectly identify perturbagens by predicting cell responses, PDGrapher 
directly predicts perturbagens that can shift gene expression from 
diseased to treated states. This feature of PDGrapher enables model 
training up to 25× faster than indirect prediction methods, such as 
scGen22 and CellOT27. As these approaches build a separate model for 
each perturbation, they become increasingly ineffective when applied 
to datasets with a large number of perturbagens. For example, with its 
default settings, CellOT needs 10 h to train for a single perturbagen in 
a cell line from the LINCS dataset.

PDGrapher can aid in elucidating the mechanism of action of 
chemical perturbagens (Supplementary Fig. 3), which we show in the 
case of vorinostat, a histone deacetylase inhibitor used to treat cuta-
neous T cell lymphoma, and sorafenib, a multikinase inhibitor used 
in the treatment of several types of cancer (Supplementary Note 1). 
PDGrapher can also suggest potential anti-cancer therapeutic targets: 
it highlighted kinase insert domain receptor (KDR) as a top predicted 
target for non-small cell lung cancer (NSCLC; see ‘ PDGrapher identifies 
therapeutic targets validated through clinical and biological evidence’ 
in Results). It identified associated drugs—vandetanib, sorafenib, cate-
quentinib and rivoceranib—that inhibit the kinase activity of the protein 
encoded by KDR. These drugs block VEGF signalling, suppressing 
endothelial cell proliferation, migration and blood vessel formation, 
which tumours rely on for growth and metastasis28,29. By predicting 
combinatorial therapeutic targets based on phenotypic transitions, 
PDGrapher provides a scalable approach to phenotype-driven per-
turbation modelling.

Results
Overview of intervention datasets and causal graphs
We evaluate our method across a total of 38 preprocessed datasets that 
span 2 types of intervention (genetic and chemical), 11 cancer types 
(lung, breast, prostate, colon, skin, cervical, head and neck, pancreatic, 
stomach, brain and ovarian), and 2 types of proxy causal graph: PPI 
networks and GRNs. Each dataset is uniquely defined by a combination 
of intervention type, causal graph type, cancer type, and cell line, and 
is denoted in the format: treatment type-graph type-cancer type-cell 
line. The chemical-PPI datasets include cell lines A549 (lung); MCF7, 
MDAMB231 and BT20 (breast); PC3 and VCAP (prostate); HT29 (colon); 
A375 (skin); and HELA (cervix). The genetic-PPI datasets include A549 
(lung), MCF7 (breast), PC3 (prostate), HT29 (colon), A375 (skin), ES2 
(ovary), BICR6 (head and neck), YAPC (pancreas), AGS (stomach) and 
U251MG (brain). Similarly, the chemical-GRN and genetic-GRN data-
sets span the same combinations of cancer types and cell lines as their 
PPI counterparts. This comprehensive collection of datasets enables 
systematic benchmarking of our model across diverse perturbation 
modalities, biological contexts and graph structures. Genetic interven-
tions are single-gene knockout experiments by CRISPR–Cas9-mediated 
gene knockouts, while chemical interventions are multiple-gene treat-
ments induced using chemical compounds. We use a PPI network from 
BIOGRID that has 10,716 nodes and 151,839 undirected edges. We addi-
tionally construct GRNs for each disease-treatment type pair using 
GENIE3 (ref. 30) (Supplementary Note 3), with GRNs on average hav-
ing 10,000 nodes and 500,000 directed edges. The training data for 
PDGrapher consist of two components: disease intervention data and 
treatment intervention data. Disease intervention data include paired 
healthy and diseased gene expression profiles, along with associated 
disease genes; however, these data are only available for cell lines corre-
sponding to lung, breast and prostate cancers. In contrast, the treatment 
intervention data comprise paired diseased and treated gene expression 

Ivacaftor illustrates how these approaches can intersect. Although 
ivacaftor was developed through a target-driven strategy to modulate 
the cystic fibrosis transmembrane conductance regulator protein in 
individuals with specific mutations, its development relied on pheno-
typic assays to confirm functional improvements, such as increased 
chloride transport8–10.

Phenotype-driven drug discovery has been bolstered by the 
advent of chemical and genetic libraries such as the Connectivity Map 
(CMap)11 and the Library of Integrated Network-based Cellular Sig-
natures (LINCS)12. CMap and LINCS contain gene expression profiles 
of dozens of cell lines treated with thousands of genetic and chemi-
cal perturbagens. CMap introduced connectivity scores to quantify 
similarities between compound responses and disease gene expression 
signatures. Identifying compounds with gene expression signatures 
either similar to those of known disease-treating drugs or that counter 
disease signatures can help in selecting therapeutic leads13–16. These 
strategies have successfully identified drugs with high in vitro efficacy16 
across a range of diseases17–19.

Deep learning methods have been used for lead discovery by 
predicting gene expression responses to perturbagens, including 
perturbagens that were not yet experimentally tested20–23. However, 
these approaches rely on chemical and genetic libraries, meaning that 
they select perturbagens from predefined libraries and cannot identify 
perturbagens as new combinations of drug targets. Further, they are 
perturbation response methods that predict changes in phenotypes 
upon perturbations. Thus, they can identify perturbagens by exhaus-
tively predicting responses to all perturbations in the library and then 
searching for perturbagens with the desired response. Unlike existing 
methods that learn responses to perturbations, phenotype-based 
approaches need to solve the inverse problem, which is to infer per-
turbagens necessary to achieve a specific response—that is, directly 
predicting perturbagens by learning which perturbations elicit a 
desired response.

In causal discovery, the problem of identifying which elements 
of a system should be perturbed to achieve a desired state is referred 
to as optimal intervention design24–26. Using insights from causal dis-
covery and geometric deep learning, here we introduce PDGrapher, 
an approach for the combinatorial prediction of therapeutic targets 
that can shift gene expression from an initial diseased state to a desired 
treated state. PDGrapher is formulated using a causal model in which 
genes represent the nodes in a causal graph and structural causal 
equations define their causal relationships. Given a genetic or chemi-
cal intervention dataset, PDGrapher pinpoints a set of genes that a 
perturbagen should target to facilitate the transition of node states 
from diseased to treated. PDGrapher uses protein–protein interaction 
(PPI) networks or gene regulatory networks (GRNs) as approximations 
of the causal graph, operating under the assumption of no unobserved 
confounders. PDGrapher tackles the optimal intervention design 
using representation learning, using a graph neural network (GNN) to 
represent structural equations.

PDGrapher is trained on a dataset of disease–treated sample pairs 
to predict therapeutic gene targets that can shift the gene expres-
sion phenotype from a diseased to a healthy or treated state. Once 
trained, PDGrapher processes a new diseased sample and outputs a 
perturbagen—a set of therapeutic targets—predicted to counteract 
the disease effects in that specific sample. We evaluate PDGrapher 
across 19 datasets, comprising genetic and chemical interventions 
across 11 cancer types and two proxy causal graphs. We also consider 
different evaluation set-ups, including settings where held-out folds 
contain new samples in the same cell line with the training samples, and 
settings where held-out folds contain new samples from a cancer type 
that PDGrapher has never encountered during training. In held-out 
folds that contain new samples, PDGrapher detects up to 13.37% and 
1.09% more ground-truth therapeutic targets in chemical and genetic 
intervention datasets, respectively, than existing methods. We also 
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samples, along with genetic or chemical perturbagens, and are avail-
able across all datasets. Supplementary Tables 11 and 12 summarize the 
number of samples for each cell line and intervention datasets.

Overview of PDGrapher model
Given a diseased cell state (gene expression profile), the goal of PDG-
rapher is to predict the genes that, if targeted by a perturbagen, would 
shift the cell to a treated state (Fig. 1a). Unlike methods for learning the 
response of cells to a given perturbation22,27,31,32, PDGrapher focuses 
on the inverse problem by learning which perturbation elicits a desired 
response. PDGrapher predicts perturbagens that shift cellular states 
under the assumption that an optimal perturbagen is one that alters 
the gene expression profile of a cell to closely match a desired target 
state. Our approach comprises two modules (Fig. 1a–c). First, a per-
turbagen discovery module ƒp takes the initial and desired cell states 
and outputs a candidate perturbagen as a set of therapeutic targets 𝒰𝒰′ 
(Fig. 1a). Then, a response prediction module ƒr takes the initial state 
and the predicted perturbagen 𝒰𝒰′ and predicts the cell response upon 
perturbing genes in 𝒰𝒰′ (Fig. 1b). Our response prediction and  

perturbagen discovery modules are GNN models that operate on a 
proxy causal graph, where edge mutilations, or edge removals, repre-
sent the effects of interventions on the graph (Fig. 1c).

PDGrapher is trained using an objective function with two com-
ponents, one for each module, ƒr and ƒp. The response prediction mod-
ule ƒr is trained using disease and treatment intervention data on cell 
state transitions so that the predicted cell states are close to the known 
perturbed cell states upon interventions. The perturbagen discovery 
module ƒp is trained only using the treatment intervention data; given 
a diseased cell state, ƒp predicts the set of therapeutic targets 𝒰𝒰′ that 
caused the corresponding treated cell state. The objective function 
for the perturbagen discovery module consists of two elements: (1) a 
cycle loss that optimizes the parameters of ƒp such that the response 
upon intervening on the predicted genes in 𝒰𝒰′, as measured by ƒr, closely 
approximates the actual treated cellular state; and (2) a supervision 
loss on the therapeutic target set 𝒰𝒰′ that directly pushes PDGrapher to 
predict the correct perturbagen. Both models are trained simultane-
ously using early stopping independently so that each model finishes 
training upon convergence.
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Fig. 1 | Overview of PDGrapher. a, Given a paired diseased and treated gene 
expression sample and a proxy causal graph, PDGrapher’s perturbagen discovery 
module, ƒp, predicts a candidate set of therapeutic targets to shift cell gene 
expression from a diseased to a treated state. b, Given a disease sample’s gene 
expression, a proxy causal graph and a set of perturbagens, PDGrapher’s 
response prediction module, ƒr, predicts the gene expression response of the 
sample to each perturbagen. ƒr represents perturbagen’s effects in the graph as 
edge mutilations. c, ƒp is optimized using two losses: a cross-entropy cycle loss to 

predict a perturbagen 𝒰𝒰′ that aims to shift the diseased cell state closely 
approximating the treated state, CE (xt, fr(xd, fp(xd, xt))) (with fr frozen), and a 
cross-entropy supervision loss that directly supervises the prediction of 𝒰𝒰′, 
CE (𝒰𝒰′, fp(xd, xt)) (see Methods for more details). d, Both ƒr and ƒp follow the 
standard message-passing framework, where node representations are updated 
by aggregating the information from neighbours in the graph. GEX, gene 
expression.
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When trained, PDGrapher predicts perturbagens—as sets of can-
didate target genes—to shift cells from diseased to treated. Given a 
pair of diseased and treated samples, PDGrapher directly predicts 
perturbagens by learning which perturbations elicit target responses. 
In contrast, existing approaches are perturbation response meth-
ods that predict changes in phenotype that occur upon perturba-
tion; thus, they can only indirectly predict perturbagens (Fig. 2a). 
Given a disease–treated sample pair, a response prediction module 
(such as scGen22, ChemCPA23, Biolord33, GEARS34 or CellOT27) is used 
to predict the response of the diseased sample to a library of per-
turbagens. The predicted perturbagen is the one that produces a 
response that is the most similar to the treated sample. We evalu-
ate PDGrapher’s performance in two separate settings (Fig. 2b,c): 
(1) a random splitting setting, where the samples are split randomly 
between training and test sets within a cell line (denoted as random 
for convenience); and (2) a leave-cell-out setting, where PDGrapher 
is trained in one cell line, and its performance is evaluated in a cell 
line the model never encountered during training to test how well 
the model generalizes to a new disease. Supplementary Tables 1 and 2 

show the numbers of unseen perturbagens in chemical perturbation 
datasets in the random and leave-cell-out splits, respectively; Sup-
plementary Tables 3 and 4 show the number of unseen perturbagens 
in genetic perturbation datasets in the random and leave-cell-out  
splits, respectively.

PDGrapher predicts perturbagens to reverse disease states
In the random splitting setting, we assess the ability of PDGrapher 
for combinatorial prediction of therapeutic targets across chemical 
PPI datasets (chemical-PPI-lung-A549, chemical-PPI-breast-MCF7, 
chemical-PPI-breast-MDAMB231, chemical-PPI-breast-BT20, 
chemical-PPI-prostate-PC3, chemical-PPI-prostate-VCAP, chemical- 
PPI-colon-HT29, chemical-PPI-skin-A375 and chemical-PPI-cervix-HELA). 
Specifically, we measure whether, given paired diseased–treated gene 
expression samples, PDGrapher can predict the set of therapeutic 
genes targeted by the chemical compound in the diseased sample 
to generate the treated sample. Given paired diseased–treated gene 
expression samples, PDGrapher ranks genes in the dataset according 
to their likelihood of being therapeutic targets.
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Fig. 2 | Overview of evaluation settings and data splits. a, Given a dataset with 
paired diseased and treated samples and a set of perturbagens, PDGrapher makes 
a direct prediction of candidate perturbagens that shift gene expression from 
a diseased to a treated state for each disease–treated sample pair. The direct 
prediction means that PDGrapher directly infers the perturbation necessary to 
achieve a specific response. In contrast to direct prediction of perturbagens, 
existing methods predict perturbagens only indirectly through a two-stage 
approach. For a given diseased sample, the model learns the response to each 
candidate perturbagen from an existing library and identifies the perturbagen 
whose induced response most closely approximates the desired treated state. 

Existing methods learn the response of cells to a given perturbation22,27,31,32, 
whereas PDGrapher focuses on the inverse problem by learning which 
perturbagen elicits a given response, even in the most challenging cases 
when the combinatorial composition of perturbagen was never seen before. 
b,c, We evaluate PDGrapher’s performance across two settings: given a cell 
line, randomly splitting samples between training and testing set (b), and by 
splitting samples based on cell lines, where the model is trained on one cell line 
and evaluated on a different, previously unseen cell line to assess PDGrapher’s 
generalization performance (c).
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We quantify the ranking quality using normalized discounted 
cumulative gain (nDCG), where the gain reflects the ranking accu-
racy of the model. An nDCG value close to one indicates highly 
accurate predictions, with the top ranked gene targets closely match-
ing the ground-truth targets, whereas lower nDCG values indicate 
poorer ranking performance. This metric provides a normalized 
and scalable measure of ranking quality, enabling consistent com-
parison across different datasets and models. PDGrapher outper-
forms competing methods in all cell lines, achieving nDCG values 

that are higher than the second-best competing method by 0.02 
(chemical-PPI-lung-A549), 0.13 (chemical-PPI-breast-MDAMB231), 0.03 
(chemical-PPI-breast-BT20), 0.004 (chemical-PPI-breast-MCF7), 0.07 
(chemical-PPI-prostate-VCAP), 0.005 (chemical-PPI-prostate-PC3), 
0.03 (chemical-PPI-skin-A375), 0.06 (chemical-PPI-cervix-HELA) and 
0.001 (chemical-PPI-colon-HT29) (Fig. 3b). In addition to evaluating the 
entire predicted target rank, it is even more practically crucial to assess 
the accuracy of the top ranked predicted targets. As perturbagens 
target multiple genes, we measure the fraction of samples in the test 
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Fig. 3 | PDGrapher efficiently predicts chemical perturbagens to shift cells 
from diseased to treated states in held-out folds containing new samples.  
a,b, PDGrapher shows improved performance across nine chemical perturbation 
datasets with various diseases, yielding up to 13.37% more accurately predicted 
samples in the testing sets compared with the second-best model (for example, 
for chemical-PPI-breast-MDAMB231, 20.43% versus 7.05% (a)) and up to 0.13 
higher nDCG than the second-best model (for chemical-PPI-breast-MDAMB231, 
0.31 versus 0.18 (b)). In a and b, the bars show the average performance across 
five cross-validation test splits for each of the nine chemical datasets. The 
overlaid points represent performance values from individual data splits (n = 5 
per cell line). Each data split contains 20% of samples in the dataset, with each 
sample corresponding to a perturbation-response instance. Where replicates 
exist for a given drug, they are treated as independent inputs during training 
and evaluation. c, PDGrapher recovers ground-truth therapeutic targets at 
higher rates (evaluated by recall 1–100) compared with competing methods 

for chemical-PPI datasets. d, Box plots show the distribution of average model 
rankings across 9 cell lines (n = 9); each dot corresponds to the aggregated 
ranking value across cross-validation splits and across all metrics for a distinct 
cell line. A higher value indicates better performance. The central line inside the 
box represents the median, while the top and bottom edges correspond to the 
first and third quartiles. The whiskers extend to the smallest and largest values 
within 1.5× the interquartile range from the quartiles. Each dot represents a data 
point for a specific cell line. P values from the statistical tests are provided in 
the Source data. e, Shown is the difference of shortest-path distances between 
ground-truth therapeutic genes and predicted genes by PDGrapher and a 
random reference across nine cell lines. Predominantly negative values indicate 
that PDGrapher predicts sets of therapeutic genes that are closer in the network 
to ground-truth therapeutic genes compared with what would be expected by 
chance (average shortest-path distances across cell lines for PDGrapher versus 
reference = 2.77 versus 3.11).

http://www.nature.com/natbiomedeng


Nature Biomedical Engineering

Article https://doi.org/10.1038/s41551-025-01481-x

set for which we obtain a partially accurate prediction, where at least 
one of the top N predicted gene targets corresponds to an actual gene 
target (denoted as the percentage of accurately predicted samples). 
Here, N represents the number of known target genes of a perturba-
gen. PDGrapher consistently provides accurate predictions for more 
samples in the test set than competing methods. Specifically, it outper-
forms the second-best competing method by predicting ground-truth 
targets in an additional 7.73% (chemical-PPI-breast-MCF7), 9.32% 
(chemical-PPI-lung-A549), 13.37% (chemical-PPI-breast-MDAMB231), 
4.50% (chemical-PPI-breast-BT20), 7.88% (chemical-PPI-prostate-PC3), 
11.53% (chemical-PPI-prostate-VCAP), 7.56% (chemical-PPI-colon-HT29), 
9.55% (chemical-PPI-skin-A375) and 8.41% (chemical-PPI-cervix-HELA) 
of samples (Fig. 3a). We also evaluate the performance of PDGra-
pher using recall@1, recall@10 and recall@100, which calculate 
the ratio of true target genes included in the top 1, top 10 and top 
100 predicted gene targets, respectively. Although the absolute 
recall values are modest due to the inherent difficulty of the task, 
PDGrapher consistently outperforms all competing methods, show-
ing its relative strength and robustness. Specifically, PDGrapher 
outperforms the second-best method in all the recall metrics with 
the averaged margin being 3.31% (chemical-PPI-lung-MCF7), 3.28% 
(chemical-PPI-lung-A549), 11.65% (chemical-PPI-breast-MDAMB231), 
7.27% (chemical-PPI-breast-BT20), 2.50% (chemical-PPI-prostate-PC3), 
9.53% (chemical-PPI-prostate-VCAP), 3.08% (chemical-PPI-colon-HT29), 
2.87% (chemical-PPI-skin-A375) and 5.13% (chemical-PPI-cervix-HELA) 
(Fig. 3c). We then consolidated the results using the rankings from 
experiments across different cell lines and metrics for each method. 
PDGrapher achieved the best overall rankings, with a median signifi-
cantly higher than all competing methods (Fig. 3d). P values of the 
chemical perturbagen discovery tests are provided in the Source data.

PDGrapher not only provides accurate predictions for a larger pro-
portion of samples and consistently predicts ground-truth therapeutic 
targets close to the top of the ranked list but it also predicts gene targets 
that are closer in the network (measured by the shortest-path distance) 
to ground-truth targets compared with what would be expected by 
chance (Fig. 3e). In all cell lines, the ground-truth therapeutic targets 
predicted by PDGrapher are significantly closer to the ground-truth 
targets compared with what would be expected by chance (Supple-
mentary Table 6). For example, for chemical-PPI-lung-A549, the median 
distance between the predicted and ground-truth therapeutic targets 
is 3.0 for both PDGrapher and the random reference. However, the 
distributions show a statistically significant difference, with a 1-sided 
Mann–Whitney U-test that yields P < 0.001, an effect size (rank-biserial 
correlation) of 0.3531 (95% confidence interval (CI), [0.3515, 0.3549]) 
and a U-statistic of 1.29 × 1011. Similarly, for chemical-PPI-breast-MCF7, 
the median distance is 3.0 for both groups, yet the distributions are 
significantly different (P < 0.001, effect size = 0.2160 (95% CI, [0.2146, 
0.2174]), U-statistic = 3.91 × 1011) (Supplementary Table 6). This finding 
suggests that PDGrapher predicts targets in a manner that reflects 
PPI network structure32. According to the local network hypothesis, 
which posits that genes in closer network proximity tend to be more 
functionally similar, PDGrapher’s predictions are more functionally 
related to ground-truth targets than would be expected by chance35–37.

PDGrapher also shows strong performance across genetic 
datasets, specifically genetic-PPI-lung-A549, genetic-PPI- 
breast-MCF7, genetic-PPI-prostate-PC3, genetic-PPI-skin-A375, 
genetic-PPI-colon-HT29, genetic-PPI-ovary-ES2, genetic-PPI-head- 
BICR6, genetic-PPI-pancreas-YAPC, genetic-PPI-stomach-AGS 
and genetic-PPI-brain-U251MG (Extended Data Fig. 2). Briefly, 
PDGrapher successfully detected ground-truth targets in 0.87% 
(genetic-PPI-lung-A549), 0.50% (genetic-PPI-breast-MCF7), 0.24% 
(genetic-PPI-prostate-PC3), 0.38% (genetic-PPI-skin-A375), 0.36% 
(genetic-PPI-colon-HT29), 1.09% (genetic-PPI-ovary-ES2), 0.54% 
(genetic-PPI-head-BICR6), 0.11% (genetic-PPI-pancreas-YAPC) and 
0.92% (genetic-PPI-brain-U251MG) more samples compared with the 

second-best competing method (Extended Data Fig. 2a). Its ability to 
effectively predict targets at the top of the ranks is further supported 
by the metrics recall@1 and recall@10 (Extended Data Fig. 2c). PDGra-
pher achieves the second-best overall rankings (Extended Data Fig. 2d), 
closely following scGEN, which obtained the highest nDCG values 
(Extended Data Fig. 2b) but showed weaker performance when evalu-
ating only the top-ranked predicted targets (partially accurate predic-
tion and recall@1). P values of the genetic perturbagen discovery tests 
are provided in the Source data. PDGrapher and competing methods 
perform worse on genetic data than on chemical data. This may be due 
to knockout interventions generating weaker phenotypic signals than 
small molecule interventions. While gene knockouts are essential for 
understanding gene function, single-gene knockout studies can offer 
limited insights into complex cellular processes due to compensatory 
mechanisms38–40. Despite the modest performance in genetic inter-
vention datasets, PDGrapher outperforms competing methods in the 
combinatorial prediction of therapeutic targets.

PDGrapher achieves the best performance in response prediction 
for both chemical (Extended Data Fig. 1) and genetic perturbation 
(Extended Data Fig. 2e–g). P values of the response prediction tests 
are provided in the Source data. When using GRNs as proxy causal 
graphs, PDGrapher has comparable performance with GRNs and PPI 
networks across both genetic and chemical intervention datasets 
(Supplementary Figs. 4 and 5). One difference is that GRNs were con-
structed individually for each cell line, which makes leave-cell-out 
splitting setting prediction particularly challenging. Therefore, we 
only conducted random splitting setting experiments for GRN datasets. 
We also used PDGrapher to clarify the mode of action of the chemical 
perturbagens vorinostat and sorafenib in chemical-PPI-lung-A549 
(Supplementary Note 1).

PDGrapher generalizes to cell lines unseen during training
PDGrapher shows consistently strong performance on chemical inter-
vention datasets in the leave-cell-out setting (Fig. 4). In this setting, we use 
the trained models in the random splitting setting for each cell line to pre-
dict therapeutic targets in the remaining cell lines. PDGrapher success-
fully predicts perturbagens that describe the cellular dynamics and shift 
gene expression phenotypes from a diseased to a treated state in 7.16% 
(chemical-PPI-breast-MCF7), 6.50% (chemical-PPI-lung-A549), 5.00% 
(chemical-PPI-breast-MDAMB231), 8.67% (chemical-PPI-prostate-PC3), 
7.72% (chemical-PPI-prostate-VCAP), 7.31% (chemical-PPI-skin-A375), 
7.08% (chemical-PPI-colon-HT29) and 7.13% (chemical-PPI-cervix-HELA) 
additional testing samples compared with the second-best compet-
ing method (Fig. 4a). PDGrapher also outperforms the competing 
methods in 8 of 9 cell lines by predicting nDCG values that are 0.02 
(chemical-PPI-breast-MCF7), 0.01 (chemical-PPI-lung-A549), 0.01 
(chemical-PPI-breast-MDAMB231), 0.03 (chemical-PPI-prostate-PC3), 
0.02 (chemical-PPI-prostate-VCAP), 0.01 (chemical-PPI-skin-A375), 
0.03 (chemical-PPI-colon-HT29) and 0.02 (chemical-PPI-cervix-HELA) 
higher than those of the second-best competing method (Fig. 4b). Its 
strong performance is further supported by the recall metrics, particu-
larly recall@10 (Fig. 4c). Considering the overall performance across 
different cell lines and metrics, PDGrapher achieves the highest rank, 
with a median surpassing competing methods (Fig. 4d). Combinations 
of therapeutic targets predicted by PDGrapher in chemical datasets are 
closer to ground-truth targets than expected by chance (Fig. 4e and 
Supplementary Table 7). For example, for chemical-PPI-lung-A549, 
the median distance between predicted and ground-truth thera-
peutic targets is 3.0 for both PDGrapher and the random reference. 
However, the distributions show a statistically significant difference, 
with a 1-sided Mann–Whitney U-test yielding P < 0.001, an effect size 
(rank-biserial correlation) of 0.2191 (95% CI, [0.2182, 0.2200]) and a 
U-statistic of 2.46 × 1012. Similarly, for chemical-PPI-breast-MCF7, the 
median distance is 3.0 for both groups, yet the distributions are sig-
nificantly different (P < 0.001, effect size = 0.2457 (95% CI, [0.2451, 
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0.2464]), U-statistic = 6.07 × 1012) (Supplementary Table 7). PDGrapher 
also outperforms existing methods in genetic perturbagen prediction 
across cell lines, as measured by the top targets on the predicted gene 
ranks (Supplementary Fig. 2a–d). PDGrapher also shows superior per-
formance in response prediction for both chemical (Supplementary 
Fig. 1) and genetic (Supplementary Fig. 2e–g) datasets. The P values of 
the leave-cell-out perturbagen discovery tests and response prediction 
tests are provided in the Source data.

Approaches that train individual models for each perturbagen 
(such as scGen and CellOT) generally achieve a better perturbagen 
prediction performance than those that use a single model for all 
perturbagens (Biolord, GEARS and ChemCPA). However, training indi-
vidual models becomes infeasible for large-scale datasets with many 
perturbagens. For example, without parallelization, scGen would 
require about 8 years to complete the leave-cell-out experiments on the 
chemical and genetic perturbation data used in this study. PDGrapher 
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Fig. 4 | PDGrapher generalizes to new (previously unseen) cell lines and learns 
optimal chemical perturbagens in held-out folds that contain both new cell 
lines and new samples. a,b, PDGrapher shows improved performance when 
trained on nine chemical perturbation datasets spanning various diseases 
and evaluated on the remaining eight cell lines. It achieves up to 8.67% more 
accurately predicted samples in the testing sets compared with the second-best 
baseline (for example, when trained on chemical-PPI-prostate-PC3, 12.81% versus 
4.13% (a)) and an nDCG value of up to 0.03 higher than the second-best baseline 
(for example, when trained on chemical-PPI-colon-HT29, 0.19 versus 0.16 (b)). 
In a and b, the bars show the average performance across five cross-validation 
test splits for each of the nine chemical datasets. The overlaid points represent 
performance values from individual data splits (n = 5 per cell line). Each data 
split contains 20% samples in the dataset, with each sample corresponding to 
a perturbation-response instance. Where replicates exist for a given drug, they 
are treated as independent inputs during training and evaluation. c, PDGrapher 
recovers ground-truth therapeutic targets at higher rates (evaluated by recall 

1–100) compared with competing methods for chemical-PPI datasets. d, Box 
plots show the distribution of average model rankings across 9 cell lines (n = 9); 
each dot corresponds to the aggregated ranking value across cross-validation 
splits, train cell lines and across all metrics for a distinct cell line. A higher 
value indicates better performance. The central line inside the box represents 
the median, while the top and bottom edges correspond to the first and third 
quartiles. The whiskers extend to the smallest and largest values within 1.5× the 
interquartile range from the quartiles. Each dot represents a data point for a 
specific cell line and metrics. P values from the statistical tests are provided in 
the Source data. e, Shown is the difference of shortest-path distances between 
ground-truth therapeutic genes and predicted genes by PDGrapher and a 
random reference across nine cell lines. Predominantly negative values indicate 
that PDGrapher predicts sets of therapeutic genes that are closer in the network 
to ground-truth therapeutic genes compared with what would be expected by 
chance (average shortest-path distances across cell lines for PDGrapher versus 
random reference = 2.75 versus 3.11).
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addresses this scalability challenge. Its training is up to 25× faster than 
scGen and more than 100× faster than CellOT when using the default 
setting of 100,000 epochs, substantially reducing computational costs. 
This efficiency highlights a key advantage of PDGrapher. This improved 
efficiency is due to PDGrapher’s approach. Existing methods predict 
phenotypic responses to perturbations and identify perturbagens indi-
rectly by searching through predicted responses for all candidates. In 
contrast, PDGrapher directly infers the perturbagen needed to achieve 
a specific response, learning which perturbations elicit a desired effect.

PDGrapher predicts therapeutic targets supported by clinical 
and biological evidence
We examined PDGrapher’s ability to predict targets of anti-cancer drugs 
that were not encountered by the model during training time using 
chemical cell lines with matched healthy data: chemical-PPI-lung-A549, 
chemical-PPI-breast-MCF7, chemical-PPI-breast-MDAMB231, chemical- 
PPI-breast-BT20, chemical-PPI-prostate-PC3 and chemical-PPI- 
prostate-VCAP. PDGrapher was used to predict gene targets to shift 
these diseased cell lines into their healthy states. Figure 5a shows the 
recovery of targets of FDA-approved drugs for varying values of K 
(where K represents the number of predicted target genes considered 
in the predicted ranked list), indicating that PDGrapher can identify 

targets of approved anti-cancer drugs not seen during training among 
the top predictions.

We analysed lung cancer by comparing the targets predicted by 
PDGrapher for lung cancer cell lines with the targets of candidate drugs 
in clinical development, curated from the Open Targets Platform41. 
This evaluation tested PDGrapher’s ability to predict combinatorial 
chemical perturbagens. We compared the top ten targets predicted 
by PDGrapher for the A549 lung cancer cell line to ten randomly 
selected genes. The predicted targets had significantly higher Open 
Targets scores and more supporting resources than the random genes 
(Extended Data Fig. 7). Using an Open Targets evidence cut-off score 
of 0.5, 8 of 10 predicted targets had evidence supporting their associa-
tion with lung cancer, compared with only 2 of 10 in the random gene 
set. Four drugs, tacedinaline (DrugBank:DB12291; clinical trial identi-
fier, NCT00005093), selpercatinib (DrugBank:DB15685), pralsetinib 
(DrugBank:DB15822) and dexmedetomidine (DrugBank:DB00633;  
ref. 42), targeting these predicted genes were not included in the train-
ing set but have been identified as potential treatments for NSCLC.

We then evaluated PDGrapher’s predictions by examining 
FDA-approved drugs that were not present in the training set of PDG-
rapher. Specifically, we assessed PDGrapher’s performance using the 
chemical-PPI-lung-A549 dataset, focusing initially on pralsetinib, a 
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Fig. 5 | PDGrapher shows robust performance across training strategies, 
PPI networks and data availability settings. a, Performance of PDGrapher 
in the prediction of unseen approved drug targets to reverse disease effects 
across all cell lines with healthy counterparts in chemical perturbation datasets. 
Individual data points represent individual cell lines (n = 6). b, Performance 
of sensitivity analyses evaluated by the percentage of accurately predicted 
samples for cell lines MDAMB231 and MCF7 under chemical and genetic 
perturbations, respectively. The PPI network used here is from STRING (string-
db.org) with a confidence score for each edge. The edges are filtered by the 0.1, 
0.2, 0.3, 0.4 and 0.5 quantiles of the confidence scores as cut-offs, resulting 
in 5 PPI networks with 625,818, 582,305, 516,683, 443,051 and 296,451 edges, 
respectively. Data are presented as mean values across five cross-validation 
data splits per PPI confidence quantile. Shaded bands represent ±1 s.d. from 
the mean (n = 5 computational replicates per quantile). Each point corresponds 
to performance on a specific data split. c, Performance metrics of the ablation 
study on PDGrapher’s objective function components: PDGrapher-Cycle trained 
using only the cycle loss, PDGrapher-SuperCycle trained using the supervision 

and cycle loss, and PDGrapher-Super trained using only the supervision loss, 
evaluated by percentage of accurately predicted samples. PDGrapher-Cycle 
shows inferior performance, resulting in limited visibility in the bar plot.  
d, Performance metrics of the second ablation study on PDGrapher’s input data: 
PDGrapher—no disease intervention data using only treatment intervention data, 
and PDGrapher using both disease and treatment intervention data. The disease 
and treatment intervention data are organized as ‘healthy, mutation, disease’ 
and ‘diseased, drug, treated’, respectively. In c and d, bars show the average 
performance across five cross-validation test splits for each of the nine chemical 
datasets. The overlaid points represent performance values from individual 
data splits (n = 5 per cell line). The dashed horizontal lines represent the average 
performance across all cell lines. Each data split contains 20% samples in the 
dataset, with each sample corresponding to a perturbation-response instance. 
Where replicates exist for a given drug, they are treated as independent inputs 
during training and evaluation. P values from the statistical tests are provided in 
the Source data.
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targeted cancer therapy primarily used to treat NSCLC43. Pralsetinib is a 
selective Ret proto-oncogene (RET) kinase inhibitor designed to block 
the activity of RET proteins that have become aberrantly active due 
to mutations or fusions. Pralsetinib is known to target 11 key proteins: 
RET, DDR1, NTRK3, fms-related receptor tyrosine kinase 3 (FLT3), JAK1, 
JAK2, NTRK1, KDR, platelet derived growth factor receptor-β (PDG-
FRB), fibroblast growth factor receptor 1 (FGFR1) and FGFR2 (ref. 44).  
RET, the gene encoding pralsetinib’s primary target, was ranked 11th 
of 10,716 genes in the predicted list. Half of the genes encoding pral-
setinib’s targets (5 of 11) were ranked within the top 100 predicted 
targets by PDGrapher, including KDR (ranked at 3), FLT3 (ranked at 10), 
RET (ranked at 11), PDGFRB (ranked at 14) and FGFR2 (ranked at 81). This 
substantial overlap highlights the potential of the candidate targets 
identified by PDGrapher for pralsetinib-based lung cancer treatment, 
given that pralsetinib was not included in the training set of PDGrapher.

Next, we examined KDR as a therapeutic target for lung cancer. 
KDR, also known as VEGFR2, has been identified as a critical therapeutic 
target in A549 lung adenocarcinoma cells. These cells express KDR at 
both mRNA and protein levels, facilitating autocrine signalling that 
promotes tumour cell survival and proliferation28. Activation of KDR 
enhances tumour angiogenesis and growth by upregulating oncogenic 
factors such as enhancer of zeste homologue 2 (EZH2), which is associ-
ated with increased cell proliferation and migration. Inhibiting KDR has 
showed promising therapeutic effects, including reduced cell prolif-
eration and induced apoptosis. For instance, KDR inhibitors have been 
shown to decrease the malignant potential of lung adenocarcinoma 
cells by downregulating EZH2 expression and increasing sensitivity 
to chemotherapy29. These findings underscore the importance of 
KDR as a therapeutic target in A549 lung adenocarcinoma cells, high-
lighting its role in tumour progression and the potential benefits of 
its inhibition in cancer treatment strategies. Importantly, PDGrapher 
has successfully identified KDR among the top 20 predicted targets 
in chemical-PPI-lung-A549, validating its precision in detecting key 
therapeutic targets for lung cancer.

Given that Open Targets offers more comprehensive evidence for 
targets currently under development, we conducted a second series of 
case studies using Open Targets data to evaluate PDGrapher’s capability 
to identify candidate therapeutic targets and drugs. This analysis aims 
to identify targets for lung cancer. Figure 6a presents a bubble graph 
that illustrates the union of the top 10 predicted targets to transition 
cell states from diseased to healthy in the six cell lines of three types of 
cancer that have available healthy controls. In the plot, the colour inten-
sity and size of the bubbles represent the number of evidence sources 
and the association scores for each type of evidence. Most predicted 
targets are supported by drugs, pathology and systemic biology, and 
somatic mutation databases, which were considered strong evidence 
sources. Two unique targets, DNA topoisomerase II-α (TOP2A) and 
cyclin-dependent kinase 2 (CDK2), are predicted exclusively for the lung 
cancer cell line (Extended Data Fig. 8). TOP2A is ranked as the top pre-
dicted target by PDGrapher. This gene encodes a crucial decatenating 
enzyme that alters DNA topology by binding to two double-stranded 
DNA molecules, introducing a double-strand break, passing the intact 
strand through the break, and repairing the broken strand. This mecha-
nism is vital for DNA replication and repair processes. TOP2A could be 
a potential therapeutic target for anti-metastatic therapy of NSCLC 
because it promotes metastasis of NSCLC by stimulating the canonical 
Wnt signalling pathway and inducing epithelial–mesenchymal transi-
tion45. Using the predicted target of TOP2A, PDGrapher then identified 
three drugs, aldoxorubicin, vosaroxin and doxorubicin hydrochloride, 
as candidate drugs. These drugs were not part of the training data-
set of PDGrapher and are in the early stages of clinical development: 
aldoxorubicin and vosaroxin are in phase II trials (ClinicalTrials.gov), 
and doxorubicin hydrochloride is in phase I trials but has been shown 
to improve survival in patients with metastatic or surgically unresect-
able uterine or soft tissue leiomyosarcoma46.

Given that PDGrapher can rank all genes based on PPI network or 
GRN data, we assessed two questions: whether top-ranked genes have 
stronger evidence from Open Targets compared with lower-ranked 
genes, and what rank threshold should be used to identify reliably 
predicted genes. Figure 6b shows the number of sources of evidence 
and the global scores for the predicted target genes within the rank 
ranges of 1–10, 11–20, 51–60, 101–110 and 1,001–1,010 for lung cancer 
(chemical-PPI-lung-A549). The analysis revealed a clear trend: both the 
number of supporting evidence sources and global scores decrease 
with increasing rank, validating the predictive accuracy of PDGrapher. 
Most targets ranked within the top 100 have strong evidence from Open 
Targets, indicating that a rank threshold of 100 could serve as a cut-off 
for selecting candidate targets.

Training PDGrapher models
We conducted an ablation study to evaluate the components of 
PDGrapher’s objective function using chemical datasets. We trained 
PDGrapher under three configurations: with only the cycle loss 
(PDGrapher-Cycle), only the supervision loss (PDGrapher-Super) 
and with both losses combined (PDGrapher-SuperCycle). The experi-
ments were performed in the random splitting setting across all nine 
PPI chemical datasets. We assessed performance using several metrics, 
including the percentage of accurately predicted samples (Fig. 5c), 
nDCG (Supplementary Fig. 8a), recall values (Supplementary Fig. 8b) 
and strength of evidence (Extended Data Fig. 9). The results showed 
that PDGrapher-Super achieves the highest performance in predicting 
correct perturbagens but performs the worst in reconstructing treated 
samples. In contrast, PDGrapher-Cycle performs poorly in identifying 
correct perturbagens but shows improved performance in predicting 
(reconstructing) held-out treated samples. PDGrapher-SuperCycle (the 
configuration used throughout this study) strikes a balance between 
these two objectives, achieving competitive performance in predicting 
therapeutic genes while showing the best performance in reconstruct-
ing treated samples from diseased samples after intervening on the 
predicted genes. This makes PDGrapher-SuperCycle the most effective 
choice for balancing accuracy in perturbagen prediction with recon-
struction fidelity. The findings show that supervision loss is essential 
for PDGrapher’s overall performance. The PDGrapher-Cycle model 
consistently underperforms in all cell lines and metrics. Although 
PDGrapher-Super often excels in ranking performance, including 
cycle loss (in PDGrapher-SuperCycle) proves its value by moderately 
improving top prediction metrics such as recall@1 and recall@10. 
In addition, when healthy cell line data are available, the top predic-
tions of PDGrapher-SuperCycle show stronger evidence compared 
with those of PDGrapher-Super in more than half (four of six) of the 
cell lines (Extended Data Fig. 9). We chose PDGrapher-SuperCycle for 
this work because it provides accurate target gene predictions from 
the top-ranked genes in the predicted list and bases its predictions on 
the changes they would induce in diseased samples.

Recognizing the role of biological pathways in disease pheno-
types, PDGrapher-SuperCycle can identify alternative gene targets 
with close network proximity that may produce similar phenotypic 
outcomes. The organization of genes with similar functions, where 
each gene contributes to specific biochemical processes or signalling 
cascades, allows perturbations in different genes to yield analogous 
effects47. This function-based interconnectivity implies that target-
ing different genes with similar functions can achieve therapeutic 
outcomes, as these genes collectively influence cellular phenotypic 
states48. Although PDGrapher-SuperCycle shows slightly lower per-
formance than PDGrapher-Super in pinpointing targets (Fig. 5c), it 
excels in identifying sets of gene targets capable of transitioning cell 
states from diseased to treated conditions (Supplementary Fig. 8b and 
Extended Data Fig. 9).

We conducted four analyses to test the sensitivity of PDGrapher to 
the causal graph. The first analysis uses five PPI networks constructed 
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with varying edge confidence cut-offs. The PPI network was obtained 
from STRING (https://string-db.org/)49, which assigns a confidence 
score to each edge. To create networks with different levels of confi-
dence, we filtered edges based on the quantiles 0.1, 0.2, 0.3, 0.4 and 
0.5 of the confidence scores, resulting in 5 networks with decreas-
ing numbers of edges. For this analysis, we selected two cell lines: 
chemical-PPI-breast-MDAMB231 and genetic-PPI-breast-MCF7. The 
LINCS perturbation data for each cell line were processed using the 
five PPI networks (Supplementary Note 3). We trained PDGrapher 

with one, two and three GNN layers, selecting the best configuration 
based on the performance of the validation set. As shown in Fig. 5b 
and Extended Data Fig. 3, PDGrapher performs robustly at all levels of 
confidence in PPI networks. It maintains stable performance on both 
chemical and genetic intervention datasets, even as an increasing num-
ber of edges is removed from the PPI networks. The second to fourth 
analyses are based on the synthetic graphs. We created two sparse PPI 
networks using different edge removal strategies and one synthetic 
gene expression dataset with increasing levels of latent confounders. 
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Fig. 6 | PDGrapher’s prioritization of lung cancer targets is supported by Open 
Targets evidence. a, Union of the top 10 targets predicted by PDGrapher in lung, 
breast and prostate cancer. The colour intensity and size of the bubbles represent 
the number of evidence sources and the association scores for each type of 
evidence, respectively. Red, blue and green dots represent breast, lung and 

prostate cancer, respectively. The details of the scoring system are provided in 
Supplementary Note 2. b, Predicted target rank from PDGrapher in 5 ranges, 1–10, 
11–20, 51–60, 101–110, and 1,001–1,010 for lung cancer (chemical-PPI-lung-A549). 
The colour intensity and size of the bubbles represent the number of evidence 
sources and the global scores of targets from Open Targets, respectively.
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We applied two edge removal strategies to the PPI network: removing 
increasing numbers of either bridge edges or random edges. Details 
of the data generation process are provided in the Methods. Results 
from the edge removal experiments indicate that although bridge 
edges are structurally critical, their limited number in the PPI graph 
reduces their overall impact on model predictions (Extended Data 
Fig. 5). In contrast, the removal of random edges, which include both 
high-confidence and redundant connections, has a more pronounced 
effect on performance, highlighting the model’s sensitivity to network 
perturbations (Extended Data Fig. 6). The fourth dataset introduces 
latent confounders in the gene expression data. PDGrapher showed sta-
ble performance in perturbagen prediction, with only a slight decrease 
in performance as stronger confounders were introduced (Extended 
Data Fig. 4).

We then evaluated whether PDGrapher can maintain robust per-
formance in the absence of disease intervention data. In our training 
datasets, some cell lines lacked associated healthy control samples 
from disease-relevant tissues and cell types. These cell lines contained 
only treatment intervention data (diseased cell state, perturbagen and 
treated cell state) without disease intervention data (healthy cell state, 
disease mutations or diseased cell state) for model training and infer-
ence. For cell lines with healthy controls, we trained the response pre-
diction module using both intervention datasets. For cell lines without 
healthy controls, we trained PDGrapher using only treatment interven-
tion data. To evaluate PDGrapher’s dependency on healthy control data, 
we trained the model on cell lines with available disease intervention 
data under two conditions: one using the disease intervention data for 
training and one excluding it. This evaluation was conducted on six 
chemical perturbation datasets (chemical-PPI-lung-A549, chemical- 
PPI-breast-MCF7, chemical-PPI-breast-MDAMB231, chemical-PPI- 
breast-BT20, chemical-PPI-prostate-PC3 and chemical-PPI- 
prostate-VCAP) and three genetic perturbation datasets (genetic- 
PPI-lung-A549, genetic-PPI-breast-MCF7 and genetic-PPI-prostate-PC3). 
The results indicated that the two versions of PDGrapher perform con-
sistently across cell types and data types (chemical and genetic; Fig. 5d 
and Supplementary Figs. 6 and 7). In half of the cell lines (four of nine), 
the model trained without disease intervention data outperformed the 
model trained with it. This shows that PDGrapher has a weak depend-
ency on healthy control data and can perform well even when such 
data are unavailable.

Discussion
We formulate phenotype-driven lead discovery as a combinatorial pre-
diction problem for therapeutic targets. Given a diseased sample, the 
goal is to identify genes that a genetic or chemical perturbagen should 
target to reverse disease effects and shift the sample towards a treated 
state that matches the distribution of a healthy state. This requires 
predicting a combination of gene targets, framing the task as combi-
natorial prediction. To address this, we introduce PDGrapher. Using 
a diseased cell state represented by a gene expression signature and 
a proxy causal graph of gene–gene interactions, PDGrapher predicts 
candidate target genes to transition cells to the desired treated state. 
PDGrapher includes two modules: a perturbagen discovery module 
that proposes a set of therapeutic targets based on the diseased and 
treated states, and a response prediction module that evaluates the 
effect of applying the predicted perturbagen to the diseased state. Both 
modules are GNN models that operate on gene–gene networks, which 
serve as approximations of noisy causal graphs. We use PPI networks 
and GRNs as two representations of these noisy causal graphs. PDGra-
pher predicts perturbagens that shift gene expression from diseased to 
treated states across 2 evaluation settings (random and leave-cell-out) 
and 19 datasets involving genetic and chemical interventions. Unlike 
alternative response prediction methods, which rely on indirect pre-
diction to identify perturbagens, PDGrapher selects candidate gene 
targets to achieve the desired transformation36,37,50–52.

PDGrapher has the potential to improve therapeutic lead design 
and expand the search space for perturbagens. It leverages large data-
sets of genetic and chemical interventions to identify sets of candidate 
targets that can shift cell line gene expression from diseased to treated 
states. By selecting sets of therapeutic targets for intervention instead 
of a single perturbagen, PDGrapher enhances phenotype-driven lead 
discovery. PDGrapher’s approach to identifying therapeutic targets 
can enable personalized therapies by tailoring treatments to indi-
vidual gene expression profiles. Its ability to output multiple genes is 
particularly relevant for diseases where dependencies among several 
genes affect treatment efficacy and safety.

PDGrapher operates under the assumption that there are no 
unobserved confounders, a stringent condition that is challenging 
to validate empirically. Future work could focus on re-evaluating and 
relaxing this assumption. Another limitation lies in the reliance on 
PPI networks and GRNs as proxies for causal gene networks, as these 
networks are inherently noisy and incomplete53–55. PDGrapher posits 
that representation learning can overcome incomplete causal graph 
approximations. A valuable research direction is to theoretically exam-
ine the impact of such approximations, focusing on how they influence 
the accuracy and reliability of predicted likelihoods. Such analyses 
could uncover high-level causal variables with therapeutic effects from 
low-level observations and contribute to reconciling structural causal-
ity and representation learning approaches, which generally lack any 
causal understanding56. We performed two experiments to evaluate the 
robustness of PDGrapher. First, we tested PDGrapher on a PPI network 
with weighted edges, progressively removing low-confidence edges to 
assess its performance under increasing network sparsity. Second, we 
applied PDGrapher to synthetic datasets with varying levels of missing 
graph components and confounding factors in gene expression data. 
In both experiments, PDGrapher maintained stable performance. 
PDGrapher also showed robust performance across PPI networks with 
different numbers of edges.

Phenotype-driven drug discovery using PDGrapher faces certain 
limitations, one of which is its reliance on transcriptomic data. Although 
transcriptomics is broadly applicable, including other data modalities, 
such as cell morphology screens, could produce more comprehensive 
models. Cell morphology screens, including cell painting, capture cel-
lular responses by staining organelles and cytoskeletal components, 
generating image profiles that capture the effects of genetic or chemi-
cal perturbations57,58. These screens allow identification of phenotypic 
signatures that correlate with compound activity, mechanisms of 
action and potential off-target effects. The recent release of the JUMP 
Cell Painting dataset59 exemplifies how high-content morphological 
profiling can complement databases such as CMap and LINCS, creating 
integrated datasets for phenotype-driven discovery. By integrating 
multimodal data, including phenotypic layers from transcriptomic 
and image data, it becomes possible to uncover more comprehensive 
patterns of compound effects60. Such integration would broaden the 
scope of PDGrapher, allowing it to capture wider mechanistic insights 
and support more effective therapeutic discovery61,62.

A limitation of our study is the use of NL20 as a control cell line 
for A549 (refs. 63–65). Although NL20 is a normal human bronchial 
epithelial cell line and A549 is a human lung carcinoma cell line derived 
from the alveolar region, the two cell lines differ in anatomical origin 
and molecular characteristics. This mismatch could introduce biases 
in comparative analyses due to variations in baseline gene expression 
profiles and cellular behaviours. To mitigate this concern, we evaluate 
PDGrapher’s performance across datasets with and without healthy 
control data. PDGrapher performs consistently regardless of the inclu-
sion of healthy controls, indicating that its predictions are robust to 
the absence of matched control cells. Ablation analyses showed that 
incorporating cycle loss improved PDGrapher’s performance in top 
target predictions for five of nine cell lines. On the basis of this improve-
ment, we included the cycle loss in all experiments. Cycle loss helps 
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maintain the robustness and biological relevance of model predic-
tions. PDGrapher learns to predict drug targets that shift cells from 
a diseased state to a healthy or treated state. It then uses the diseased 
gene expression profile and the predicted targets to estimate the gene 
expression after treatment. This bidirectional approach enforces the 
fidelity of predicted targets as they must contain sufficient information 
to reconstruct state B from state A. Cycle loss also serves as a regular-
izer that penalizes discrepancies between the original input and its 
reconstruction66.

PDGrapher is a GNN approach for combinatorial prediction of per-
turbations that transition diseased cells to treated states. By leveraging 
causal reasoning and representation learning on gene networks, PDGra-
pher identifies perturbagens necessary to achieve specific phenotypic 
changes. This approach enables the direct prediction of therapeutic 
targets that can reverse disease phenotypes, bypassing the need for 
exhaustive response simulations across large perturbation libraries. 
Its design and evaluation lay the groundwork for future advances in 
phenotype-based modeling of therapeutic perturbations by improv-
ing the precision and scalability of perturbation prediction methods.

Methods
Preliminaries
A calligraphic letter 𝒳𝒳  indicates a set, an italic uppercase letter X 
denotes a graph, uppercase X denotes a matrix, lowercase x denotes 
a vector, and a monospaced letter X indicates a tuple. Uppercase letter 
X indicates a random variable, and lowercase letter x indicates its cor-
responding value; bold uppercase X denotes a set of random variables, 
and lowercase letter x indicates its corresponding values. We denote 
P(X) as a probability distribution over a set of random variables X and 
P(X = x) as the probability of X that is equal to the value of x under the 
distribution P(X). For simplicity, P(X = x) is abbreviated as P(x). This 
section uses terminology and concepts from the framework of casual 
inference67.

Problem formulation for combinatorial prediction of targets
Intuitively, given a diseased cell line sample, we would like to predict 
the set of therapeutic genes that need to be targeted to reverse the 
effects of disease, that is, the genes that need to be perturbed to shift 
the cell gene expression state as close as possible to the healthy state. 
Next, we formalize our problem formulation. Let M =< E𝒱V𝒱 ℱ𝒱P(E) > be 
a structural causal model (SCM; see the description of related works 
in Supplementary Note 4) associated with causal graph G, where E is a 
set of exogenous variables affecting the system, V are the system vari-
ables, ℱ  are structural equations encoding causal relations between 
variables and P(E) is a probability distribution over exogenous varia-
bles. Let 𝒯𝒯 = 𝒯T1𝒱… 𝒱 Tm}  be a dataset of paired healthy and diseased 
samples (namely, disease intervention data), where each element is a 
triplet T =< vh𝒱U𝒱 vd > with vh ∈ [0𝒱 1]N being normalized gene expression 
values of a healthy cell line (variable states before perturbation), VU 
being the disease-causing perturbed variable (gene) set in V, and 
vd ∈ [0𝒱 1]N being gene expression values of a diseased cell line (variable 
states after perturbation). Our goal is to find, for each sample 
T =< vh𝒱U𝒱 vd >, the variable set U′ with the highest likelihood of shifting 
variable states from diseased vd to healthy vh state. To increase general-
ity, we refer to the desired variable states as treated (vt). Our goal can 
then be expressed as:

argmaxU′P GU (V = vt |do(U′))𝒱 (1)

where P GU  represents the probability on the graph G mutilated by 
perturbations in variables in U. Under the assumption of no unobserved 
confounders, the above interventional probability can be expressed 
as a conditional probability on the mutilated graph GU′

:

argmaxU′P GU′ (V = vt |U′)𝒱 (2)

which under the causal Markov condition is:

argmaxU′ ∏
i
P (Vi = vti |PaVi ) 𝒱 (3)

where PaVi represents parents of variable Vi according to graph GU′
 (that 

is, the mutilated graph upon intervening on variables in U′). Here state 
of a variable Vj ∈ PaVi  will be equal to an arbitrary value v′j  if Vj ∈ U′. 
Therefore, intervening on the variable set U′ modifies the graph used 
to obtain conditional probabilities and determine the state of  
variables in U′.

Problem formulation from a representation learning 
perspective
In the previous section, we drew on the SCM framework to introduce a 
generic formulation for the task of combinatorial prediction of thera-
peutic targets. Instead of approaching the problem from a purely 
causal inference perspective, we draw upon representation learning to 
approximate the queries of interest to address the limiting real-world 
setting of a noisy and incomplete causal graph. Formulating our prob-
lem using the SCM framework allows for explicit modelling of interven-
tions and formulation of interventional queries (see the description of 
related works in Supplementary Note 4). Inspired by this principled 
problem formulation, we next introduce the problem formulation 
using a representation learning paradigm.

We let G = (𝒱𝒱𝒱 𝒱) denote a graph with |𝒱𝒱𝒱 = n nodes and |𝒱| edges, 
which contains partial information on causal relationships between 
nodes in 𝒱𝒱  and some noisy relationships. We refer to this graph as a 
proxy causal graph. Let 𝒯𝒯 = 𝒯T1𝒱… 𝒱 TM} be a dataset with an individual 
sample being a triplet T =< xh𝒱 𝒰𝒰𝒰xd > with xh ∈ [0, 1]n being the node 
states (attributes) of a healthy cell sample (before perturbation), 𝒰𝒰 
being the set of disease-causing perturbed nodes in 𝒱𝒱, and xd ∈ [0, 1]n 
being the node states (attributes) of a diseased cell sample (after per-
turbation). We denote by G𝒰𝒰 = (𝒱𝒱𝒱 𝒱𝒰𝒰)  the graph resulting from the 
mutilation of edges in G as a result of perturbing nodes in 𝒰𝒰 (one graph 
per perturbagen; we avoid using superindices for simplicity). Here 
again we refer to the desired variable states as treated (xt). Our goal is 
then to learn a function:

f ∶ G𝒰𝒰′ 𝒱 xd𝒱xt → argmax𝒰𝒰′P G𝒰𝒰′
(x = xt|xd𝒱 𝒰𝒰′). (4)

That, given the graph G𝒰𝒰′, the diseased node states xd and treated node 
states xt, predicts the combinatorial set of nodes 𝒰𝒰′ that if perturbed 
have the highest chance of shifting the node states to the treated state 
xt. We note here that PG𝒰𝒰′

 represents probabilities over graph G𝒰𝒰 muti-
lated upon perturbations in nodes in 𝒰𝒰′. Under causal Markov condi-
tion, we can factorize PG𝒰𝒰′

 over graph G𝒰𝒰′:

f ∶ G𝒰𝒰′ 𝒱 xd𝒱xt → argmax𝒰𝒰′ ∏
i
P(xi = xt

i |x𝒫𝒫𝒫𝒫i )𝒱 (5)

that is, the probability of each node i depending only on its parents 𝒫𝒫𝒫𝒫i 
in graph G𝒰𝒰′.

We assume (1) real-valued node states, (2) G is fixed and given, and 
(3) atomic and non-atomic perturbagens (intervening on individual 
nodes or sets of nodes). Given that the value of each node should depend 
only on its parents in the graph G𝒰𝒰′, a message-passing framework 
appears especially suited to compute the factorized probabilities P.

In the SCM framework, the conditional probabilities in equation 
(3) are computed recursively on the graph, each being an expectation 
over exogenous variables E. Therefore, node states of the previous time 
point are not necessary. To translate this query into the representation 
learning realm, we discard the existence of noise variables and directly 
try to learn a function encoding the transition from an initial state to a 
desired state. An exhaustive approach to solving equation (5)  
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would be to search the space of all potential sets of therapeutic targets 
𝒰𝒰′ and score how effective each is in achieving the desired treated state. 
This is, how many cell response prediction approaches can be used for 
perturbagen discovery22,23,68. However, with moderately sized graphs, 
this is highly computationally expensive, if not intractable. Instead, 
we propose to search for potential perturbagens efficiently with a 
perturbagen discovery module (ƒp) and a way to score each potential 
perturbagen with a response prediction module (ƒr).

Relationship to conventional graph prediction tasks
Given that the prediction for each variable is dependent only on its 
parents in a graph, GNNs appear especially suited for this problem. We 
can formulate the query of interest under a graph representation learn-
ing paradigm as follows: given a graph G = (𝒱𝒱𝒱 𝒱) , paired sets of  
node attributes 𝒳𝒳 = 𝒯X1𝒱X2𝒱… 𝒱Xm}  and node labels 𝒴𝒴 = 𝒯Y1𝒱Y2𝒱… 𝒱Ym},  
where each Y = {y1, …, yn}, with yi ∈ [0, 1], we aim at training a neural 
message-passing architecture that given node attributes Xi predicts 
the corresponding node labels Yi. There are, however, differences 
between our problem formulation and the conventional graph predic-
tion tasks, namely, graph and node classification (summarized in Sup-
plementary Table 13).

In node classification, a single graph G is paired with node attrib-
utes X, and the task is to predict the node labels Y. Our formulation 
differs in that we have m paired sets of node attributes 𝒳𝒳 and labels 𝒴𝒴 
instead of a single set, yet they are similar in that there is a single graph 
in which GNNs operate. In graph classification, a set of graphs 
𝒢𝒢 = 𝒯G1𝒱… 𝒱Gm} is paired with a set of node attributes 𝒳𝒳 = 𝒯X1𝒱X2𝒱… 𝒱Xm} 
and the task is to predict a label for each graph Y = {y1, …, ym}. Here 
graphs have a varying structure, and both the topological information 
and node attributes predict graph labels. In our formulation, a single 
graph is combined with each node attribute Xi, and the goal is to predict 
a label for each node, not for the whole graph.

PDGrapher model
PDGrapher is an approach for combinatorial prediction of therapeutic 
targets composed of two modules. First, a perturbagen discovery 
module ƒp searches the space of potential gene sets to predict a suitable 
candidate 𝒰𝒰′. Next, a response prediction module ƒr checks the good-
ness of the predicted set 𝒰𝒰′, that is, how effective intervening on vari-
ables in 𝒰𝒰′ is to shift node states to the desired treated state xt.

(1) xd𝒱xt fp→ ̂𝒰𝒰′

(2) xd𝒱 ̂𝒰𝒰′ fr→ ̂xt.

Model optimization
We optimize our response prediction module ƒr using cross-entropy 
(CE) loss on known triplets of disease intervention < xh𝒱 𝒰𝒰𝒰xd > and 
treatment intervention < xd𝒱 𝒰𝒰′𝒱xt >:

ℒfr = CE (xd𝒱 fr(xh𝒱 𝒰𝒰)) + CE (xt𝒱 fr(xd𝒱 𝒰𝒰′)) . (6)

We optimize our intervention discovery module ƒp using a cycle loss, 
ensuring that the response to the predicted intervention set 𝒰𝒰′ closely 
matches the desired treated state (the first part of equation (7)). In 
addition, we provide a supervisory signal for predicting 𝒰𝒰′ in the form 
of cross-entropy loss (the second part of equation (7)). So, the total loss 
is defined as:

ℒfp = CE (xt𝒱 fr(xd𝒱 fp(xd𝒱 xt))) + CE (𝒰𝒰′𝒱 fp(xd𝒱 xt)) (with fr frozen). (7)

We train ƒp and ƒr in parallel and implement early stopping separately 
(see ‘Experimental set-up’ for more details). Trained module ƒp is then 

used to predict, for each diseased cell sample, which nodes should be 
perturbed (𝒰𝒰′) to achieve a desired treated state (Fig. 1a).

Response prediction module
Our response prediction module ƒr should learn to map pre-perturbagen 
node values to post-perturbagen node values through learning rela-
tionships between connected nodes (equivalent to learning struc-
tural equations in SCMs) and propagating the effects of perturbations 
downstream in the graph (analogous to the recursive nature of query 
computations in SCMs).

Given a disease intervention triplet < xh𝒱 𝒰𝒰𝒰xd > , we propose a 
neural model operating on a mutilated graph, G𝒰𝒰, where the node 
attributes are the concatenation of xh and x′𝒰𝒰, predicting diseased node 
values xd. The first element is its gene expression value xh

i  and the 
second is a perturbation flag, a binary label indicating whether a per-
turbation occurs at node i. So, each node i has a two-dimensional attrib-
ute vector di = [xh

i ||x
′
𝒰𝒰] . In practice, we embed each node feature  

into a high-dimensional continuous space by assigning learnable 
embeddings to each node based on the value of each input feature 
dimension. Specifically, for each node, we use the binary perturbation 
flag to assign a d-dimensional learnable embedding, which is different 
between nodes but shared across samples for each node. To embed 
the gene expression value xh

i ∈ [0𝒱 1], we first calculate thresholds using 
quantiles to assign the gene expression value into one of the B bins. We 
use the bin index to assign a d-dimensional learnable embedding, which 
is different between nodes but shared across samples for each node. 
To increase our model’s representation power, we concatenate a 
d-dimensional positional embedding (a d-dimensional vector initial-
ized randomly following a normal distribution). Concatenating these 
three embeddings results in an input node representation of dimen-
sionality 3d. For each node i ∈ 𝒱𝒱, an embedding zi is computed using a 
GNN operating on the node’s neighbours’ attributes. The most general 
formulation of a GNN layer is:

h′i = ϕ(hi𝒱⨁
j∈𝒩𝒩 i

ψ(hi𝒱hj)) 𝒱 (8)

where h′i represents the updated information of node i, and hi repre-
sents the information of node i in the previous layer, with embedded 
di being the input to the first layer. ψ is a message function, ⨁ a 
permutation-invariant aggregate function, and ϕ is an update function. 
We obtain an embedding zi for node i by stacking K GNN layers. The 
node embedding zi ∈ ℝ  is then passed to a multilayer feedforward 
neural network to obtain an estimate of the values of the 
post-perturbation nodes xd.

Perturbation discovery module
Our perturbagen prediction module ƒp should learn the nodes in the 
graph that should be perturbed to shift the node states (attributes) 
from diseased xd to the desired treated state xt. Given a triplet 
< xd𝒱 𝒰𝒰′𝒱xt >, we propose a neural model operating on graph G𝒰𝒰′ with 
node features xd and xt that predicts a ranking for each node, where 
the top P ranked nodes should be predicted as the nodes in 𝒰𝒰′. Each 
node i has a two-dimensional attribute vector: di = [xd

i ||x
t
i ]. In practice, 

we represent these binary features in a continuous space using the 
same approach as described for our response prediction module ƒr.

For each node i ∈ 𝒱𝒱, an embedding zi is computed using a GNN 
operating on the node’s neighbours’ attributes. We obtain an embed-
ding zi for node i by stacking K GNN layers. The node embedding zi ∈ ℝ 
is then passed to a multilayer feedforward neural network to predict a 
real-valued number for node i.

Model implementation and training
We implement PDGrapher using PyTorch 1.10.1 (ref. 69) and the Torch 
Geometric 2.0.4 Library70. The implemented architecture yields a 
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neural network with the following hyperparameters: number of GNN 
layers and number of prediction layers. We set the number of predic-
tion layers to two and performed a grid search over the number of 
GNN layers (one to three layers). We train our model using a 5-fold 
cross-validation strategy and report PDGrapher’s performance result-
ing from the best-performing hyperparameter setting.

Further details on statistical analysis
We next outline the evaluation set-up, baseline models and statistical 
tests used to evaluate PDGrapher. We evaluate the performance of 
PDGrapher against the following existing methods:

•	 Random reference: Given a sample T =< xd𝒱 𝒰𝒰′𝒱xt >, the random 
reference baseline returns N random genes as the prediction of 
target genes in 𝒰𝒰′, where N is the number of genes in 𝒰𝒰′.

•	 Cancer genes: Given a sample T =< xd𝒱 𝒰𝒰′𝒱xt >, the cancer genes 
baseline returns the top N genes from an ordered list where the 
first M genes are disease associated (cancer-driver genes). The 
remaining genes are ranked randomly, and N is the number of 
genes in 𝒰𝒰′. The processing of cancer genes is described in 
‘Disease-genes information’ in Supplementary Note 3.

•	 Cancer drug targets: Given a sample T =< xd𝒱 𝒰𝒰′𝒱xt >, the cancer 
targets baseline returns the top N genes from an ordered list 
where the first M genes are cancer drug targets and the remain-
ing genes are ranked randomly, and N is the number of genes in 
𝒰𝒰′. The processing of drug target information is described in 
‘Drug-targets information’ and ‘Cancer drug and target informa-
tion’ in Supplementary Note 3.

•	 Perturbed genes: Given a sample T =< xd𝒱 𝒰𝒰′𝒱xt >, the perturbed 
genes baseline returns the top N genes from an ordered list 
where the first M genes are all perturbed genes in the training set 
and the remaining genes are ranked randomly, and N is the 
number of genes in 𝒰𝒰′.

•	 scGen22: scGen is a widely used gold-standard latent variable 
model for response prediction71–74. Given a set of observed cell 
types in control and perturbed states, scGen predicts the 
response of a new cell type to the perturbagen seen in training. 
To use scGen as a baseline, we first fit it to our LINCS gene 
expression data for each dataset type to predict response to 
perturbagens, training one model per perturbagen (chemical or 
genetic). Then, given a sample of paired diseased-treated cell 
line states, T =< xd𝒱 𝒰𝒰′𝒱xt >, we compute the response of the cell 
line with gene expression xd′ to all perturbagens. The predicted 
perturbagen is that whose predicted response is closest to xt in 
R2 score, which quantifies the proportion of variance in treated 
state explained by the prediction. As scGen trains one model per 
perturbagen, it needs an exhaustively long training time for 
datasets with a large number of perturbagens, especially in the 
leave-cell-out setting. Therefore, we set the maximum training 
epochs to 100 and only conducted leave-cell-out tests for one 
split of data for scGen.

•	 Biolord33: Biolord can predict perturbagen response for both 
chemical and genetic datasets. We followed the official tutorial 
from the Biolord GitHub repository (https://github.com/
nitzanlab/biolord), using the recommended parameters. To 
prevent memory and quota errors, we implemented two filtering 
steps: (1) instead of storing the entire response gene expression 
(rGEX) matrix of all input (control) cells for each perturbagen, 
we only store a vector of the averaged rGEX of the input cells per 
perturbagen, which is necessary for calculating R2 for evalua-
tion; and (2) during prediction, if the number of control cells 
exceeds 10,000, we randomly downsample the control cells to 
10,000. Similar to scGen, we predict the responses gene 
expression xd′ for all perturbagens and use them to calculate R2 
to get the rank of predicted perturbagens.

•	 ChemCPA23: ChemCPA is specifically designed for chemical 
perturbation. We followed the official tutorials on GitHub for 
running this model (https://github.com/theislab/chemCPA), 
with all parameters set following the authors’ recommenda-
tions. Data processing was also conducted using the provided 
scripts. We constructed drug embedding using RDKit with 
canonical SMILES sequences, as this is the default setting in the 
model and the tutorial. As the original ChemCPA model lacks 
functionality to obtain the predicted rGEX for each drug 
(averaging over the dosages), we developed a custom script to 
perform this task. These predictions, xd′, were subsequently 
used for calculating R2 to get the rank of predicted 
perturbagens.

•	 GEARS34: GEARS is capable of predicting perturbagen responses 
for genetic perturbation datasets, specifically for predicting the 
rGEX to unseen perturbagens. However, it is limited to predict-
ing only those genes that are present in the gene network used 
as prior knowledge for model training. In addition, GEARS can-
not process perturbagens with only one sample, so we filtered 
the data accordingly. We followed the official tutorial from the 
GEARS GitHub repository (https://github.com/snap-stanford/
GEARS), using the recommended parameters. After confirming 
with the authors, we established that GEARS is suitable only for 
within-cell-line prediction. Consequently, our experiments with 
GEARS were conducted exclusively within this scenario.

•	 CellOT27: CellOT is capable of working with both chemical and 
genetic datasets. We ran this model by following the official 
tutorial from GitHub (https://github.com/bunnech/cellot), 
ensuring that all parameters were set according to the provided 
guidelines. Due to CellOT’s limitation in processing perturba-
gens with small sample sizes, we filtered the data to retain only 
those perturbagens with more than five samples or cells. We 
then used the predicted rGEX xd′ to calculate R2 and the 
predicted perturbagen ranks. Similar to scGen, CellOT trains 
one model per perturbagen, which results in an exhaustively 
long training time for datasets with a large number of perturba-
gens. This issue becomes even more pronounced when doing 
leave-cell-out evaluations. Therefore, for this method, we set the 
maximum training epochs to 100 and only conduct one split in 
leave-cell-out tests.

Dataset splits and evaluation settings
We evaluate PDGrapher and competing methods on two different 
settings.

Systematic random dataset splits. For each cell line, the dataset is 
split randomly into train and test sets to measure our model perfor-
mance in an independent and identically distributed setting.

Leave-cell-out dataset splits. To measure model performance on 
unseen cell lines, we train our model with random splits on one cell 
line and test on a new cell line. Specifically, for chemical perturbation 
data, we train a model for each random split per cell line and test it on 
the entire dataset of the remaining eight cell lines. For genetic data, we 
train a model for each random split per cell line and test it on the entire 
dataset of the remaining nine cell lines. For example, with nine cell lines 
with chemical perturbation (A549, MDAMB231, BT20, VCAP, MCF7, 
PC3, A375, HT29 and HELA), we conducted an experiment where each 
split of cell line A549 was used as the training set, and the trained model 
was tested on the remaining eight cell lines (MDAMB231, BT20, VCAP, 
MCF7, PC3, A375, HT29 and HELA). Similarly, for cell line MDAMB231, we 
trained the model on each split of it and tested the model on the other 
eight cell lines (A549, BT20, VCAP, MCF7, PC3, A375, HT29 and HELA). 
This process was repeated for all cell lines, providing a comprehensive 
evaluation of PDGrapher and all competing methods.
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Evaluation set-up
For all dataset split settings, our model is trained using 5-fold 
cross-validation, and metrics are reported as the average on the test 
set. Within each fold, we further split the training set into training and 
validation sets (8:2) to perform early stopping. We train the model on 
the training set until the validation loss has not decreased at least 10−5 
for 15 continuous epochs.

Evaluation metrics
We report average sample-wise R2 score and average perturbagen-wise 
R2 score to measure performance in the prediction of xt. The 
sample-wise R2 score is computed as the square of the Pearson correla-
tion between the predicted sample x̂t ∈ ℝN and real sample xt ∈ ℝN. The 
perturbagen-wise R2 score is adopted from scGen. It is computed as 
the square of the Pearson correlation of a linear least-squares regres-
sion between a set of predicted treated samples X̂t ∈ ℝN×S and a set of 
real treated samples Xt ∈ ℝN×S for the same perturbagen. Here, S indi-
cates the size of the sets. Higher values indicate better performance in 
predicting the treated sample xt given the diseased sample xd and 
predicted perturbagen. This is used for evaluating the performance of 
response prediction. For evaluating perturbagen discovery, when the 
competing methods cannot predict perturbagen ranks for chemical 
perturbation data, we first calculate the rank of drugs based on the R2 
score. We then build a target gene rank from the drug rank by substitut-
ing the drugs with their target genes acquired from DrugBank75 
(accessed in November 2022; see details in Supplementary Note 3). A 
single drug can have multiple target genes, which we place in the rank 
in random order. As some methods cannot predict unseen drugs, their 
predicted target gene lists are often short, introducing bias in evalua-
tion. To address this, we shuffle the missing target genes and attach 
them to the predicted ranks to create a complete rank. For genetic 
perturbation data, we directly obtain the target gene rank from the 
results and then attach the shuffled missing genes to the rank.

To evaluate the performance of our model in ranking predicted 
therapeutic targets, we use the nDCG, a widely used metric in informa-
tion retrieval adapted for our setting. The raw DCG score is computed 
by summing the relevance of each correct target based on its rank in 
the predicted list, with relevance weighted by a logarithmic discount 
factor to prioritize higher-ranked interventions. The gain function is 
defined as 1 − ranking/N, ensuring that the score reflects the quality 
of the ranking relative to the total number of nodes in the system. To 
ensure comparability across datasets or experiments with different 
numbers of correct interventions, DCG is normalized by the ideal DCG, 
which represents the maximum possible score for a perfect ranking. 
This results in nDCG values in the range [0, 1], where higher values 
indicate better ranking performance and alignment with the ground 
truth. This metric is particularly suited for our task as it emphasizes 
the accuracy of top-ranked interventions while accounting for the 
diminishing importance of lower-ranked predictions.

In addition, we report the proportion of test samples for which 
the predicted therapeutic targets set has at least one overlapping gene 
with the ground-truth therapeutic targets set (denoted as the percent-
age of accurately predicted samples). We also calculated the ratio of 
correct therapeutic targets that appeared in the top 1, top 10 and top 
100 predicted therapeutic targets in the predicted rank, denoted as 
recall@1, recall@10 and recall@100, respectively.

To assess the overall performance across all experiments and 
metrics, we calculated an aggregated metric, averaging all metric 
values for each method.

Statistical tests
In the benchmarking experiments, we performed a one-tailed pairwise 
t-test to evaluate whether PDGrapher significantly outperforms the 
competing methods. For other experiments, such as ablation studies, 
we used a two-tailed t-test to determine whether there is a significant 

difference in performance between the two models. A significance 
threshold of 0.05 was used for all tests. P values of perturbagen dis-
covery and response prediction tests are presented in the Source data.

Ablation studies
In the ablation study, we evaluated PDGrapher by optimizing it with 
only the supervision loss (PDGrapher-Super) and with only the cycle 
loss (PDGrapher-Cycle) across all chemical datasets. We then compared 
the perturbagen prediction performance of these submodels with that 
of PDGrapher (PDGrapher-SuperCycle). To train PDGrapher-Super and 
PDGrapher-Cycle, for each cell line, we set the number of layers to that 
which was found optimal for the validation set in the random splitting 
setting for PDGrapher-SuperCycle.

Sensitivity studies
To test the sensitivity of PDGrapher on PPI networks, we used data from 
STRING (string-db.org), which provides a confidence score for each 
edge. The method for acquiring and preprocessing the PPI networks 
from STRING is detailed in Supplementary Note 3. For the sensitivity 
tests, we selected two cell lines: the chemical dataset MDAMB231 and 
the genetic dataset MCF7. For each cell line, we processed the data 
using the five PPI networks described in Supplementary Note 3. We 
optimized PDGrapher using 5-fold cross-validation as described in 
‘Evaluation set-up’ and optimized the number of GNN layers using the 
validation set in each split.

Synthetic datasets
We generated three synthetic datasets:

	 1.	 Dataset with missing components removing bridge edges: 
this dataset is generated by progressively removing bridge 
edges from the existing PPI network. Bridge edges are those 
whose removal disconnects parts of the network. We vary 
the fraction of bridge edges removed in increments (from 
zero to one) and, for each fraction, we create a new edge list 
representing the modified network (Supplementary Table 5). 
This process ensures that different levels of network sparsity 
are introduced, affecting the overall structure and connectiv-
ity. We pair these networks with gene expression data from 
chemical-PPI-breast-MDAMB231.

	 2.	 Dataset with missing components removing random edges: 
this dataset is generated by progressively removing random 
edges from the existing PPI network. We vary the fraction of 
bridge edges removed in increments ([0, 0.1, … 0.6]) and, 
for each fraction, we create a new edge list representing the 
modified network. The number of remaining directed edges in 
the network upon random edge removal are 273,319, 242,912, 
212,525, 182,177, 151,811 and 121,472.

	 3.	 Dataset with latent confounder noise: our starting point is the 
chemical-PPI-breast-MDAMB231 dataset. The synthetic data-
sets were constructed with varying levels of confounding bias 
introduced into the gene expression data. To simulate latent 
confounder effects, Gaussian noise with distinct means and 
variances was progressively added to random subsets of genes. 
Genes were grouped into 50 predefined subsets, each repre-
senting a latent confounder group. For each group, a Gaussian 
distribution was defined, with the mean drawn randomly from 
a uniform distribution in the range [0.5, 0.5] and the standard 
deviation [0.1, 0.5]. A fraction ([0.2, 0.4, 0.6, 0.8, 1]) of these 
subsets was randomly selected for perturbation and, for each 
gene in these subsets, its expression value was incremented by 
a value sampled from the respective Gaussian distribution. The 
perturbed gene expression values were then clamped between 
zero and one to ensure validity. This strategy ensures that dif-
ferent latent biases are introduced globally to gene  
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expression patterns while maintaining controlled variability. 
We pair the noisy version of the gene expression data with the 
global unperturbed PPI network.

Network proximity between predicted and true perturbagens
Let 𝒫𝒫  be the set of predicted therapeutic targets, ℛ be the set of 
ground-truth therapeutic targets, and spd(p, r) be the shortest-path 
distance between nodes in 𝒫𝒫 and ℛ. We measure the closest distance 
between 𝒫𝒫 and ℛ as:

d(𝒫𝒫𝒱ℛ) = 1
|ℛ||𝒫𝒫𝒫 ∑r∈ℛ

∑
p∈𝒫𝒫

spd(p, r). (9)

As part of our performance analyses, we measure the network 
proximity of PDGrapher and competing methods. We compared the 
distributions of network proximity values using a Mann–Whitney 
U-test, along with a rank-biserial correlation to measure effect size. 
To assess the uncertainty of effect sizes, we performed bootstrapping 
with 1,000 resamples to estimate 95% CIs.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Processed datasets, including cell line gene expression datasets, PPI 
networks, drug targets and disease-associated genes, are available via 
the project website at https://zitniklab.hms.harvard.edu/projects/
PDGrapher or directly at https://zenodo.org/records/15375990 (ref. 76)  
and https://zenodo.org/records/15390483 (ref. 77). The PPI data were 
obtained from https://downloads.thebiogrid.org/File/BioGRID/
Release-Archive/BIOGRID-3.5.186/BIOGRID-MV-Physical-3.5.186.tab3.
zip, https://www.science.org/doi/suppl/10.1126/science.1257601/suppl_
file/datasets_s1-s4.zip and http://www.interactome-atlas.org/data/
HuRI.tsv. Raw gene expression datasets were obtained from https://clue.
io/releases/data-dashboard. Disease-associated genes were obtained 
from COSMIC at https://cancer.sanger.ac.uk/cell_lines/archive-downloa
d#:~:text=Complete. Source data are provided with this paper.

Code availability
Python implementation of PDGrapher is available at https://github.
com/mims-harvard/PDGrapher (ref. 78).
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Extended Data Fig. 1 | The performance of response prediction within nine 
cell lines under chemical perturbation. The R2 values are calculated between 
the predicted and actual gene expression for the top 20 (a), 40 (b), and 80 (c) 

differentially expressed genes per cell line. Dotted lines represent the average 
performance across cell lines, dots indicate individual data points, and bars 
represent the average R2 across five data splits.
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Extended Data Fig. 2 | PDGrapher efficiently predicts genetic perturbagens 
to shift cells from diseased to treated states in a random splitting setting 
within ten cell lines. (a) PDGrapher provides accurate predictions for up to 
1.09% more samples in the test set compared to the second-best baseline across 
Genetic-PPI datasets (genetic-PPI-ovary-ES2: 1.37% vs 0.28%). (b) scGen takes the 
leading position in nDCG across genetic-PPI datasets. (c) PDGrapher recovers 
ground-truth therapeutic targets at comparable rates as competing methods 
for genetic-PPI datasets. (d) PDGrapher has the best overall performance in 

perturbagen prediction within each cell line, evaluated by the averaged rank 
over multiple cell lines and metrics. The central line inside the box represents the 
median, while the top and bottom edges correspond to the first (Q1) and third 
(Q3) quartiles. The whiskers extend to the smallest and largest values within  
1.5 times the interquartile range (IQR) from the quartiles. (e-g) Shown is the R2 of 
the response prediction module of PDGrapher compared to competing baselines 
for the top 20 (e), 40 (f), and 80 (g) differentially expressed (DE) genes.
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Extended Data Fig. 3 | Sensitivity analysis of the PPI used for training 
PDGrapher. Performance of sensitivity analyses evaluated by nDCG 
(a) and recalls (b-d) for datasets genetic-PPI-breast-MCF7 (left) and 
chemical-PPI-breast-MDAMB231 (right). The PPI used here is from STRING 
(string-db.org), which includes a confidence score for each edge. The edges are 

filtered by the 0.1, 0.2, 0.3, 0.4, and 0.5 quantiles of the confidence scores as 
cutoffs, resulting in five PPI networks with 625,818, 582,305, 516,683, 443,051, and 
296,451 edges, respectively. The results of the percentage of accurately predicted 
samples are shown in Figure 5b.
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Extended Data Fig. 4 | PDGrapher has stable performance on the synthetic 
datasets with various intensities of confounders added on the gene 
expression. Performance of simulation analyses evaluated by percentage of 
accurately predicted samples (a) and nDCG (b) for the synthetic datasets with 
varying levels (0 to 1) of confounding bias introduced into the gene expression 
data. Gaussian noise, with distinct means and variances, was added progressively 
to random subsets of genes, simulating latent confounder effects in the treated 

gene expression data. The intensity of the confounding bias increases as more 
gene groups (representing network communities) are affected. This approach 
creates global, controlled variability in the gene expression data, paired 
with an unperturbed PPI network, allowing for the evaluation of algorithmic 
performance across different degrees of confounder noise. See Online Methods 
for more details on data generation.
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Extended Data Fig. 5 | PDGrapher has stable performance on the synthetic 
datasets with various fractions of bridge edges removed. Performance of 
simulation analyses evaluated by percentage of accurately predicted samples 
(a) and nDCG (b) for the synthetic datasets with a [0, 0.1, …, 1] fraction of 
bridge edges removed in the simulated PPI. Bridge edges are those with 

high connectivity in the network, which, if removed, increase the number of 
disconnected communities. The number of connected components in the 
network upon bridge edge removal is [90, 179, 268, 358,447, 536, 626, 715, 804, 
894]. See more information in Supplementary Table S5.
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Extended Data Fig. 6 | PDGrapher’s performance is influenced by network 
incompleteness. Performance in ablation studies evaluated by percentage of 
accurately predicted samples (a) and nDCG (b) for the synthetic datasets with 

a [0, 0.1, … 0.6] fraction of random edges removed in the PPI. The number of 
remaining edges in the network upon random edge removal are [273,319; 242,912; 
212,525; 182,177; 151,811; 121,472]. See the Method section for more details.
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Extended Data Fig. 7 | Comparison of predicted targets from PDGrapher and 
a random model for lung cancer. Boxplots display the evidence strength (a) 
and the number of evidence sources (b) for the top 10 predicted targets from 
PDGrapher versus 10 randomly selected genes. The central line inside the box 

represents the median, while the top and bottom edges correspond to the first 
(Q1) and third (Q3) quartiles. The whiskers extend to the smallest and largest 
values within 1.5 times the interquartile range (IQR) from the quartiles.
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Extended Data Fig. 8 | Unique and common targets predicted by PDGrapher 
among three cancer types. The Venn diagram (a) shows the number and ratio of 
unique and common predicted targets, while the bubble plot (b) shows the strength 

of evidence and the number of evidence sources for each cell line. The evidence 
strengths are the global association scores and overall evidence sources provided 
by Open Targets. Details of the scoring system are in Supplementary Note 2.
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Extended Data Fig. 9 | Ablation studies for loss functions of PDGrapher 
evaluated by the evidence from Open Targets. The strength of evidence in the 
cell lines with healthy control data is shown in the box plots. The strength of the 
evidence is the global association scores, which are based on all evidence sources 
provided by Open Targets. See details of the scoring system in Supplementary 

Note 2. The central line inside the box represents the median, while the top and 
bottom edges correspond to the first (Q1) and third (Q3) quartiles. The whiskers 
extend to the smallest and largest values within 1.5 times the interquartile range 
(IQR) from the quartile.
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